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CHAPTER V

THE ADAMS SPECTRAL SEQUENCE

$30. GENERAL IDEAS

As it was shown at the end of the preceding Section, the information collected so far
is sufficient to find the stable homotopy groups. Once the modulo p cohomology of a
space X is known we easily find the “stable part’ of the cohomology groups of the first,
second, third, etc. killing spaces. In each case the Hurewicz theorem gives the
corresponding homology groups. This procedure (Serre’s method) however, will not
enable us to compute the homotopy groups, at least not without overcoming further
difficulties. '

Suppose that, for example we need the stable homotopy groups of some space X
while we know the cohomology of X with arbitrary coefficients together with the action
of every cohomology operation. Assume, for example, the first non-trivial homotopy
group to be Z,; let it be in the dimension N. Consider the mod 2 cohomology spectral

K(Z,, N—1
sequence of theg fibration X)| N#—)—» X

3
e Sq'e Sq’e Sggsf]{e

D I U D

N—1 N N+1 N+2 N+3

Here e e HY ™! (K(Z,, N—1); Z,) is the fundamental class and « is the generator of
HN(X; Z,).

In the upper row we have the cohomology of K(Z,, N—1) mod 2, coinciding with
the Steenrod algebra A,,, in the stable dimensions. The differential maps e onto o,
further for each operation ¢ the element ¢(e) is sent onto @ (o). The elements that
remain in the lower row are those elements of H*(X; Z,) which do not belong to the
images of o under any operations; the elements that remain in the upper row are
elements of form ¢(e), where ¢ (a) = 0. This means that all cohomology groups of X| y
are known. But our knowledge about the action of the operations is not complete.
Imagine, for example, that there is a relation Sg2°S¢g*® = 0 in the Steenrod algebra
(probably there is no such relation but that is not the point) and that S¢°°« = 0. Then
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Sq*°e remains in the upper row. In the cohomology of X | it cannot be the value of the
operation Sg*° at any element. Let the operation S¢2° be applied to it. As S¢2° Sq3° =
=(), the result may not be any element of the upper row. It may be, however, a non-trivial
element of the lower row, i. e. S¢*°(f) = yliesin H*(X|y; Z,), where f comes from
Sq*°e € H*(K(Z,, N—1); Z,) and y comes from some element of H*(X; Z,).

f=|Sq*e

y=|S¢*°f

Analogous consequences may follow from a more complicated relation of the form
. 59" Sq% =0 as well.

We conclude that our information relating to the action of the cohomology
operations is not complete and so the cohomology of the next killing space remains
uncertain.

Actually present-day topology has no means to overcome this difficulty: this far not
even the homotopy groups of all spheres are computed. There is some means,
nevertheless to at least expose the difficulty clearly enough, namely, to collect all
calculations related to determining the homotopy groups in a single spectral sequence
whose initial term is algorithmically computed, while computing the differentials will
contain all the basic difficulties. It is the Adams spectral sequence.

Its usefulness is of course more than merely exposing the difficulties. In fact it may
also enable us to overcome a part of them. Namely, the sequence is equipped with a
series of further useful structures (for example, with multiplication) which are not at our
disposal if we remain at the language of usual killing spaces, and provide us with ample
information about the action of the differentials.

Before formulating the results and giving the proofs we are going to expound some
basic ideas.

Serre’s method means “killing” the cohomology groups in the subsequent
dimensions, first the nth, after the (n + 1)th, etc. The method of Adams is also killing the
groups, but not in the same order. Let us be given a space X. Assume it to be (N—1)-
connected. The aim is to detemine the p-component of the homotopy groups from the
dimension N to N+n, where n<N. At the first step we shall kill' every mod p
cohomology in these dimensions. For example, we do the following. Each additive
generator of HY*4(X; Z ) defines a mapping X — K(Z »» N +q). Together they constitute
a mapping of X into a product space II,K(Z,, N+gq;) of a number of K(Z,, N+q)-
spaces. Consnder the 1nduced fibration

K@, N+~ 1)

X(1) — X

R
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Let us consider the spectral sequence. In the upper row we have a so-called free A,)-
module (i. e. the operations act freely in this row: there are no relations except those

implied by the relations of the algebra A,).

The differential defines an epimorphism of the upper row to the bottom row and
what remains in the former is the kernel of this mapping while in the latter we have
zeros. We have all the informations about the cohomology of the space X (1), with the
action of the operations included, because E,, consists of this single row; so we may
repeat the same construction this time for X(1), etc. The result is a sequence of Adams
killing spaces: X(1), X(2), X(3),.. ..

We notice that the same goal, i. e. killing of all cohomology groups of X, could
have been reached in a more efficient way. In fact it is not necessary to kill each additive
generator of H*(X; Z,) independently. If, for example, we kill an element & for which
P # 0, it will not be necessary to kill P&, too, because it will disappear as well
without our help.

In other words, we only have to consider the generators of the A -module
H*(X; Z,), rather than all generators in the additive sense. That is, we consider all the
additive generators of H¥(X; Z,); thenin H"* ! (X; Z,) we consider the genuinely new
generators only, neglecting those elements which are obtained by operations from the
previous system of generators. Further we continue the procedure with H NY2(X; Z,),
etc. :

Speaking the language of algebra, we are doing the following. We are given the A ,)-
module H¥(X; Z,) onto which we map a free A,ymodule F, (the upper row of the
spectral sequence of the fibration X(1)—X).

Onto the kernel of this epimorphism (i. e. H*(X(1); Z,)) we again map a free A,-
module, and so on. The result is an exact sequence of 4 ,-modules.

...»F,»F,-HXX;Z,)-0
such that all terms except H*(X; Z,) are free. We say we have a free resolution, an

object with many remarkable properties which we shall discuss later on. -

Let us now return to geometry.
We have a process which is convergent in a certain sense, as the subsequent spaces
X(k) have smaller and smaller cohomology groups and have none at the limit. In this
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sense by using the method of Adams we do a more thorough work than with Serre’s
method: we kill every cohomology group of every killing space.

However, by applying the Serre procedure we make direct use of the homotopy
groups of the space via the Hurewicz theorem. We always kill cohomology classes in
the lower dimensions directly related to certain elements of the homotopy groups. As a
rule it is not the case with the method of Adams.

Let us return to the example above: my(X)=Z,, the generator of the group
HY(X; Z,) is «, Sq*°¢=0, and in the cohomology of X] there remain f=5¢% and
quo £ = y. If we employ the Serre procedure we shall not need to kill y: by that time it
will have disappeared together with fe H*(X|y; Z,). Now following Adams we kill
both elements at the very first step. Thus the latter requires more killings than the
former. By calculating in each dimension N + ¢ the number of generators killed at all
steps of the Adams procedure, we get an upper bound on the p-component of my 4 ,(X).
This estimate is actually the first term of the Adams spectral sequence. The differentials
here kill all the superfluous elements in the following way.

We observe that y is not the only element which was killed unnecessarily. The co-
homology of X (1) as well as of Xy contains the element f. Now in X|y we have Sq*°f =
= y while in X(1), S¢*°f = 0, implying the occurrence of a useless element in X(2). In
factlet f bekilled by some g, then there remains an element Sq*°g that would not even
appear if we applied the Serre method, and it has to be killed at the next step. The
initial term of the Adams spectral sequence is: '

generators of the A4 ,-module H*(X(3))

generators of the 4 ,,-module H*(X(2)) fqzog
generators of the A,-module H*(X(1)) /d2

7
generators of the A4 ,-module H*(X) y

and the second differential sends y to the element coming from S¢*°g in H*(X(2); Z,)
thus annihilating both useless elements.

The limit term E_ will be adjoint to the p-components of the stable homotopy
groups of X.
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§31. SOME AUXILIARY MATERIAL FROM ALGEBRA

Let A be an associative algebra with a unit element over a field k, and let it have a
grading 4 = D4, = ... DA @A DA, D .. ..

A left module over 4 (or an A-module) is a graded vector space T over &, i. e. g
directsum T= ®; 2, T, equipped with a mapping T x 4 — T such that each element
(x,a),xeT,ae Aismapped onto some ax € T, and the following axioms are satisfied:

()ifae A, and xe T, then axeT,,,,

(2) a(x,+x,) = ax, +ax,,

(3) (ay +az)x =a,x+a,x,

(4) blax) = (ba)x and (ax)b = (ba)x for ac A, bek.

The notion of a right A-module is defined similarly. A left A-module T is Sfree if it
contains a subset 7' < T such that each xe T can be written, in a unique way, as a

(finite) sum x = Z ae;witha,e Aand e;e T'. Such%subset T" 1s called a basis of the free

A-module T.

For example, the algebra A itself may be considered as a free 4-module with the |

basis consisting of the unity even when A as an algebra has relations.

A homomorphism of an 4-module 7! into an 4-module 72 is a homomorphlsm

f: T'>T? such that f(T}{)<=T? and f(ax)=af(x) for every ac 4 and xe T".
Clearly for every A-module T there exists an exact sequence

0O—— I — s Fp— " T,

such that Fy is a free A-module. (For F; we may choose a vector space over k whose
basis is the set of the pairs (a, x), a€ 4, x € T. The algebra A acts on Fy according to the
formula a '(a, x) = (a'a, x). The gradation of Fyis naturally defined. The epimorphism 1
is given by 7n(a, x) = ax. We write I, = Kern.

An A-module P is projective if any diagram of the form

M > N — 0

T

P
with the row exact, may be extended to a commutative diagram

M ——>N—0
\T

In other words P is projective if any 4-module homomorphism of P to any
quotlent module M/ R isa compos1te P-M->M/R.
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We claim that an A-module P is projective if and only if it is a direct summand in a

free A-module.
Proof. Any free A-module P is projective. Indeed, if P’ = {p;} is a basis of P and we

are given a diagram

M N 0
LN
o If
® N
\\P

with exact row, we consider n, = f(p;), and choose m;e M such that n(m;)=n,.
Let ¢: P— M be defined by ¢(p;) = m;.

Assume now that P is a direct summand in a projective module P, i. e. there exist
a:P — P and B: P— P such that foa: P— P isidentity. Then P is a projective module.
Indeed, if

4

N
\\\ Ptf‘—‘/zp

~
R —

is a diagram with exact row then fo f is a mapping of the projective module P to
N, so there exists a ¢: P— M such that no¢@ = fof. The homomorphism y =
@a: P—Nis such that noyy =nogoa=fofoa=f

Finally, any projective module is a direct summand of some free module. Indeed,

assume that P is projective. There exists an exact sequence Fp TP -+ 0 with
F, free. Consider

Because P is projective, this diagram may be extended by ¢: P—Fp so that
no@: P— P is identity. Hence Fp = P @ Ker.

Exercise. Let A be the algebra of continuous (say, real) functions on a complex X,
and T be the space of all (continuous) sections of a vector bundle £ over X. Show that T
is a projective A-module (with respect to the natural action of 4 in T), and that T isa
free A-module if and only if the bundle ¢ is trivial. Notice, that in all cases T is a
summand in a free A-module, because ¢ is a summand of a trivial bundle.

(This exercise illustrates the difference between projective and free modules. One
may say that it is the same as the difference between vector bundles and trivial vector
bundies.)
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The only implication of this statement that we are going to use is that any free

module is projective.
Let T be an arbitrary right A-module. Then there exists an exact sequence

oA A o A5 AT -0

where A4, (k = 0, 1, 2,. . .) are right projective modules. It will be called a projective
resolution of the module T (if all 4, are free we have a free resolution).

A free resolution may be constructed in the following way. For any module T we
find an exact sequence

0—-I;—F;-T-0

such that Frisfree. Let T, = I, T, = Ir,, Ty = Iy, ...
We have the exact sequences

0-T,-»F; »T—0
0->T,—»F; -»T;—0
0->T;>F;, —>T,-0
0-T,>F;,—»T3-0

. Itis true that the resolution of T is not uniquely determined, neweusheolens:the further
constructions will not however depend on the particular choice of the resolution.
(We are not going to prove this but the reader is advised to fill up the gaps.)

Consider the covariant functor of tensor multiplication by a fixed left 4-module N
and the contravariant functor Hom 4 (..., N).

The tensor product M @ 4N of a right A-module M and a left A-module N is not
necessarily an A-module, it is however naturally graded: the degree of mQ) n,me M,
neN, being k+/ If M and N are left 4-modules, [Hom (M, N)], consists of
homomorphisms “of degree —s”, i. e. of homomorphisms commuting with the action
of A and mapping M, into N,_, for each k. We remark that the group of the
A-homomorphisms of M to N, in the above sense is [Hom 4(M, N)],.

B
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Let us now apply the functor ® 4N to the projective resolution. The resulting
sequence

o ARQ N A QN4 N

(notice the absence of — T'® ,N — 0 in this sequence!) is an algebraic complex (i. €. the
composite of any pair of subsequent homomorphisms is trivial). Its deviation from
exactness may be measured by the homology groups denoted in this case by
TorA(T, N). We have Tor§(T, N) =T ® /N (prove this!).

Tor (T, N) is graded in an obvious way:

Tor (T, N) = @ [Tor; (T, N)], = @, Tor ; (T, N).

We still mention a further important property of Tor: for any projective A-module
T, Tor (T, N) = 0 for n>0 (prove this!).

Next we consider the functor Hom (-, N). By applymg to the projective resolu-
tion we again get a complex

..<Hom(4,, N)«...<~Hom,(A4,, N)~Hom,(4; N)

whose homology groups are denoted by Ext% (T, N). We have Ext§(7,N)=
=Hom ,(T, N) (prove this!).
If T is a projective A-module, Ext% (T, N) =0 for n>0 (prove this!). Note that if 4
is a graded algebra then each 4-module Tor (T, N)and Ext” (7, N)is graded as well.
Instead of [Ext’(T, N)], we shall prefer the notation Ext’%%(T, N). Thus

Kcr([HomA(An, N)]q_'[HomA(An-* 1> N)]q)

Ext%4(T, N) = Im([Hom,(4, _,, N)]qq[HomA(A,,, N)]q)

Exercise. Let A=12Z. Prove that in this case

(1) Tor2(T, N) = Ext%(T, N) = 0 for any T and N, and n>2;

(2)if T and N are finitely generated groups, then Tor? (T, N) = Tors T ® Tors N.

(3)Ext4(Z, G) = Oforany G; Ext4(Z,, G) = G/nG, in particular Ext{(Z,, Z)~Z,,
Ext{(Z,, Z,)=Z,, ) and thus Ext{(T, N)=(Tors T) ® N for any finitely generated
T and N.

§32. CONSTRUCTION OF THE SPECTRAL SEQUENCE

We are given a topological space X and we want to determine the stable homotopy
groups 73(X), i. e. the groups my ., (ZX) for N> q. The principal caseis X =S°, the

- space consisting of two points. Then 73(X) = 7y (V).

As before, 4= A, will stand for the Steenrod algebra. We shall write H*(X) for
H*(X; Z,), where p is a prime, and H*(X) for H¥(X, =) i. e. H°(X) = H°(X)/Z, and

A(X) = H(X) for i>0.
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As A is acting on f*(X) it may as well be regarded as an 4-module. (Here we note
that we shall always have to deal with modules graded by non-negative degrees, i. e. the
terms with negative indexes are trivial, as we have in the case of H*(X))

Let us choose some generating system in this A-module. By this we define an
epimorphism of a free B,-module onto A*(X):

0« H*(X)<B,.

For the sake of simplicity we assume X to be a complex of finite type (i. e. in each
dimension the number of cells is finite) then all modules to be dealt with will have
finitely many generators in every dimension.

Consider the kernel of the above epimorphism. In general it is not free so let the
same procedure be repeated. This way we obtain an exact sequence (free resolution)

0 H*(X)—B,«<B,~By—B,« ...

The A-modules B; are certainly not the cohomology modules of any spaces (this
would imply the relations Pi(x) = 0 for n>(p— 1)dim x, for example). If we want to
“approximate” them by cohomology modules, it seems reasonable to choose the spaces
K(Z,, n), because the A-modules H*(K(Z,, n); Z,) have the least systems of relations.

Let N be a large number. The A-modules H*(ZVX) and H*(X) only differ in their
gradings. Let «; € H%(X) be the images of the free generators of B, i. e. the generators
chosen in the A-module H*(X).

Consider the mappings 2¥(X)—K(Z,, N+g;) constructed along the eclements
2Na;e HY*4(ZNX) for which ¢;<N. Together they define a mapping Z¥X — Y, =
=1I1,K(Z,, N +g;). Then the 4-module H*(Y,) coincides in the dimensions N through
2N with the A-module B, in the dimensions 0 through N, and the mapping
Z¥X - Y induces a homomorphism H*( Y,)— H*(Z" X) which in the dimensions N
through 2N coincides with the homomorphism B, —» H*(X) considered in the
dimensions 0 through N.

The mapping 2V X — Y, may be considered as a fibration. Let the fibre be denoted
by X(1); write X(0) = X.

It would be difficult to give full description of H*(X(1)) in the general case,
nevertheless in the dimensions <2N—3 the A-module H*(X(1)) is easily seen to
be isomorphic, up to the shift of dimensions by one, to the 4A-module Ker LH*(Y,)—
— H*(ZVX)]. Indeed, we only have to consider the spectral sequence of the fibration

T F)
HAFTEN %/ /
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(The reason of the shift of dimensions is that the transgression 7 increases the dimen-
sions by 1.) Thus A*(X(1)) in dimensions N— 1 through 2N —3 is isomorphic as an
A-module to Ker[B; — H*(X)] in dimensions 0 through N—2 by the shift of
dimensions by N—1.

Remark. Of course X(1) could have been defined not only as fibre of the mapping

IK(Z,, N+q,—1)

I¥X Y, but as well as the total space of the fibration X(1) >IN X

, N
induced from the fibration *———*—/I,Ky,, = Y, by Z"X->Y,.
X(1) > %
| 1Ky | ik
X
ZNX () %”iKN+q.-: Yl

Let it be emphasized that we have defined not only a space X (1), but also a map-
ping X(1)— ZV X as well. Both X(1) and the mapping are defined up to homotopy
equivalence.

Next we repeat the procedure, previously applied to Z¥ X, with the space X(1): select
in he A4-module A*(X(1)) a system of generators which are (up to dimension 2N —3)
in one-to-one correspondence with the free generators of the A-module B, (we re-
mind that there is an epimorphism B,—Ker[B,— H*(X)]) while the difference be-
tween the respective dimensions is N—1. Let f;e H~'*7(X(1)) be these gener-
ators. We construct X(1)-»Y,=II,K(Z,, N—1+r;). The A-modules A*(Y,) and
B, coincide, with the dimension shift of N—1 up to H?"73(Y,). Let X(2) denote the
fibre of the fibration equivalent to X(1) - Y,. Thus we have obtained the next space
X(2) and mapping X(2) - X(1).

By repeating the construction we get the subsequent spaces

. oXQ)-X(1)-ZVX = X(0)

where each X(i) is the fibre of some fibration whose total space is homotopy equivalent
to X(i—1) and whose base Y, is a product of spaces of the type K(Z,,, m).

Let n< N be fixed. The "A-modules H*(Y,) up to dimension (N—i+1)+n and B,
up to dimension n coincide, except for a difference N—i+1 in their gradings.
(Actually they coincide in higher dimensions as well, H*(Y)) and B, as far as up to
dimensions ~2N and ~ N respectively. It has no significance as we are nevertheless
going to consider N and » as tending to infinity.)

On the other hand the mapping X(i)— X(i— 1), too, may be considered as a fibra-
tion. Its fibre is a space Z; which is a product of as many K(Z,,m') spaces as Y, but each
space is havmg a number »' smaller by one unit than the respective space in the latter
product (we may assume that, in the permitted dimensions, Z;=QY, and 2Z;=Y, -

The A-module H*(Z,) is 1somorph1c to Bwith a. gradmg shift of N—i. Further, up

o
.-:.l
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to dimension N —i+n, H*(X(i)) coincides with the dimension shift of N—i with the
kernel of the homomorphism B(i)— B(i—1) for i>2, resp. B, » H*(X) for i=1.
F inally the composite Z,c X(i{)-Y,,, induces a homomorphism
H*(Y,,,)— H*(Z,) which coincides (up to some difference in the gradings) with the
homomorphism B;— B;_, in the resolution.

It is worth mentioning that every X(q) is (N — 1)-connected.

Indeed, let us verify it in the case of X(1). The difference between the gradings of
A*(X(1)) and Ker (B, —~H*(X)) is N—1. Now the kernel is trivial in dimension 0
because there are no relations between elements of H%(X). Thus Ker [B —-H*X)], =
=0and AV~ 1(X(1))=0.

By analogously using that Ker[B;—B;_,];=0 for j<i we obtain that X(;) is
(N —1)-connected for any i.

Let us now transform the chain of mappings of X(i) into a filtration. That is, let these
mappings be transformed into imbeddings.

We construct the cylindre of each mapping X(i)— X (i — 1), then attach them to each
other as shown on the picture (the resulting space is called a “telescope™):

e — X3 X2y x(0)=3Nx

X'(3)

X(5)  X(4)

Let X'(k) denote the part of the telescope to the left from X (k) (on the picture). The
chain of inclusions

X'k, . . cX' (2= X' (1) = X(0)
is clearly homotopy equivalent to
o X(k)— . - X(2)-X(1)-X(0) = ZVX.

In the sequel let us write X (k) instead of X’(k). As all constructions are made up to
homotopy equivalence, this may be done.

Later on it will be convenient to consider the filtration to be infinite in both directions
with ZVX = X(0) = X(—1) = X(—2) = ... (We notice that the notations here are not
consistent with those in §18: the numeration of the filtration is in the opposite.)

The Adams spectral sequence is obtained by applying to the above filtration the
same construction already used in §18 for the Leray spectral sequence. The main
difference is in the use of homotopy rather than homology groups. It will be noted that
homotopy groups in general are not applicable to spectral sequences as the formula

n(A, B) = n(B/B) is not valid. Nevertheless we shall have it as we may restrict
ourselves to stable dimensions.
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Let us consider the conclusion mapping of two pairs (X(s), X(s+ 1)) > (X(s+1-r),
X(s+1)) where r>1, and introduce the groups E' by

Est = Im [T[NJrl—s(X(S)’ X(s+r))—>nN+,_s(X(S+ 1—r), X(s+1))]

where the homomorphisms of the homotopy groups are induced by the inclusion

mapping, and t<n—r.
Let us clarify the reason of the restriction on t. With N fixed, the formula for E>'is

correct for every r, s and t. How does the group depend on N? The space X(m) has
cohomology not depending on N in dimensions N through N —m+n. By substituting
N by a larger number M we replace X (m) by another space X(m) which is homotopy
equivalent with =V X(m) up to the dimension M —m+ n. It follows then that under

the restriction on t, E¥* is independent of N.
By tending with N and n to infinity we are thus able to define E¥' for any r,sand t in

invariant way.
There can also be given the following equivalent definition. Set EY* = G>'/Dy!

where
G¥' = Im 7y, (X (5), X(s+1) =Ty (X(s) X(s+1))].

D =1m [y (X(s—1=7), X(5)) > Ty 4, (X (), X(s+1))].

(This is the original definition given by Adams.)
The group G¢* is induced by the inclusion (X(s), X (s+7))—>(X(s), X(s+1)) while
D is defined by using the boundary operator in the exact sequence of the triplet (X (s

+1—=r), X(), X(s+1)).
To show the equivalence, we draw a picture for X(s+1 —rNoX@E)>XEs+1)o

> X(s+r):

The elements of D> are classes represented by absolute spheroids of dimension N
+t—s, lying in X(s), regarded as relative ones modulo X(s+ 1) (spheroid A4). They are
homotopic to zero if considered in the whole. X(s+1—r), as being boundaries of
relative spheroids. The elements of G are represented by relative spheroids.of X(s)
mod X(s+r) taken as relative spheroids in X(s) mod X (s+1), X(s+1)>X(s+7)).
Clearly G5 > D%*. Now to produce the quotient space G;*/ Dy’ we must consider the

spheroids in X(s+ 1—r) mod X(s+1).

TR W
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In the last step we have just taken the image by the homomorphism of 7ty ., _ ((X(s),

X(s+r))into my - (X(s+1—r), X(s+ 1)) induced by the inclusion. That is exactly E>*
as given in the first definition.

Next we are going to study the groups E$* more thoroughly.

They are defined for every r> 1, s>0and t > 0, moreover E}'* = Ofort<sas clearly
follows from the definition, because all X(s) are (N — 1)-connected

Write E, = @, ,E>". It is shown on the following picture:

Zeros

t

We shall observe the behaviour of E, as r 1s increasing. (We do not speak about
spectral sequence because the differentials are not yet introduced.) So let r be in-
creasing.-With s and ¢ fixed, the group 7y ., (X(s+1—r) X(s+ 1)) stabilizes at r=s+
+ 1 and, for every large r, is equal to 7y ,_ (2" X, X(s+ 1)). We cannot say anything
like this about 7y, ,_ (X(s), X(s+7r)) because we have no a priori information about the
pair (X(s), X(s+r)); in general we have no reason to expect E3 to stabilize and the
question of convergence of a spectral sequence requires special investigation.

Clearly Im[ry,,_J(X(s), X(s+7)>ny,,- (X, X(s+1))] is a subgroup of
Im 7y, (X(), X(s+r—1) >y, (ZVX, X(s+1))] because the latter mapping is
the composite of the former and 7y ., - (X(s), X(s+r+1)) >y, (X(s), X(s+7)).

Thus the limit group £, = @, E%' may be defined by E%f =N E'.

We may also use the second definition E}' = G;''/D;' for defining the limit, by
taking G%! = NG}* and

D% = Im [y s ioys 1 (ZVX, X(5) =Ty 4o o(X(), X(s+ 1)1,
Let us now define the differentials d*': ES'—>ES*™'*7~1 It will be recalled that
indexing in the Adams spectral sequence is something entirely different from that in the

Leray spectral sequence. The differentials d3' act along directions near to the direction
of the bisector of the first quadrant
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v

Consider the triples (X(s), X(s +r), X(s+2r)) and (X(s+ 1 —r), X(s+ 1), X(s+r+ 1))
and the boundary homomorphisms of their homotopy sequences. We have a diagram

a1 DN -5 (X(8), X(S+F)) ———— Tysgar-1y-en(X(s+1), X(s+r+r))
|
|/ E
Oyi iy X+ 1=r), X(s+ 1)) =Ty s tr- - 1 (X + 1), X(s+r—1))

By definition &% is restriction of 0, to E¥* = Im f which is a subgroup of

Ay -s(X(s+1=r), X(s+1)).

It takes its values in ES*" "1 = Img.
Obviously ds*m'* 1o g% = (.

This is now the best time to formulate the main theorem, that has partly been dealt
with.

The Adams theorem

Theorem. Let X be a CW complex of finite type and p be a prime. Then there exists
a spectral sequence {ES ‘= ES ‘(X)}, where E} ‘=0if s<0and ¢<s(and in particular
E® =0 for t<0) with differentials

s, t. IS,t strttr—1
at Ey—-E;™"

such that

(1) there is a canonical isomorphism
E3' =~ Exty' (H*(X); Z,)

(hére Z, is considered as an A-module with trivial action of 4 and with a single
generator of dimension 0);

JUR————ee e
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(2) there 1s a canonical isomorphism

E,s“i1 = Ker;; di'/Im d:~r, t~r+1;

(3) forr>s,Imd; ™™ "1 = Qandso E§' < ES'(s<r<k);let ES' = N ES then

s<r<aw

there exist groups B> =n>_ (X) such that
BStc s~ Li-1 . CBo,t—s — TE;SMS(X)
and E;’ ~ Bs.l/Bs+ 1,t+1 :

(4) N B> = K™is the subgroup of all elements of z>_ (X) whose order is finite
t—s=m
and relative prime to p.
Proof. The groups E;' and the differentials & are already defined. Let us clarify the
structure of E, and E,. By definition E}* = 7y, _ (X(s), X(s+ 1)). As follows from the

X(s+1)

construction of the spaces X(k) there exists a fibration X(s) 11K, hence

T (X(s), X(s + 1)) = n,([1K,,) for all g. Then
Ei=@®; £ =@ yre—(X(s), X(s+1)) =@, iy, (TK,).

(We recall that N>t—r=¢—1. Thus N does depend on ¢ and so do the spaces X(s)
and X(s+1) whose definition includes N. Nevertheless the group Ty +0—o(X(8), X(s + 1))
will not depend on anything, if N is sufficiently large, thus all terms are correctly
defined.)

Consider the group E} = @,E$". It is further equal to Dty 4, -s(1K,) = DZ,
where Z ,appears every time ¢ is such that N + ¢ — s coincides with one of the d1mens10ns
taking part in the direct product.

Consequently for t < N the terms Z,, in the sum are in a one-to-one correspondence
with the generators of the 4-module H*(ITK,,) and have the same dimensions. Hence
they are in a one-to-one correspondence with the generators of the A-module B, and
have dimensions larger by N —s units.

By other words, ny ., (I1K,,) =[Hom 4(B,, Z)l,.

A homomorphism B,—Z, may send any generator of the A-module B, into any
element of Z,; on the other hand any element of the form ga, where ¢ € 49, g>0,1is
necessarily sent into 0. Thus Hom ,(B,, Z,) as a vector space over Z,, is generated by
homomorphisms B;—Z,, that send one of the generators of the A- module Biinto1€Z,
and the rest into 0. Any such homomorphism has the same degree in the graded module
Hom 4(B;; Z,) as the generator itself.

We conclude that EY* = [Hom «(B;, Z,)], and @ ,E5' = Hom (B, Z ) with regard
to gradings.

Consider the homomorphnsm di;dy ': Ey ' E*L Y e [Hom 4(Bs, Z,)],—

‘ _)[HomA(Bs-f- 1> p)]t
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which, as it may easily be verified by the reader, coincides with the homomorphism
induced by the mapping B, ; — B,. As soon as the statement (2) of the Adams theorem
is proved it will follow that

o5t = Bxty (H*(X), Z,).
Next we prove statement (2), that is
Kerd:!/Imds™™' "1 = E¥ | =
= Im[ry ., (X(s), X(s+r—1)-my - (X(s—r) X(s+1))].
Let us examine Ker d&'/Imds ™" ~"*1 where
Bty ESC ST gsri el psontort L, pu
By the definition of d;'' we have
017 oK (51, X5 +1) > s oy (XG5 +7), X(s542r)
1./' lg
Oy iyar (Xs+1=r), X(s+ D)— iy, g1 (X(s+ 1), X(s+r+1))
& =053 s
Consider the following chain of spaces
XGs—r>X(s+1-roX(E)2X(s+1)>
SX(s+r)>X(s+r+1)>X(s+2r)

An element ae EX = Im [y 4, - (X(s), X(s+ 1) >y - (X(s+1+ ), X(s+1))]1is
the image of some femy 4, (X(s), X(s+r)) by the natural homomorphism (a spheroid
representing B is shown on the picture below).
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X(s+1-r)
X(s)

Suppose d5 ‘a=0. Then gd,(f) =0, implying that the boundary of B, as an
(n+t—s-=1)-dimensional spheroid in X(s+1), is homotopic to a spheroid lying in
X(s+r+1). Then B, considered as a spheroid modulo X(s+ 1), is homotopic modulo
X(s+r+ 1) to a spheroid of X(s). Consequently a belongs not only to £} but to the
smaller group Im [ny - (X(5), X(s +r+ 1)) >y, - (X(s+1—r), X(s+1))] as well.

Conversely, if « belongs to this subgroup, then d'a = 0, i. e. Kerd}' =
Im [my 4 (X(5), X(s+r+1D))—2ay,, (X(s+1-r), X(s+1))].

‘The homomorphism 7y, (X(s+1—r), X(s+1))=ay, _(X(s—r), X(s+1))
induces a homomorphism

Kerdy' = Im[nNH_s(Xl(s), X(s+r+1)>nay,, (Xis+1=r), Xs+1)]—
>Im [y - (X(8), X(s+r+ 1) =7y (X(s—1), X(s+1))] = Exy.

Its kernel will be shown to be Imds "' ""*!_ Indeed, by the definition of d5 ™" ~"*1
we have
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(’}3: TN+ s+ 1_(/\/(.8‘—"), X(s)) > 7IN+,‘S(X(S), X(S‘i'r))

s E

CatTygr s (X(+HT=20), X(s+1—r)—> Ty o ((X(s+ 1 1), X(s+1))

ds*r.t~r+l
r

= a4|1mf'

faeKerd; 'cny,,_(X(s+1—r), X(s+1)) is sent into zero by the homomorphism
to 7ty 4, (X (s—r), X(s+1)) then the relative spheroid representing a (the continuous
line on the picture) is homotopic to zero in the pair (X(s—r), X(s+1)). The homo-
topy @,: (DTS, SNY TS (X(s—r), X(s+1)) may be considered as a mapping
DN*17Sx [=DN*7s* 1, X(s—r) such that the bottom DV*'~Sx {0}, the side surface
SN*t7371x I and the upper face D¥**7*x {1} are sent into the spheroid «, the space
X(s+1), and the base point, respectively. Thus we obtain an (N+f—s+ 1)-di-
mensional spheroid in X (s —r) mod X (s—r+ 1) whose boundary is obtained from o by
adding to i some part lying in X(s+ 1). Finally we take into account that o belongs to
the image of ty ,,_ (X (s+r+1)),1.e. we may consider a as lying in (X(s), X (s +r+ 1)),
and the spheroids constructed as a relative spheroid X(s—r) mod X(s).

Letus look at the picture once more. We have a spheroid y e my ,,_ 4 ((X(s—7), X(s))
whose boundary coincides with « as a relative spheroid of X(s—7 + 1) mod X(s+ 1), . e.
a = g'0jaelmdi ™+t | ‘

By repeating the afgumentation in the opposite direction we get that, conversely, if «
belongs to the image of ¢ *~"*! then it is mapped into zero by Ker d* e i

Statement (2) is proved, and so is (1).
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Let us now make a remark concerning (1), which will have significance in practical
applications of the theorem.
Take a free resolution of the 4-module A*(X):

co.= By B, B, - H¥*(X)-0

Suppose that we have to compute Ext5;'(H*(X); Z,). First we have to apply the
functor Hom to the resolution and then to take the homology of the complex obtained.
Since the choice of the resolution does not alter the final result it is worth looking for
the most convenient resolution.

Let us choose in A*(X) a minimal generating system. This may be done by first
taking a system of additive generators in the first non-trivial group H%X), then adding
to it those elements of an additive generating system of the second non-trivial group
that are independent over the elements obtained by any cohomology operation from
elements of the previous group HY(X), etc.

The result is some minimal generating system a,, a,, as, . . . such that for any q, any

decomposition a, = Y @,a; with @, € A4, deg ¢,>0 is impossible.
ik

Next a free A-module B, is spanned on the selected generators. The generators in
the kernel of B, — H*(X) are then chosen in the same way as in A*(X). The subsequent
steps are similar.

For every k the homomorphism Hom ,(B,, Z,)—»Hom 4(B, , ;, Z,) is clearly trivial.

(Indeed any homomorphism B,—Z, sends any element ) ¢,a¥, where a® are

generators of B, and deg¢;>0, into zero. Now the homomorphism B, ,;—B, in
question sends all generators of B, into elements of this form.)
Consequently for this resolution the complex {Hom 4(B,, Z,)} has trivial differen-
tial and so '
Extk (H*(X), Z,) = Hom,(B,, Z,).
Let us now prove statements (3) and (4) of the Adams theorem. Write
B* =M {4 (X(5)) = Ty 4o (X(0)) = 7y 1 (Z¥ X) = 75_, (X))
where X(s)— X(0) is inclusion. We obtain a chain of inclusions
. CBs,tch—l,t—IC . CBO,t—s
where B®'™* = Im [y, (X(0)) =7y 4, (X(0)] = 7y, (E¥X) = m_(X).
This filtration is essentially infinite for every complex X.
We must prove EXf =~ B¥'/B**!**land N B> = K™;here K™ n3(X) denotes
t—s=m
the subgroup of all elements whose order is finite and relatively prime to p.

Remark 1. The E, term, and, in consequence, E , as well, only contains elements of
order p as immediately follows from the remark about the choice of the resolution.
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Remark 2. The statement is obvious for t<s. Indeed, for t<s, B®
=Im[ny,, (X()=1Rs - (X)]=Im[ny,, (X(s))-0]=0, and  E ‘=Ana-
logously, if s<0 then again E5 ‘=0 and B '=ny,,_(X(0)) while Bs*! "1=
=Imny,,  (X(s+1))>ny (X)) =7ny4,-(X(0)), as s+1<0.

A particular case: All the stable homotopy groups
of the space are finite

An algebraic lemma
Let M be an arbitrary A-module and

j ] i
JYPALL Bl</2 32413

its projective resolution. Assume that

7 Y
M= C 22— C,+

is a sequence of projective A-modules such that the composite of any pair of subsequent
homomorphisms is trivial. Then there exist A-homomorphisms ¢;: C;— B; such that
the diagram
p B
\)\/ Bl « : BZ ¢ K
1

M g K I(P
7, 1 2
\Cw n

is commutative.
(The lemma is true without assuming projectiveness of B;.)
Suppose we are given the homomorphisms ¢, : M — M (identity), ¢, @5, .. ., @;— .

In the diagram

- ,
Bt gt B,
/4

|

|

'I%*—Z I(f)i 1 Imp; |
\

Ci_,e Cioye éi

Yi-1 7i

the homomorphism f;..,@;_,y;: C;— B;_, is trivial because B;_ ,¢;_y; = @;—27i—17:-
Therefore Im ¢, 7, =Ker f;_; = Im f;i.e. ¢;_y;: C;— B;_, may be considered to be
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a homomorphism C;—Im B;. Because C; is a projective A-module, there exists a
homomorphism C;— B; whose composite with the epimorphism B;—Im f; coincides
with ¢;_,y;- Let us choose ¢; = ¢;_7;.

The Serre filtration
Together with the Adams filtration
- X(Q2)-X(1)-2VX

we have a similar filtration that arises as homotopy groups are being killed by Serre’s
procedure Let m be the dimension of the first non-trivial cohomology group of X.
(Thatis, A(X;Z ,) = Ofor j<m. We mention that m>0as H(X;Z ,) # 0 would imply
that X is not cormected and so n3(X)=2 @ ...® Z where the number of the
summands is equal to the number of connected components minus one, in obvious
contradiction with the assumption that the homotopy groups are finite.)

Denote by ¥, the product space K(H™(X; Z,), N+m) = K(Z,, N +m) x
x K(Z,, N+m). Let INX — ¥, be a mapping (defined uniquely up to homotopy) that
induces isomorphism of the groups H¥*™(-; Z,) and X, be the fibre of the homotopy
equivalent fibration.

The mapping Ty mZVX) =7y m(Y;) is clearly an epimorphism with kernel
Tin+m(X,) as follows from the exact sequence of the fibration. Hence the order of
in+m(X ) is less than that of my. ,(ZVX).

By repeating the construction we get a sequence of killing spaces and mappings

. oX, X, -VX,

Because the homotopy groups of ZVX (up to N +n) are finite for any g <n there
exists an s, such that for s> s, the order of my, ,(X(s)) 13 not divisible by p.

The resulted sequence will be called the Serre filtration.

Our aim is to find such mappings f: X(s)— X, that the diagram

/X(l) — X(Q) —— X(3) ——
ZNXI/; sz ‘[.fs
. .

‘X, < X, < X, —
1 2 3

is commutative.
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Mapping the Adams filtration into the Serre filtration

Let ¥, be the space used in the definition of the Serre filtration. We have the
3 v XH ¥4 v Zi+1 ¥ 2 = .
fibrations X,—~—Y,,, and X,,, —— X, where Y,,, = 2Z;,, (in the stable

dimensions). The second fibration induces two homomorphisms, one which preserves
the dimensions, A*(X,,,)—H*(Z;,,) and another which increases dimensions by
one, A*(Z,, )~ H*(X,). The latter is the transgression and is defined only in stable di-
mensions. In stable dimensions together they define an 4-homomorphism AXZ,,)—-
— B*(X,)—» A*(Z;) which increases the dimensions by one. Let C; denote the freec 4-
module with [C;], = H¥"*4Z;; Z,) for g <n. The mapping A*Z,, )~ H*(Z,) defines
a grading preserving A-homomorphism C,,; —C;. A mapping C; — H*(X) is defined
by Z¥NX > ¥, = 2Z,. The result is a sequence

..o CyoC - HX¥(X).

Here the composite of any subsequent homomorphisms is clearly zero. (Already the
composite A*(X,, )= H*(Z;,,)— H*(X)) is trivial.)
According to the lemma there is a diagram

‘/B1 B, «——— By «———
ﬁ*(X)I(Px I‘Pz [(Pa

C, « C, < Cye——

The mapping ¢, : C; — B, defines g,: ¥, > Y, such that g} = ¢, (up to grading and
in stable dimensions). Moreover the diagram

is homotopy commutative (as implied by Y, = K(m, N +m) and the theorem about
mappings into Eilenberg—MacLane spaces). If the mappings of Z¥X into Y; and Y, are
fibrations, the fibre X(1) of the former is contained in the fibre X, of the latter, hence

there is a mapping f;: X(1)-X,.
Again the diagram

H (X (1)) < H*(X))

A

H*(Y,)——H*(¥))

US>~




|
!
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is commutative. Let us construct a mapping g; = Y,— Y, such that gZ=¢, wp to
gradation, in stable dimensions) and consider the diagram

H*(Y,) «2— H*(T,)

|

H*(X(1)) L~ H*(X))

e

H*(Y)——— H*(¥)

The small rectangle below and the large rectangle are commutative and 7, 1s a
monomorphism (again in the stable dimensions). Hence the commutativity of the
rectangle on the top (by the theorem on mappings into Eilenberg-MacLane spaces)
and homotopy commutativity of the diagram follow.

Ys

. YZ
] X(2) I 7,
X(H)—— X,

This makes it possible to define a mapping of fibres [ X(2)—X, and the diagram

X(2) ——— X(1)

1 l

X, ———— X,

is homotopy commutative, too. Further the construction is carried on similarly.

The Basic Lemma

For any s and ¢ < n and for sufficiently large M, the homomorphism 7y , (X (s+M))—
<7ty 4 4(X(5)) is trivial on the p-components.

In view of the preceding construction the homomorphism 7y (X(M))—
=7y 4 (ZVX) is clearly trivial on the p-components if M is sufficiently large, as
immediately follows from the diagram
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X() e—— ... & X(M)

l/ [/‘M

/

VX

AN
AN

Xl ("_‘—‘...‘_"—_—"XM

and the triviality of the p-component Ty + (X (M)) for large M.
To finish the proof of the lemma it remained to notice that the part

o X(s+ 1) X(s)

of the Adams filtration is itself the Adams filtration of the space X(s).

Remark 1. For any m, s and t the order of the group 7,,(X(s), X (t)) is a power of p.

Remark 2. For any m and any prime number p’ # p, the p’-components of the groups
n,(X(s)) are independent of s and are isomorphically mapped onto each other by the
homomorphisms induced by the inclusions X(s+r)c X(s).

Both remarks follow from the exact sequences for triples and fibrations

X(s)—2 X(s—1)
and from the fact that the homotopy groups of the spaces Y, are p-groups.
Deducing the statements (3) and (4) of the Adams theorem from the le_r/;lmla,and"t'he
remarks. By definition
B = Im [Ty, (X ()= Tn -2 X)),
Bttt = Im [y - XG5+ D)o ny - ZVX)] =
= Ker [Ty s o EVX) =7y (2" X, X(s+1))]

hence

BB = Im [y g (X () > T ZX, X(s+1)]
Further

Ey = Im[my,-(X(s), X(s+ M))= 7y - ZVX, X(s+1))].

Consider the diagram
® : ®
® O oo X(8), X(s+ M) 23 iy ims—1(X s+ M))
XN & @
a0 X(+1) & if,“’
. 1 /n~+,_s"1(X(s+1))
ﬂ~+,---s(2”X)---i~>n~+,—s(2”X,X(S+1)) '

©)

sy +1-—s(

iR




& /o 1 \1{1

‘ \
Y,

NN
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It 1s commutative and the three “horizontal” lines are exact. Let ae E}f, 1. e.
€My, - (EVX. X(s+1)), and a=CEs(B) where feny,, (X(s+M)). Write y= ;
=&5(f) and & = &,(f5). Then, by remark 1, ff is of order pPand sois 8, hence &, ,(6) =0 and
Eg(p) = 0,1.e.y = &s(e), een(X(s)). Then o = E,&5(e),1.e.ae BY /B! Forevery M
we clearly have the inclusion B*'/B** " c £/, thus B>/ B M = N ESY = ESY,
proving statement (3).

Statement (4) is the direct consequence of remark 2 and the basic lemma.

(I g0
I 1 e
| [ | e 1
* [T |

[ ]

10—

(I

IMACSI :

Some further properties of the Adams spectral sequence

Before proceeding to prove statements (3) and (4) of the Adams theorem in the
general case let us examine the behaviour of the spectral sequence under mappings.
Suppose that we have constructed Adams spectral sequences for the spaces X and
X' and we are given some mapping f: X — X". It induces a homomorphism between the
A-modules A*(X’) and H*(X). A construction, analogous to that used in the course of
proving the last algebraic lemma, gives a “homomorphism of projective resolutions”

A*(X) B, «+—— B, «
! ol

ﬁ*(X')«———_—B’1<——¥—B’2<————...

which induces a mapping of filtrations
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INXY <——X(i) — XQ2) — ...

b

SNY e X(1) e X' (2) —— . ..

(The construction is similar to that as Adams filtrations are mapped into Serre
filtrations.) That induces, on its turn, mappings of the relative homotopy groups that
have taken part in the construction of the Adams spectral sequence. The family of these
mappings induces a homomorphism of the Adams spectral sequences.

Theorem. The mapping f: X — X' induces a homomorphism of the Adams spectral
sequence { £}, d;'} of X to the Adams spectral sequence {"ES*,"dS'} of X', 1. e. a set of
homomorphisms f3': E3'—'E*' such that:

(1) the homomorphisms commute with the differentials, 1. e. the diagram

j‘.\‘,l
S, r
E

dS,l l J /dS,l

s+r.t+r rps+rggtr—1
, f
E'. f‘s+r.l+r—1 Er

Jor

/E::‘I

1s commutative; _

(1) the homomorphism f,,,: E,, ,—E,, 1s the mapping induced by f,: E,—'E,
between the homology of the complexes (E,,d,) and ('E,, 'd,);

(iii) the homomorphism f%: ES' = Ext'(H*(X), Z,)—'ES" = Ext5 (H*(X"), Z,)is
induced by f*: H¥(X')— H*(X).

(Explanation. The functor Ext is known from homological algebra to be
contravariantin the first variable and covariant in the second. The mapping Ext%*(M , ,
N)—Ext%*(M,, N) induced by M,—M,, is constructed in the following way. We
choose a mapping between the projective resolutions of M, and M| to yield a mapping
in the opposite direction on the level of Hom, which again induces a mapping between
the homology of these complexes.)

(iv) The limit mapping f%: ES/—'ES) is induced by #3(X)—n3(X").

We do not prove this theorem because it is obvious. We notice that, however trivial
the last statement may be, we cannot consider it as proved as it is based on a statement
of the Adams theorem which 1s not proved as yet. Of course we are not going to use this
theorem in the proof of the missing statement. What we shall only need is only the
existence of a mapping between the Adams filtrations when a space is mapped into
another. :

An important corollary. Starting at the second térm the Adams spectral sequence
only depends on the stable homotopy type of the space.
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By other words, if X and X' are stable homotopy equivalent (i. e. their multiple
suspensions are homotopy equivalent in the ordinary sense) then for every r>2, sand
there exists an isomorphism EP* =~ 'ES' commuting with the differentials, such that the
isomorphic groups m;_ (X) and 7>_ (X') have the identical filtration and the terms E_
are associated with the respective homotopy groups in the same way.

Finishing the proof of the Adams theorem in the general case

The basic lemma, applied successfully in the case of finite stable homotopy groups, is
of no use in general. (The proof of the lemma, as given above, would neither do in the
general case.) We should like to have the lemma to say: “For sufficiently large M the
homomorphism ny . ,(X(s + M))—ry . (X(s)) is trivial on the p-component and on the
free summands”, which is obviously not true, unfortunately. (If 7 ~+4(X(s)) contains Z as
a free summand then so does 7y, ,(X(s + M)), therefore the kernel of 7, , JX(s+M))—
— 7y +,(X(s)) 1s finite, because the difference between the homotopy of X(s) and
X(s+ M) is measured by the homotopies of Y, , Y45, ..., Ys4 which are finite p-
groups.

The role of the basic lemma will be played by the following statement.

The Generalized Buasic Lemma. Let aeny, (X(s)) have order co or p*. Then, for
sufficiently large M, o does not belong to the image of the homomorphism
Ty 1o (X(s+M)) = my ,  (X(5)). _

This implies among others the triviality on the p-components of the homomorph-
ism 7y, (X(s+ M))—>ny, (X(s)) for sufficiently large M, as the p-component. of
Ty + (X (s)) is finite.

Proof. We may assume without loss of generality that s=0, 1. e. X(s) = ZVX. We
recall that ... > X(s+ 1) X(s) 1s the Adams filtration for X(s).

By assumption the element « is not infinitely divisible by p i. . there exists a number
r such tha aspo’ for any o' ey, (EVX).

Let a mapping h: X — 2 X be defined as follows. There is the well-known mapping
2X—-2XV 2X. By composing it with itself we get

2X-2XV XXV .. ..VZIX

2%

r

p
This wedge may be mapped into 2X by folding its components together.

2X >
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The result is a mapping 2 X — 2 X that may also be described in the following way.
As it is known, we have X = X & S'. The mapping in view is X ® S'»>X X S!
induced by the identity mapping X — X and a mapping S* —S! of degree p". We attach
to 2 X the cone over 2 X along this mapping

‘ h —— SX
e
C(2X) i >X

-
=
—
= A/EX
-+
— X!
. /
——

which induces mappings of the (N — 1)-th suspensions and the Adams filtrations (by the
above remark). We have a diagram

SNY ——X(1) —— X(Q2)

o

SNUY e X (1) —— X (D) —— ...

Now the lemma follows from the old basic lemma and the following statements:

(a) the stable homotopy groups of X" are finite;
(b) o ¢ Ker [Ty (E¥X) > 7ty 1 (¥ 71 X)L
Proof of (a). Examine the exact sequence of the pair 12 N-1x' IV X):

d i, 0
TcN+r+1("')%anr(ZNX)_)TcN+r(2N 1*)()_)TCNi‘r('r)—)ﬂ:N-{"r—I(Z‘N‘X)

Now in the stable dimensions we have
nN+r+l(2N_1X,: IVX) = nN+r+1(2N_1X,/ZNX) =y, (ZVTIX) = Ty A2V XD
further the mapping 0: iy 4,4 (.,.) = TN (VX)) >y, (2N X) is multiplying by p".
Thus the kernel and cokernel of the homomorphism are finite as well as the groups

iy +r(ZN lX )
Proof of (b). As it can easily be seen on the same exact sequence, the kernel of

Ty +q(Z NX)omy s J(E" 1 X") consists of the elements divisible by p”, so a does not belong

to .it.
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It remains to notice that in view of the old basic lemma the image of «, which is a
non-zero element of order p*, will not belong to the image of the group =, (X (M))If M

is large enough, so a will not belong to that of «,, + 4 X{(M)), either, which ends the proof
of the generalized basic lemma.

Proof of statements (3) and (4). In order to prove that

Bx'I/BS+1J+1:Im[7T-N+1 S(X(S))‘*RN‘H S(ZNX" X(S‘}‘l))]
and
By = Nmlny, (X4 M) o myy, (EVX. X5+ 1))
M

Eoa e (X (5 X(s+ M) Ty (X(s+ M))
TN 44 x(X(\)) lCVs @ } li‘“
ST (X6 X6 D)
1;, < & @ Tyer 5 ((X(s+1))
T (11020 T (1T, X(Sé D)%,
be considered once again. It is commutative and exact along the “horizontal” arrows.
Suppose that aemny,, (2"X, X(s+1)) does not belong to the image of the
homomorphismé &y iy, - (X(s)) =y s, (27X, X(s+1)). We have to prove that,
for sufficiently large M, it does not belong to the image of £¢5 either.

Theelement f = Egaeny,, , (X(s+ 1)) has finite order equal to a power of p (as
have allelements of my . ,(IT¥X, X (s + 1)), including «). Thus either =0 or f does not
belong to the image of &, with large M. If =0 and a =, &4(5) then a = &,(y) where
y=Es(0). yemy,, (X(s+1)). Now &g(y)=Eo(x)=F=0, hence y=<E4(e) where
€N+, s(X(s))and a = ¢ &;(¢) contradict to the assumption. If f#0then feIm &, if
M s sufficiently large. Now o = {Esd withdeny,, - (X(s), X(s+ M)) would imply 8 =
=¢,0¢70 contrary to the assumption. Statement (3) is proved. Statement (4)
immediately follows from the generalized basic theorem. Q. e. d.

$33. MULTIPLICATIVE STRUCTURES

The multiplicative structure in the spectral sequence of Leray comes from
cohomology multiplication, a fact completely natural as all groups in question are
either cohomology groups or subgroups of cohomology groups. Now in the case of an
Adams spectral sequence we have to deal with homotopy groups and their subgroups.
They have no multiplicative structure of any use (there is the Whitehead product, but it
is applicable only to non-stable homotopy groups) and so we cannot define
multiplication in the spectral sequence either, at least anything resembling in usefulness
to the Leray’s case. Nevertheless under certain assumptions we may construct some
analogue of a multiplicative structure that turns the Adams spectral sequence into a
scquence of rings in the single but important case when X is the sphere.
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Let us begin with this particular case. Suppose that we already have the promised
ring structure on the terms of the spectral sequence. Then @,75(S°) is a ring, too. The
multiplication in this ring is surely adjoint to something which we want to find.

First we are going to show that the direct sum has a natural ring structure.

Composition product in stabie homotopy groups of the sphere

Let o€y (SY) and feny, (SY) (k and [<N). Then f may be regarded as an
clement of 7iys,s(SY*4). Let the mappings f: SY***'->S¥*"* and a: SN+k QN
represent ff and a. The composite &ff: S¥ *¥*!— S", represents an eleme .t of Ty 4+ (S™)
called the composite of o and f# and denoted by o« f8.

An alternative definition of the multiplication is the following. Let «, f and & be as
above, i S¥*'5 SN define o+ ff by setting (— DMyofp=a®f: SV SV-
5SY® SV (i. e. the first multiplier is mapped by &, the second—by pB) thus we have a
mapping S¥ VTR, SNAN op SNTEHLL SN as k+I<N.

The two definitions arc equivalent. Indeed, the mapping (—1)™(a® §) =
—(( DWMH@P: SN SV 5 SY® SV is a composite of two mappings

SN+k ® Sk ® SN

I

SN ® St ® SV

e T —

lsr\' &(“I)Nk
A‘N ® ' N

We add a mapping to the diagram which will interchange the outside factors (it
preserves orientation if N is even and turns it to the opposite if N is odd). In order to
ensurc it to be homotopic to the identity mapping, we prefer to map the third factor by
applying (— 1)1~ rather than the identity mapping.

SN’I ® Sk ® SN

| e e
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Finally we complete the diagram with the mapping of changing the order of
multiplications in the last product (also rectifying the sign as above).

s ® sk @ s

ﬁ‘ ‘15‘( ¢’SN
gN

We have obtained a mapping S" ***' & S¥—S"® S" thatis identity on the second
factor while on the first it coincides with the composite

SN+k+1 B SN+k (-h™ (~D™a

—_—
interchanging
the factors

SN+k

SN

i. e. ao . The statement is proved.

The composition product is anticommutative, i.e. a0 § = (— 1)foq. Obviously the
element a o B does not depend on the number N used in the definition. So we may
assume N even. Then aof=a® f and foo =B ® & Further, the elements of
an ++1(S?Y) defined by the mappings @® B and B & differ in a multiplier (— 1)*.
Indeed, & ® B is the composite mapping

SN+k® SN+I—*>SN+I® SN+k~>SN® SN—>SN® SN

where the outside mappings are interchanging the factors.

The first mapping here either changes or preserves the orientation depending on the
sign of the number (— 1)M*¥®¥*; the second is homotopic to the identity (N is
even) and may be neglected. As it is well known, by 'reversing the orientation of the
sphere to be mapped we reverse the sign of the homotopy class of the spheroid (as
division is defined in the homotopy groups). Thus the signs of « o f and B o a really differ
in (— NTREHD — () a5 stated.

Remark. The reader may now be wondering why did not we make use of the simple
factthatif o: $*—S"isan arbitrary mapping, ¥, : $7—S?and Y, : 8" 8" are mappings of
degree ¢, = £ 1 and ¢, = + 1, respectively, then the spheroids
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<4 w1}Sq 90;5,, l'DZ}S,

has the homotopy class of ¢: 57— 8" multiplied by ¢,¢,. We could have spared the
ditticulties in the proofs of the last two theorems Unfortunately this fact is too good to
be true. For example, if y: S*—S§? is the Hopf mapping and ¢ : $*—S? is a mapping of

degree — 1, the composite S* LN —¢+SZ is homotopic to y (instead of —y). If the

spheroid ¢ is in a stable dimension, the statement is true as proposed and will follow
from the last theorem.

We are going now to prove that the multiplication is distributive from both sides:
(B+y)ea=foa+yooand ac{f+y)=ocf+acy.

As the anticommutativity law is already at our disposal it suffices to prove one of the
formulas. Consider the mapping on the left:

SN#kﬁl

gN+k
> sN
. B\A =
- —
2
SN’k'l SN¢k+l

and on the right:

SN‘k’l SN+k
-
3
—
e ’
gN+kel Naksl

S

Ql

SN‘

It is quite obvious that the two mappings are in fact coincide.

The distributivity of the multiplication is proved.

Remark. Had we tried to prove directly the analogous statement 18+y)oa=foa+
+7 o a hardly would we have succeeded because the formula does not hold in unstable
dimensions (and the diﬂicdliy of making a geometric construction that operates on
stability of dimensions is obvious). As a counterexample to the left distributivity law in
unstable dimensions we mention that the composite of y: $*—S2 and 215 =
= + lg: S S5?is equal to 4y rather than 2y = lgzox+ lg20y.

Associativity of the multiplication is obvious.

Thus we have shown that 73 (S°) = ®,75(S°) is an anticommutative associative
graded ring.
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An algebraic digression

A graded algebra A4 with unit element over a field & is called a Hopf algebra if

(1) A*=0 for negative k and A°=k.

(2) thereis a “diagonal mapping” or “comultiplication” 4: A— A & A which 1s an
algebra homomorphism (we recall that multiplication in A Q) ,A is given by
(o ® )" @B =(— 1)desddeex'o/o @ [ f); - further for any aed, Aa)=pl@®@ 1+
+1® a(a)+ ... where p and ¢ are automorphisms of the algebra A and the terms
«  » are tensor products of elements of positive degree.

We shall have Hopf algebras where p is identity and ¢ is multiplying by (—1

An example of a Hopf algebra is the Steenrod algebra, with the diagonal mapping
defined by 4(f) = R 1-1& B, APy = Y Py® P, (for p=2, ASq' =
— z qu®Sql) k+l=1

k+l=1i

)dima

(Another important example is the cohomology algebra of a H-space.)

If A is a Hopf algebra and B and C are A-modules, their tensor product, considered
as a vector space over k, is also an A-module. (Clearly the product isan A A-
module. The homomorphism 4: A—ARX , A makes it an A-module as well.)

An important remark. If A is the Steenrod algebra, the above construction is
compatible with the Kiinneth formula: for any pair X, Y of spaces we have ¥ X R Y;
Z)= A%X;Z,)® A*(Y;Z,). Thus A¥X® Y;Z,)isan A-module by two reasons:
first as cohomology of a space and second because A is a Hopf algebra. The Cartan
theorem shows that the two structures coincide.

If B and C are free A-modules, then such is B®) , C, too. The proof is left to the
reader.

Let us now consider the case of the Steenrod algebra A, with p=2. The case p> 2
is left to the reader with the remark that the only difference is the appearence of a

‘multiplier (— 1) at certain places.

For any A-modules M’ M”, N and N" a multiplication
Exts* (M, N') ®,, Exty" (M. N") = Ext (M ®@,,M" N ®5,N")
is defined in the following way. We take free resolutions for M’ and M"

& a3, a5
M« Bje—— Bye— ...
A1 e "
PR By TR S

Then we have a free resolution of the A-module M'&® M”

-~ ~
2

1 / 7 ) ’ 1 ’ " 0 ’ /‘/
MI®22M”*‘(‘_"31® Bl('_"—- » & B+ B\ ® Bz‘”‘(_{—Bs® By +

+B,® B’2’+B’I®B’2’<——(f—...

P
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(the tensor products are over Z,) defining d; by the formula
Oprg 1 @a")=00a @a"+(—1)Pd @ ,0", o' €B,, o €Bj.
There is a natural homomorphism
Hom (B, N') ® Hom (B, N")»Hom (B, B;, N @ N")

which by transition to homology yields the needed homomorphism in Ext.

IfM=M"=N=N'=M ®22M” =N’ ®22 N" =12Z,, the procedure defines a
ring structure on @ ,, Ext5(Z,, Z,).

Definition. The groups Ext%(Z,, Z,) are called the homology groups of the algebra A
and denoted by H*'(A).

Thus we have defined the homology ring of a Steenrod algebra.

The reader will show it to be associative and commutative.

If M"#Z, in the above construction we obtain a homomorphism

BX;(Z,, Z,) @ Exty, " (M”, Z,)—Exty ¥+ (M", Z,)

in short: Ext¥*(M, Z,) is an H**(A)-module for any A-module M. If M —N is any A-
module homomorphism, the induced mapping Ext}*(N, Z,)-Ext{*(M, Z,) is a
H**(A)-homomorphism.
Theorem (Adams). If X =S°, the Adams spectral sequence may be equipped with a
multiplication ES'® ES*"'—ES**'*" such that
(i) it is commutative and associative;
(i) it coincides with the multiplication

Hs,t(A)® Hsl't’(A)—>HS+S"t+t’(A)

in the homology of the Steenrod algebra;

(11i) d,(uv) = (dupv + u(d,v);

(iv) it commutes with the isomorphism E'{ ; =~ H(E}'; d;*) and the monomorphism
Eyt'—E (for s<r<k<o0);

(v) the multiplication in E is adjoint to the composition product

nk(SO) ® n}g(SO)‘*nkH(SO)-

Proof. As we actually wish to prove a statement which is somewhat more general
than the theorem we start with two spaces X’ and X", Let

A%(X';2,)« B}« By~

and
A*(X"; Z,)« B« B3«

be free A-resolutions of the A-modules H*(X"; Z,) and A*(X"; Z,), and
INX X' (1)e=X' (2« ..

and _
VX e X"1)eX"(2e. ..

1
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be the corresponding Adams filtrations. Let us define a filtration in the space
VYR ENX" = ZVTN(X'® X7) by writing X(n) = U X;® X7;here X'(0) =
3 . itj=n
=XV X and X"(0)=2N" X",
Obviously
Y,=Xm)/X(n+1)= V (XX, ) ® X/ X]1)

itj=n
On the other hand the spaces X' (i)/ X' (i+ 1) and X" (j+ 1) are equivalent to Yiand Y7,
respectively, in the stable dimensions. Hence
Y,= V Yi®Y]
itj=n

and
H*(Y ) =®;,;_H*(Y)® H*(Y7).

(Here Y; and Y7 stand for the products of Eilenberg MacLane spaces applied to
constructing the Adams filtrations {X' (i)} and {X"(j)} and Y, = X(n)/X(n+1).)

Clearly the filtration

INENI(X' R X)) X(D)e=XQ2). ..
is an Adams filtration for the resolution
A (X' ® X";Z,)<B,® B{«B,Q B{+B{& By...

Let us construct the Adams spectral sequences for X', X” and X' ® X" by using the

resolutions and filtrations in view. The multiplication
EC(X)® E(X) BT (X @ X

is then defined as follows. For any pair

o € EXC(XY) = Im [my - (X8 X8 +1) =7y o (X (" 1=0), X5+ 1)) ]
e B (X =Im [y o oA XY, X D) Ty oo (XS 1 =r), X"+ 1))
we take the corresponding elements of

Ty v (X(8), X5+ 7))

and

Ty pee v (X" X"+ 1))
whose images are « and 8, i. e. mappings of the cubes /N " ™ and /N" """ into X
and X”, which map the cubes themselves into X'(s") and X”(s”) and their boundaries
into X'(s' +r)and X" (s" +r). These mappings may be naturally “multiplied” by taking
the mapping '

IN +¢' -5 X IN”+t"—s” —_ 1N’+N"+t'+l"—s’—s"_)X1 XX”—>X,® X”.
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The last mapping sends the cube IV *¥"++=5""into X'(s)Q X"(s")= X(s'+5")
and its boundary into

X5 +1)® X5 UX()® X" +r)S X(s' +5"+r).

It is therefore a relative spheroid of the pair (X(s"+ "), X(s"+5” +r)) and so defines
anelement of . 4 v 4y 1y g - o (X +57), X(5"+5" +7r)) (cf. the picture) whose image
N Tysnesp sy - X +"+1=r), X +5"+1)) 1s the very element of
ESHS (X' & X”) that is by definition the product of o €E(X’) and
a’ e ESUU(XT).

S"+r H—t~— 4yt +—4-— et \——]————

.
Uy U

The obtained multiplication commutes with the differentials and coincides on E,
with the multiplication considered before:

ExC(H(X), Z,)® Exti*(IH(X"), Z,)—
N Extﬁ*(ﬁ*(X') ® ﬁ*(X")» Z;)

, further, in limit it yields the multiplication EX*(X") & E**(X")— E**(X' & X")which
is adjoint with the multiplication

(X )@ m(X") >y (X' @ X”)

as it may easily be verified by the reader.
In the case X' = X" = S° the result implies the theorem to be proved. Q.e.d.

[
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Now let X' = S° and X = X be an arbitrary space. By the above construction
E**(X)is equipped with an E**(S°)-module structure that for r = 2 it coincides with the
H**(A)-module structure of Ext¥*(H*(X),Z,) and for r=c0 it is adjoint with the
73(S%)-module structure which exists on 7y(X), for any X (in the sense that elements of
the stable homotopy groups of spheres may be naturally considered as “stable
homotopy operations” acting on the stable homotopies by composition: the operation
a €My 4 (SVT¥) will assign to Eemy, (2" X) the composite

SN+k+l SN+k i ZNX)

§34. APPLICATIONS OF THE ADAMS SPECTRAL SEQUENCE

We are going to investigate the problem of the stable homotopy groups of spheres.
We begin with computing the E, term, i. e. the homology mod 2 of the Steenrod
algebra, including the additive and multiplicative structure.
Let us write out a resolution of the A-module A*(S% Z,) =Z,. Clearly 4 itself may be
chosen as the first free module of the resolution. The epimorphism 4 —Z, sends its unity
element into the unique nontrivial element Z, while all other elements are sent to
zero. The kernel of this epimorphism is the ideal 4 consisting of the elements of positive
degrees. In the next step a system of A-generators is chosen in the ideal. We recall that
the system of generators is minimal, which implies that we start selecting the generators
in the component of minimal dimension (in dimension one, in the present case). The
vector space A, has dimension one and is generated by a, = Sq'. Next we consider 4,,
which is one-dimensional, too. Because Sq'a, = O, its generator Sq* cannot .be
expressed by a, so it must be selected as the next generator. Let it be denoted by a,.
Observe that 4 is not free as an A-module as we already have found a relation. In the
sequel it is useful to know all relations in the A-module A In the dimension 2 we only
“have Sq'a; = 0.In the dimension 3, by the Serre theorem, the Steenrod algebra has two
additive generators Sg> and S¢?Sq! that may be expressed by the earlier generators Sg° =
= Sq'a,, Sq*°Sq* = Sq*a,. There exist no relations in this dimension. In dimension 4
there are two additive generators Sq* and Sq>Sq*, where Sq*Sq' = Sq*a, while Sq*
cannot be written as an expression of S¢' and Sg?, thus it will be introduced as a new
generator: a; = Sq* In this dimension there must be two relations (more exactly, a
two-dimensional space of relations) because by applying the elements of 4 to the
generators a, and a, we obtain Sq¢*a,, Sq’a, and S¢*>Sq'a,. Moreover there is the new
’ generator as, thus in the absence of relations A, should be four- dimensional while its
actual dimension is 2. As a basis of the two-dimensional space of relations we
" may choose the relations that express Sq2a, and Sq?Sq'a, by Sq’a,. Here we recall the
‘Adem formulas: Sq’a, = S¢a,, S¢*Sq'a, =0. .

Further computation of the homology structure of the Steenrod algebra may be
carried out in an algorithmic way. We have heard about many attempts at performing
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computations on computer. We have no computer at our disposal, nevertheless we did
carry out the selecting process by listing the relations as far as dimension 12. The list of
gencerators and relations is to be seen below.

First row
N | generators relations
1}« -
2| Sqta, =0
3| Sq'uy. Sqta,
4| uy Sqa, Sqa, = Squ,, S4*Sq'a; =0
S| Sqtus, Sq¢ta, S¢>Sq'a, =0, Sq>u, =0, S¢*Sq'a, = Sq'as+ Sq*a,
6| Sq¢u,. Sytuy. SqPuy Sq*Sqta, =0, Sq*u, = S¢>Sq'u,

71 S¢®a,. Sq’us. Sq*Sqia,, SqPus S¢*Sqtu, =0, Sq®u, = S¢4*Sq'as, S¢*Sq'uy = S¢’u,

&1 ag. Sq’u,. Sq®asy, Sy®Squ, S¢®Sq'a, = 0. S¢*Sq*Sq'a, = o, S¢*Sq*a, = S¢*Sq’u,,
Sq’a, = S¢*Sq'ay, S¢°Sq'ay = 0, Sq*ay = Sq’a,+ S¢°u,

91 Sq'a,. S¢Pa,. S¢'as. S¢°Sqta, S¢"Sq'a, = 0, S¢°S¢*Sq'a, = 0, S¢°Sq*a, = 0, S¢’u, =
Sq°®Sqtu, = S¢’a,, Sq*S¢*Sq‘a, +Sq*Sq'uy+ S¢°Sq*u, = 0,
S¢*Sq'ay = Sq'a,+S¢Pu, +Sq’a,

10| S¢%a,, Sqtu,. Sq¢"Sq'as. S¢¥Sqta, = 0, S¢°Sq*Sq'a, = 0, S¢°Sq*u; = S¢°Sq’u,.
Sq7Sq%ua,. S¢°Sq’a,. Sq*Sqta, | S¢*Sq'ay = Sq°a,, S¢Sq?Sq'us = Sq’Sq’a, + Sq°a,,
S¢ay = Sq"Sq'ay, Sqrus+ Sq*SqPay+ SqPay + Sq" S¢*a, = 0

1] S¢ 0y, Sq°as. Sq¥Sq'as, =S¢°Sqta, = 0. S¢"S¢*Sq'a, = 0, S¢°Sq*Sq'a;, = 0, S¢°Sq’u,
S¢*Sq*u,. Sq”Sq uy. Sqtay =0.5¢"Sq%a, = S¢" Sq*a,, Sq°S¢>Sq s+ S¢° s + S¢* Sq'uy +
+8¢7Sq%a, = 0.5¢%a, + S¢*Sqtay + S¢°Sq'ay = 0. S¢° Sy?uy =
= Sq%uy + Sqtu,, S¢*Sqtu, = Sq'la,. S¢*S¢*Sq'as+ Sq'Pa, +
+85¢%S¢*a, = 0, S¢7uy; =0

12| Sq'ta,. S¢°Sq?a,. S¢®Sq’a,, S¢Sqta, = 0, S¢4®Sq*Sq'a, = 0, Sq"Sq*Sq'u, = 0,

Sq" s, SqVSq us. Sqtay. Sqtay | Sq7Sqray = 0. S¢®Sqta, = S¢*Sq’a,. Sq’Sq*Sq'a; =

= 85¢°Sq uy. S¢°Sq*Sq'us = S¢*Sq*u, +Sq¢®Sq’u,, S¢Syt ay =
= 5¢°Sq'uy. Sq°Sqtuy = Sq''u,+S¢°SqPa, + Sq'%as +
+8¢5Sqda, +S¢°Sq' a5, S¢*Sq*Sqtas+ Sq' tay +S¢°Sq'ay = 0]
S¢*Sqtay, = S¢'la,

o a, Sq! 1
a, Sq? 2
as Sq* 4 degree
a, Sq® 8
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As a matter of fact, the generators may be selected without calculations since the
element Sg** clearly form such a system. Thus the meaning of this work is just the
enumeration of the relations. ,

The free A-module B, has as many generators as has 4 = Ker (B, —»H*(S%2,)),1.¢.
it 1s spanned on the generators a,, a,, «s,. .. etc., of dimensions 1,2,4,8,.... The
mapping B,—»B; = A sends a, into Sq** " 'u where u is a generator of B,. The kernel of
this epimorphism is isomorphic to the A-module of the relations between the
generators ay, a,, dy,. .. of the A-module 4. (The additive generators of 4 are
exhibited in the first column of table.)

Thus the next problem we face is to choose a minimal generating system in this
module of relations.

The first non-trivial element of the module has dimension 2: it is the relation Sqta, =
= 0. Let us denote by b, this relation (or this element of Ker (B, —H*(S% Z,)). In the
dimension 3 there are no relations. What is Sq'b, equal to? By applying the operation
Sq' to the relation Sg'a, = 0 we get the identity 0 =0 (the element Sq'Sq* is equal to
zero in A). Now the relation 0=0 is the null element in the module of relations. Hence
Sq'b; = 0. Further, in the dimension 4 we have two relations. One of them is Sq*b,
while the other cannot be expressed by b;. (First, as Sq* is the only operation that
increases dimensions by 2, second, as the latter does contain a, and so it cannot be
obtained from b, which does not.) In the dimension 4 thus there are Sq*b, and a new
generator b,. In the dimensions < 12 the A-module has six generators.

Again, the free 4-module B, is spanned on generators which correspond to the
generators selected in Ker (B, — B, ). The dimension of §, By, B3,BasBs,Beis2,4,5,8.9,
10, respectively. The homomorphism B, — B, acts in the following way:

Bi—Sq'a,

B2—Sq*a, +Sq’a,

B3—S8q*Sq'a, +Sqtas + Sqta,
Ba—Sq*as+Sqa, + Sq°a,
Bs—Sq*Sq'as+Sq oy +Sqa, + Sq7a,
Bs—Sq*as + Sq*Sq*ay + Sqda, + Sq’Sqa,

Scecond row

N | generators relations

20 b, -

3 - ' Sq'b, =0
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4| b,, Sq*b, —
51 by, Sq*b,, Sq'b, Sq*Sq'h, = 0
6| Sq*b,, Sq'b, Sq?b, = Sq*b,+Sq'bs5. S¢*Sq'h, = 0
7| S¢°b,, Sq*bs, S¢*>Sq'b, Sq*Sq'b, = 0, Sqb, = Sq¢’b,
8| by, Sq®b,, Sq*Sq*b,, Sq*h,. S¢°Sq'b, = 0, Sq*Sq'by = Sq*Sq'b,+ S¢°b,
Sq>Sq'by. Sq’by
i
| 9| bs, Sq’by, S¢g°Sq’h,, S¢°h,. Sq°Sq'h, = 0, Sq*Sq*Sq'b, = 0, Sg°b, = S¢*Sq'b,.
; Sq*bs, Sq'b, Sq'b, = S¢>Sq'b,y
10§ by, Sq®b,, Sq®Sq*h,. S¢°bh,, Sq7Sq'h, = 0. S¢>Sq*b, = 0. S¢°Sq'b, = 0,
Sq°b,, Sqbs, Sq*Sq*b, Sq'hs = Sqby+SqPb, + S¢*Sq'by. Sq*Sq by + Sqt Sqth, +
+5¢°Sq?*h, = 0
11| Sq°b,, Sq’Sq*b,, S¢°Sq’b,. SqBSq"b, = 0, 5¢4°S¢*Sq'h, = 0, S¢°Sq’h, = S¢°b, +
Sq’b,. Sq°Sq'by. Sq*Sq*Sq'b,. | +Sq7Sq’h,, Sq®hy+Sq*Sq?Sq'b,+Sq'b, + S¢*Sq' b, = 0,
Sq*Sq’bs, S4*Sq'bs, S¢7bs, S¢°Sq'bhy = Sq°h,
Sq3b,, Sq'bg
12| Sqb,, Sq7Sq'b,, Sq’bs, S¢°Sq2Sq'b, = Sq*Sq>Sq‘by+Sq'%b, +Sq*Sq*h,,
Sq°Sq?b,, Sq°Sq*Sq'b,. SqeSq'hy = Sq°Sq*b,+Sq’Sq*h,, S¢°Sq'h, = 0,
Sq’by, Sq°Sq*by, Sq*b,, S¢3Sq'b, = Sq"by+Sq*Sq*Sq'by. S¢*Sq'bs = Sy'°h,.
Sq'°b,, Sq®Sq*b,. Sq’Sq’b, Sq’Sq*Sq'h, = 0, Sq°Sq>Sq'h, = 0,

Sq"bs + Sq>Sq*Sq by + Sq by + Sqthy + S¢ b5+ S¢*b, = 0

b, Sq'a; =0

b, Sq*a,+Sq*a; =0

b, Sq3Sq'a,+Sq'ay;+Sq*a, = 0

b, Sq*as+Sq’a, +8q%a, = 0

bs Sq*Sq'as+Sq'a,+8q%a, +5q7a, = 0

be Sq%a,+Sq*Sqas+Sqta, + Sq'Sq%a, = 0 1

degree

[e= BN I AV N N )

Here the kernel is an A-module which is isomorphic to the 4-module formed by the
relations of the A-module of relations of A. Its additive generators are shown on the
right column of table. Let us select a minimal generating system in it. In the dimensions
at most 12 this system will contain five generators in the dimensions 3,6, 10, 11 and 12.
The generator y,, y,, . . . of the free A-module By are in one-to-one correspondence
with them. The homomorphism B‘;—+ B, acts according to

184" B,
72-8¢*B,+5¢' B3+ 5q% B,
7359 Bs+5¢°B; +54° 1 +5¢°Sq’ s
14— Sq° B +(Sq*Sq°Sq" +Sq")B, + Sq”Sq" B
e Sa®Be+SaBs+5q*Ba+ Sq7Bs +(Sa® + Sq°Sa*Sa")B,
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Third row

N generators relations
3 ¢

4 Sqle, = 0

51 Sqic,

6] ¢y, S¢'c, S¢*Sqte, = 0

Tl Sq¢*cy, Sq'e, S¢*Sq'e, = 0

81 S¢’c,, S¢ic, S¢*Sq'c, — 0

9 S¢Ccr. St Sqc,, Sqie,,

: S(/ZS(/‘('z S(/SS(/'(, = {

' - 10} ¢5.8¢7¢,, S(/“’qu(',, Sq*cs,

f : Sq¢*Sq'e, S¢°Sq'e, = 0, S¢*Sq*Sq'c, = 0
P cq SqPcy, S¢°SqPe,, S¢e,. Sq7Sq'c, = 0, S¢*S¢*Sq'¢, = 0.

Sq'ey Sq*Sq'e, + SqPcy+ Sqte, + S¢tey = 0

‘ 121 ¢5.5¢%¢,, Sq" Sq?c.
. Sq°Sqie,. Sq°cy, Sq*Sqie,.

Sq¢*cs. Sqte, S¢*Sq'c, = S¢°c,, S¢*Sq'e, = 0, S¢®SqrSyte, = 0
I Sq'h, =0 3
¢y Sa’h,+Sq'by+Sq*h, = 0 ' 6
s Sq'bs+Sq*h,+ Sq¥b, +S¢*Sq'h, = 0 10 ¢ degree
A Sq°h3+5q*Sq*Sq b, +Sq7h, + 547Sq'b, = 0 11

s Sq2b6+Sq3b5+Sq4b4+Sq7b3+Sq8b2+5q5SqlSq‘b2 =0 12

It may analogously be shown that the free A-module B has two generators in the
dimensions at most 12, in the dimensions 4 and 11. The action of the homomorphism
Bs— B, is given by

6,—S8q'y,
02=(5q*Sq" +Sq°)y, +S¢%y, + Sq'y,
where &, and 4, are the generators in point.

Fourth row

N | generators i relations
i 4
i :
! 51 -~ Sq'd, =0

_;;:.‘,»derﬂi:&:‘é

ori



i
i
i
i
i
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6] Sq3d,

AR S¢*Sq'd, = 0

81 S¢*d, S¢*Sq'd, = 0

91 S¢’d, Sq*S¢'d, = 0

10| S¢°d,. S¢*Sq*d, Sq>Sq'd, = 0

P dy . Sq7d, . S¢*SqPd, S¢°Sq'd, = 0, S¢*Sq*Sq'd, = 0
124 Sq'd,. Sqbd,. Sy°Sq¢*d, S¢"Sq'd, = 0, S¢°Sq*Sq'd, =0

d,  Sq'¢c, =0 41 yearce
d, Sq*Sq'cy+Sq%c, +Sq¥c; +8q'cy; = 0 11 opree

The free A-modules B, B,, . . ., B, 5 have one generator each, in the dimensions at
most 12, whose dimension in 5, 6, . . ., 12 respectively. Each homomorphism B,— B, _
sends the respective generator into the Sq' of the preceding one.

As already shown Ext%*(Z,, Z,) = Hom (B, ;, Z,) thus the additive generators
of the homology H*'(A) of the Steenrod algebra, in the dimensions at most 12, may be
listed completely. That is, we know the additive structure of the second term of the
Adams spectral sequence for 1< 12:

04 0,
Y1 72 Y3 | Va | Vs
B B2 | Bs Ba | Bs .Bsi
oy | Ay o3 04

0 1 2 3 4 5 6 7 8 9 10 11 12

Now it is time to make some general observations. The minimal dimension of a
relation in the A-module Ker(B,— B, ;) is clearly higher by at least one than the
minimal dimension of the generators. Hence the minimal dimension of the generators
of B, is higher than that of B, _ . Actually this observation gives nothing in the present
case because it is clear anyway that B, has a (k— 1)-dimensional generator and has no
generators in lower dimensions. We cannot guarantee therefore that nonzero elements
will not appear even on the diagonal t—s = 1 in arbitrarily high dimensions. More
information can be gained from examining the Adams spectral sequence of the first
killing space S"|, (in Serre’s sense) of the n-dimensional sphere. The A-module of its

. . S, .
cohomology is to obtained from the fibration S"~—|——+K(Z,“ n). It is the part of



5,

o

)

R
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dimension > n of the module H*(K(Z, n); Z,). It is known to be equal (with a shift of
dimensions) to the quotient of A by the left ideal generated by the element Sq'. Thus
row zero of the spectral sequence for S"|, 18 the same as the first row for S° but the
generator a, 18 thrown out and the dimensions are shifted. One may easily show that in
higher dimensions, too, the spectral sequences for S° and S”|, only differ in a shift of
dimensions (by 1 upwards and by n—1 to the left) and in elements which are on the
bisector of the coordinate angle in the former case. In particular, in the dimensions
considered, we have the following view of the E, term:

03
72 73 Y4 Vs
B | Bs Ba | Bs | Bs
oy oy ,
0 n+1 n+2 n+3 n+d n+S5 n+t6 n+t7 n+8 n+9 n+10 n+1l n+12

The proof of this theorem is left to the reader. (It is perhaps even more instructuve to
verify it by directly computing Ext**(A/{Sq'}, Z,), which is even simpler than
computing Ext%*(Z,,Z;).)

Let us now apply the above observation about the minimal dimension of generators
of B, to this spectral sequence. We get that in the Adams spectral sequence for SO the
dimension of the generator, that is the second generator also increases with the increase
of k, i. e. the number of empty cells lying on the right side of the bisector in the s-th row
does not decrease as s increases. Taking this into account, we obtain that the second
term of our spectral sequence is trivial for t —s< 7, which implies certain consequences
concerning the orders of the 2-components of the stable homotopy groups of spheres.
Indeed, by consideration of the dimensions there may only be two non-trivial
differentials in the domain considered: first, «, may possibly be annulled by any
differential, and second, B may be mapped onto 5, by the differential d,. The first
possibility will not take place because if o, disappeared the 2-component of m,+1(S")
would be zero while it is known to be equal to Z,. The question of d,f¢ will be
postponed until the multiplicative structure will have been explained. At any case, the
orders of the 2-components for k =1, 2, 3, 4:5,6,7areequalto 2,2,8,0, 0,2,and 8 or
‘16, respectively. '
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The multiplicative structure

Clearly the resolution of Ker (B, — B,_,) may be obtained from the resolution
Z,— B« B,« ... by cutting it off at the term in point. Thus we have

Ext$(Ker(B,— B, _,), Z,) = Ext§"*"(Z,, Z,)

and the action of H*(4) on the two Ext modules is the same.

Suppose that we want to compile a “multiplication table” by a certain element
o, € H**(A). Let us choose some a;€ A = Ker(B,—Z,) and consider the A-
homomorphism A —Z, that maps a, onto the generator. It lowers the degrees by one.
On the other hand the induced homomorphism of Ext%*(Z,, Z,) into Ext**(4, Z,)
clearly raises the degrees by one. So we have Exty(Z,, Z,)—»Ext5'* (4, Z,) =
Exts"1**1(Z,, Z,). This homomorphism maps the element 1 onto «, and any element ¢
onto o, .

In order to define the homomorphism between the Ext modules we need the
corresponding mapping between the resolution, i. e. a commutative diagram

0 J 0 0
Z,« ' B2 By Byt
Th  1h 113 T/fa

. D d G ds

where the upper row represents the resolution under study of the module Z, while the
bottom row is the same resolution cut off so that it would be a resolution of 4, and f; is the
mapping that sends a, into 1 € Z,. The remaining homomorphisms must be defined so
that they lower the dimensions by one and that the diagram is commutative. Because

B,,Bs, By, . .. etc. are free A-modules, the homomorphisms are defined once the image
of each generator is given.
Let us begin with B,. It is a free 4-module with generators a,, a,, &5, . ... We have

0,(ay)=a, and f,(a;)=1. Hence f,(a,) is such an element of B, for which d,(f,(«,))=
=1. Now B, is the Steenrod algebra and 1 is the image of its unity element u. Hence
f>(x;)=u. The remaining generators a,, ®s,... are annulled by the composite

mapping Bz—(—?—2—> /T——f—‘—» Z,. So we may set fy(0;)=0 for k>2. We notice

that the homomorphism we are constructing is not uniquely determined. We might
have chosen for the image «, any element of the corresponding dimension. We shall
construct it as simply as possible, we are only concerned with commutativity of the
diagram.

Solet f5(a;)=uand f,(x)=0for k>2. Next f5: B;— B, will be defined. We have
F5685(B1)) = Sq*u. Now we must choose an element of B, whose d,-imageis Sq'u; e.g.
o, will do. We have d;(f5(B,)) = Sq>u and 0,(Sq'a,) = Squ. Set f3(B,) = Sq'a,.

RN 44
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Let us carry on this construction. The homomorphisms f,: B,— B, _ in the domain
considered will act in the following way:

f2: B,—B, f3: B3> B, Ja: By—B; fs: Bs—B,
oy —u Bi—ay 7184 9171
a,—0 [32—>Sq1a2 Y2~ B3 0,73

B—as 73— Bs+Sq'p,

Ba—=Sq’ay 74— Sq*Ba+Sq'Bs

Bs—oy

.36‘*Sq7°‘2

[t remains to examine the homomorphisms induced in Hom and Ext. The
generators of the vector space Hom ,(B,, Z,) correspond to the generators of the A-
module B, (they are even denoted by the same letters). Obviously an element of
Hom 4(B,_,, Z,) corresponding with a certain generator of the A-module B,_, is
annulled by Hom ,(B, -, Z,)—»Hom (B,, Z,) whenever the generator is outside the
image of the homomorphism B,— B, _, ; if it is the image of a generator of B, then it is
mapped onto the corresponding element of Hom ,(B,,Z,). So the above generators of
Extt*(Z,, Z,) are mapped by Ext¥*(Z,, Z,)—»Ext%*(Z,, Z,) onto the following
elements:

-a, a —p Bi—74 Y179,

o —0 B,—0 72,0

az—fs B3—v, 730,

ay—fs B4+—0 74—0

o ‘ Bs—7v; ¥5s—0
- Bs—0

Hence
a0y = By, 20,=0, ajo3 = By, a0 = s, 4 fy = 71, B, =0, 0,83 = 73,
afa =0, a;85 =73, 086 =0, 0,9, =y, 017, =0, 2493 = 03, %174 = 0, 04y5 = 0.

Analogously we may obtain that a0, = fi,, 4,0, = Pe, %22 = V3, @26 = Vs,
o303 = B4, %3 B4 =75, and the other products of elements known to us are zero.

The elements of the homology groups of the Steenrod algebra have standard
notation. Namely the standard notation for a,, a,, a5, ... is hy, by, by, .. .. Then the
part of the second term of the spectral sequence we are dealing with has the form

where a is a new multiplicative generator. By the way, clearly d, B¢ = d,(h;h;) = 0,
hence the order of the 2-component of «,,,(S") is 16.
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h
hg
h hihy
hi = h=
h ! 2p 2
0 = hih, fohs | Ly,
he R | hoh, R | hohy | hhy
hy h, h, hy
I

We see that computing the homotopy groups of spheres consists of two steps:
computing the homology of the Steenrod algebra and the differentials of the Adams
spectral sequence. The first task reduces to a wholly mechanic calculation that may be
continued as long as you like. In the book of Adams, “Stable Homotopy Theory”, the
result of such computation is set forth for t —s< 17. The diagram of the E, term shown
on the picture is borrowed from there.

Such a diagram is obtained without any principial difficulty, so it may be regarded
as being proved (for compiling it one has to examine the Steenrod algebra up to the
dimensions as far as 27 instead of 12 as we did). We obtain then, in particular, that
EYO'=0 for 10<r<27, consequently E, does not contain any new elements for
0<t—s<17.(See on the next page.)

The differentials of the multiplicative generators hy, by, h,, hy, a, b, ¢, d, e, f, i, j are
equal to zero by dimension consideration. Therefore E3* = Ef for t —s<13. For the
homotopy groups of spheres this implies the following information.

The orders of the first thirteen components are 2, 2, 8,0, 0, 2, 16,4, 8,2, 8,0, 0. The
elements 1, h,, h%, etc. are generators of the group Z,®Z,DZ,D...
adjoint to #35(S°)=2Z. The filtration in Z is Z52Z>54Z>58Z> .... Hence
hY is a generator of the group ¥Z/2**!Z and is represented by 2* € Z up to elements of
higher filtration. :

The element 4, € EL* is the generator of the quotient group of =3(S°) by some
subgroup. Let us choose a representative o € n3(S°). Because hoh, and h3h, are different
from zero, the composite of « with 2.and 4 € 73(S°) is not trivial, i. e. 4o % 0(mod 2),i.e. o
has degree <8. Now the order of the 2-component of n5(S°) is 8, so the group is
equal to Zg. Analogously the 2-components of n5(S°) and =n},(S°) are Z,; and Zg,
respectively. The group adjoint to 7§(S°) has two generators 4,h; and a. The product

hohihy is zero in E3'!. Then the composite of 2e73(S°) and a representative

‘4
1
e iE
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of h,hy has filtration >3. Now, as it is obvious from the spectral sequence, there
exist no such elements at all in 75(S°). Hence the 2-component of 73(S°) is equal to
Z, ®Z,. Finally, n5(S°) has a 2-component of order 8. By applying to this group the
argumenting used at n3(S°) we obtain that it cannot be equal to Z4. So it is either
Z,DZ,DZ,orZ,®Z,. Inthelatter case the generator of Z, is represented in £ by
h3y = hih,,i.e. itis (up to elements of higher filtration, i. e. of order 2) the composite
oo oo o where o is the generator of 73 (S?). Now this composite has the order 2, as has
already ac« which is an element of 75(S°) whose 2-component is Z,.
So we have the list of the 2-components of 75(S°) for n< 13:

Z,,2,,24,0,0,2,,2,,,2,0 2,, 2, 2, Z,,Z,, 24,0, 0.

Let 57 denote the generator of 75 (S°). Then 75(S°) is generated by n?. Further n° = 4«
where « is the generator of 75(S°). Again n5(S°) is generated by «®. The elements of
75(S?) do not decompose. Let its generator be denoted by . The group n5(.S°) is gen-
erated by 8 and an indecomposable y; n3(S°) is generated by &> = 7?$f and two
further generators one of which is clearly indecomposable while the second is possibly
equal to ny. Next n7,(S?) is generated by n multiplied by one of these generators;

n$,(S°) is generated by an indecomposable element.

The whole of this lot is contained in the result we have about spectral sequences.

Finally something about the p-components of these groups for p>2.

The only difficulty arises in the case p= 3 where one must turn to the Adams spectral
sequence. It will be recalled that the first non-trivial p-component occurs in 73, _ 5(S°)
and the second in 73, 5(S°). Both of them are equal to Z,. Thus the groups 7;(S°),
n<13 have no p-components for p>3 except Zs = n5($°) and Z, < =} ,(5°).

The 3-components of these groups are

0,0,25,0,0,0,25,0,0,0,Zy,0, Z5.

(the reader may check this with use of the mod 3 Adams spectral sequence: it is much
easier than our mod 2 job).
The composition product is trivial in these groups by consideration of the

dimensions. Hence

n,(S") =2 (n>1)
T+1(8") = £, (n>3)
T+ 2(S") = Z, (n=4)
Tn+3(8") = Z5, » (n>5)
T+ 4(S7) = 0 (n=6)
T+ 5(8") = 0 (n=7)
Tu+6(S") = £, (n=38)
T+ 7(8") = L340 (n=9)
T,+8(S") =2, Z, (n>10)

oS =2,D Z,D Z, (nx>11)
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Tt 10(8") = &, (n=12)
Ty 11(8") = Zso4 (n=13)
Tyt 12(S") = 0 (n=14)
T+ 13(8") = 2, (n>15)

In computing the 14th and subsequent groups we face some difficulties, because
consideration of the dimensions cease to ensure the triviality of the differentials. Indeed
a nontrivial differential appears at the first possibility: d,(hy) = hoh3, d3(hohs) = hy,
dy(hghs) = hii.

Adams’ theorems on E%'

‘.. .itis shown that homological algebra can be applied to stable homotopy theory.
In this application, we deal with 4-modules, where A is the mod p Steenrod algebra. To
obtain a concrete geometrical result by this method usually involves work of two
distinct sorts. To illustrate this, we consider the spectral sequence:

Ext5' (HX(Y; Z,), HXX; Z,)=>,m3(X, Y).

Here each group Ext** which occurs in the E, term can be effectively computed; the
process is purely algebraic. However, no such effective method is given for computing
the differentials d, in the spectral sequence, or for determining the group extension by
which ,73(X, Y) is built up from the E_, term; these are topological problems.

A mathematical logician might be satisfied with this account: an algorithm is given
for computing E,; to find the maps d, still requires intelligence. The practical
mathematician, however, is forced to admit that the intelligence of mathematicians is
an asset at least as reliable as their willingness to do large amounts of tedious
mechanical work. In fact, when a chance has arisen to show that such differencial d, is
non-zero, it has been regarded as an interesting problem, and duly solved.

However, the difficulty of computing groups Ext’ si{(L, M) has remained the greatest
obstacle to the method.”

As seen from this text cited from the introduction to Adams’ paper “A periodicitiy
theorem in homological algebra”, its author does not consider that algorithmic
computability of the homology of the Steenrod algebra solves the problem of their
computation once and for all. Adams devoted a series of papers to the question. Some

of the main results ‘are the following theorems.

Theorem on the three bottom rows (Adams J., Ann. Math. 1960, 72, N1, 20-104).

(i) The group E} = @ ,E!"'is additively generated by linearly independent elements
h; of dimensions 2'. :

(ii) The group E% = @ E%*' is additively generated by linearly independent
elements h;h; with j>i>0, j # i+ 1. The products h;, h; are equal to zero for all i.

(ii1) In the group E3 = @,E3* the following relations hold:
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hi+zhi2 =hi3+1, hi2+2hi:O'

If the elements h;, (h;h;, hyh; o by, b, k2, BE, 5 h; are omitted, the remaining products
hchsh;, k>j>i>0 are linearly independent in E3.

Actually this does not fully describe the third row of E, as it may also contain
elements that cannot be expressed by h;, like ae E31!.

Triviality theorem (Adams J., Proc. Cambr. Phil. Soc., 1966, 61).

E5' = 0 for s<t< f(s), where

f(dn) = 12n—1, (n>0),
f(n+1) = 12n+2, (n>0),
f(An+2) = 12n+4, (n>0),
f(4n+3) = 16n+6, (n>0).

Here E5/® is indeed a non-trivial group.

One can see on the diagram the domain where there are only zeros by the theorem

Periodicity theorem (the same article).

For any k there exists a neighbourhood N, of the line t = 3s where the groups ES*
are being repeated periodically, with period 2¢* 2 in s and period 3-2** % in t. The union
of such neighbourhoods is a domain s<i7<g(s), where g(s) is some function with
4s<g(s)<6s.

Finally we show an example of an Adams spectral sequence which clearly contains a

nontrivial differential.

Let X = K(Z,,n), with nsufficiently large. Up to dimension = 2n it has the following
non-trivial stable homotopy groups: n3(X) = Z, and 7¥(X) = 0for i #n. Thus in these

4
och3 /Bh3
//9’ 0
oh2/and
zeros v // Zeros
O(ho ého

V4
x | B
n n+l

Clearly d,f = ah, otherwise the order of 75(X) could not be equal to four.
dimensions the algebra A*(X; Z,) is isomorphic to

H*(K(Z,n); Z,) @ B*(K(Z,n+1); Z,),

i. e/ it has two generators oaecH"(X;Z,) and Sqla=Sq'p=0.
Then the E, term contains two diagonals that are filled with by non-trivial groups
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§35. PARTIAL OPERATIONS

In this section we do not wish to give new information, itis rather aiming at a deeper
comprehension of the former material.

Our account of the Adams spectral sequences did not employ partial operators we
did not even mention this notion. Perhaps it should have been proper to introduce it at
the introductory section along with the general ideas about Adams spectral sequences.
In fact one may say that the notion of partial operation is the fundament underlying to

the method of Adams.
This section will contain almost no proofs. We hope that the reader will take it as a

series of interesting exercises.

Construction of partial operations

Let Z pi; =0 (%)
i=1
be a relation in the Steenrod algebra 4. (Here a;, f; are stable operations of degrees g;
and n—gq;, respectively.) For every N each «; defines a mapping
&: K(@Z,, N)>K(Z,, N+q,),

all together they define  _
8 y &: K(Z,, N)>II,K(Z,, N+q,).

The induced fibration
E —y X

HiK(Zp7 N+ql_1) HiK(Zps N+ql~l)

,‘L ‘L
K(Zpa N) — H,K(Z, N+ql)

K

has a spectral sequence of the form

N+n-1{28;u;

+ t
[
.

[o] Jm] - fomd o
N N+qy N+qm N+¢n




35 PARTIAL OPERATIONS . 289

The element Z B,u; remains in £, to define a coset in the group HN*""1(E; Z,) by
the subgroup Im[HN*""Y(K(Z,, N))»> H" """ 1(E; Z,)].

Let us choose an arbitrary element of the coset and denote it by v. By definition the
homomorphism HN*""YE; Z,)—H"*""Y(II,K(Z,, N+gq;—1); Z,) maps v _onto
5. Bu;. Again ue H¥(K(Z,, N); Z,) remains in E,, to define an element of HN(E; Z,)
which we are going to denote by u, too. Now for any CW complex X we define a natural
homomorphism ‘

(X1

Ker[o: HNX; Z,)->H" (X, Z,)]-

1

SHYTUXG Z2,) )@ Im [ HY Y9N 2,) > HY (X Z,)]
i=1
which will be called a secondary operation.
Let e HY(X; Z,) and o;¢ =0 for i=1,2,...,m. The mapping & X—-K(Z, N),

corresponding to ¢, will be homotopy trivial if composed by &. So the fibration over X
induced from * — IT,K(Z,, N+¢;) by the mapping &° £.) Thus there exists a section

E'~X xI{KZ,, N+¢—1))>E

I

X - +K(Z,, N)

By composing it with the upper row we get a commutative triangle

E

- |

X< K@Z, N)

Clearly f*u=¢. Let ¢(&) e H¥ "~ 1(X; Zp)' be equal to #*v.It is not uniquely
defined. Its definition depends on the choice of the section, so if the latter is not fixed

the mapping is not wholly defined.
To what extent is the section determined? Its existence is a consequence of the

homeomorphism between E' and X x ITI,K(Z,, N+¢;—1), and it has been given by the
formula x> (x, *x). Any other section is given by x> (x, {(x)) where (:
X—11,K(Z,, N+q;—1) is an arbitrary continuous mapping. The reader will prove

that such substitution changes ¢ (&) into (&) + Y, B:&*(w;) where
‘ i=1

we HN 9 Y(K(@Z,,N+q;—1); Z,) -

are the fundamental classes. Thus (&) is uniquely defined as an element of the
corresponding quotient group.
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So we have defined, by relation (*), a secondary operation ¢. It represents a family of
partially-defined multi-valued homomorphisms which are given for every X and N,
(Partial because they are defined on the intersection of the kernels of the operations «;
and multi-valued because they are defined up to images of the operations f;.)

Basic properties of the secondary operations, including stability and naturality, may
be formulated and proved by the reader.

An example of a secondary operation is the “Second Bockstein homomorphism”. it
is constructed by using the relation 8§ = 0 and is defined on elements £ € H¥(X; Z,) for
which B¢=0. An alternative direct definition is the following. Let x be a cocycle
representing ¢ and X be an integral cochain which is projected onto x. In view of & = 0,

) . ) 1. : .
there exists an integral cochain y such that —6x = dy(modp), i. e. d(x—py) = 0
p

reduced mod p. Analogous are the definitions of ‘the ‘“Third Bockstein
homomorphisms™

1
(p—3 o(X—py—p y’)>

and so on.

These are examples for tertiary etc. operations. In general a tertiary operation is
defined by a relation X f,¢, =0 where ¢, are secondary and f; are primary, 1. e.
ordinary operations. The reader, interested in the topic, may develop the theory of n-

ary operations for arbitrary n.

Moreover if we do not confine ourselves to stable operations, and take not only £,
for coefficients but arbitrary groups, we shall have such a plenty of operations that the
homotopy type of the space will already be completely determined by them.

It is not easy to formulate this theorem exactly, but once it is done, it is already
obvious.

Secondary operations
and second differential in the Adams spectral sequence

Connection between secondary operations and the differential will not be discussed
here in whole extent. Rather we focus our interest on a simple case. Suppose that in the
Adams spectral sequence of some space we have elements y, € ES™ """, y, € E%' and
ze ES*2~1 where y, and y, are generators of the A-module A*(X(s); Z ). Suppose that
y1=@(y,) where ¢ is a secondary operation defined by the relation X pfo;=0.

Y4

—




. s
et Dshniin o e el S
2 Rl R L e
P v.“,.“,,w.mﬂ..w.m.,...n..?.,..vm.»u.m%ﬂwwﬁ“. e e R 4

]



292 V THE ADAMS SPECTRAL SEQUENCE

By definition o;y, = 0 forall i. Let the operation f§; be applied to this relation (in the
A-module H*(X: Z,)) and take the sum of the relations obtained. The result is the
relation 0=0. Hence we have a relation in the module of relations. Assume that it is one
of the generators of the A-module of the relations in the module of relations in the
module H*(X(s); Z,), and that this generator is the very element z. (This is permitted
by the dimensions.)

Then d,y =z in the Adams spectral sequence.

The proof is left to the reader.

Partial operations and homotopy groups of spheres

The homology of the Steenrod algebra has obvious connection with the partial
operations. The first row contains the primary operations, the second row--the
relations in the Steenrod algebra, i. ¢. the secondary operations, the third—the
relations- between them, i. e. the ternary operations, etc. Every element of the p-
component of the homotopy group of a sphere comes from some element of the E,
term of the Adams spectral sequence. What is the connection between operations and
clements of homotopy groups of a sphere? :

An element « € 7, #¥(SV) defines a mapping S¥N*k N

Let the ball D¥***! be sewn on S™ along the mapping. We obtain a complex X, of
two cells whose cohomology is nontrivial in the dimensions Nand N+ k +1. Asit turns
out the partial operation corresponding to the element of £, that gives « in the E, term
is nontrivial in X,.

This statement may easily be proved by considering the Adams spectral sequences
for X, and §" and the mapping induced between them by the inclusion S"c X,.

For example, consider the elements of the bottom row- Sq* Sq*,S¢®, ... € A. Those
surviving until E_ define elements of Ty ((S"), 7,4 3(S™), 7,4 4(S™), ... such that the
operations Sg°, Sq¢*, S¢®, ... are not trivial in the respective complexes S"U D"+2,
S"UD 4 S"UD"tE

As proved by Adams, not every element hy, hs, . .. does reach E_ ,i. e. some of them
have non-trivial differentials. (For example, d,h, = hoh} # 0))

Therefore if there existsany two-cell complex X = $"U D"*9such that the operation
Sq?1s not trivial on it, then necessarily g = 1,2,4, 8.In particular for these g alone may
the group m,,..,(S%) have an element with odd Hopf invariant.
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APPENDIX 3
POSTNIKOV'S NATURAL SYSTEMS

The natural systems of Postnikov* should be mentioned first, because the term is
widely used in the literature and, second, because Postnikov’s paper from the year 1949
anticipated the further investigations in restoring homotopy properties of a space by
using the algebraic invariants. The language of that paper is of course different from
what we have been using. It does not contain either the notion of the Leray spectral
sequence or even the term fibration.

As it is well known, the homotopy groups do not fully determine the homotopy type
of a space. There are two exceptions: when all homotopy groups are trivial, or all are
trivial except one. In both cases the space is determined by its homotopy groups up to
wegk homotopy equivalence.

In the case of spaces with two nontrivial homotopy groups the situation is already
different. Indeed, Iét n, and n, be Abelian groups, and n, and n, be natural numbers
such that 1 <n; <n,. Assume that =, (X) = n, and m,,(X) =mn,,and n,(X) = 0 for the
remaining n. There exists an obvious mapping of X into K(m,,n;). Consider the
spectral sequence of the equivalent fibration (with fibre K(n,, n, — 1)) with coefficients
in n,. Then ee H"™ ™' (K(n,, n,~1); n,) is mapped by the transgression onto an
element of H"(K(ny, n,); n,) which, on one hand, may be any element of the group
and, on the other hand, wholly defines the homotopy type of X. Thus the homotopy
type of the space with two nontrivial homotopy groups is determined by the sroups
and an element of H"*(K(n, n,); n,) which is regarded as a cohomology operation
and called the Postnikov factor of the space X.

Assume now that X has three nontrivial homotopy groups m,, m, and w5 in
dimensions n, <n,<nj;. By attaching the highest homotopy group we obtain a
mapping of X into a space Y with two nontrivial homotopy groups T (Y)=mn,,m, (Y)=
= m,. It may be considered as a fibration with fibre K(r;, n;—1). The fundamental
class of the fibration is mapped by the transgression onto an element of H "(Y;m,). This
element may be chosen arbitrarily, and fully determines the homotopy type of X.

It may again be regarded as a secondary cohomology operation defined on the
kernel of the primary cohomology operation that is the first Postnikov factor of the
space Y. This secondary operation is the so-called second Postnikov factor of X. We
conclude that the homotopy type of a space X is determined by the homotopy groups
and two cohomology operations: a primary one defined on the n, dimensional
cohomology with coefficients in 7, taking its values in the n, dimensional cohomology
with coefficients in ,, and a secondary one which is defined on the kernel of the former
and takes its values in n; dimensional cohomology with r, coefficients. By continuing
the construction and performing the limit transition which makes no trouble in the case
of finite complexes we obtain the following result:

* The modern term is ““the Postnikov tower™.
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The homotopy type of any simply connected finite CW complex X is determined b+
its homotopy groups and a sequence of homotopy operations: a primary, a secondary
a ternary one, etc., each successive operation being defined on the kernel of the
preceding one. They are called the Postnikov factors of the space X. The whole syster:
of invariants is the natural Postnikov system of the space X.

APPENDIX 4
THE J-HOMOMORPHISM

Next we are going to formulate without proof some theorems of Adams that de-
scribe certain subgroups of the stable homotopy groups of spheres in terms of the so-
called J-homomorphism. In order to remain within the frame of the present book, we
give a purely geometric definition of this homomorphism.

Let us be given a continuous mapping f: S™x S"—S". We shall define a mapping
of the sphere S™*"*! into the sphere S"*!. The sphere S™*"*! contains the direct
product $™ % §” (as will be shown later in more detail) as the common boundary of two
solid torgs (D™*!x S") and (S™x D"*') (here D™*! and D"*! are disks of the
corresponding dimensions), and the sphere S™*"*! is obtained by sewing them
together. In the special cases m=0, n=1 and m=1, n=1 the decomposition of the
spheres SZ and S into two solid torjis is shown on the following pictures:

T

(0) x s!
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The solid tori 11, and T, are sewn together to the sphere Sm*n~1in the following
way:
Let us consider the restriction f of the obvious homeomorphism

(p: Dm+1 XDn+1—‘>Dm+"+2
to the boundary
(,0’: a(Dm+1 XDn+1)_>aDm+n+2‘
We obtain
@' (S™x D"FU(D™ I x ST > S

which gives the decomposition of the sphere §”*"* 1 5 the union of two solid tords IT,
and HZ: Hl = S™mx Dn+l, Hz :Dm+1 X S".

i’ /B?;h/sﬁeld/@ ﬂ;“%gdffrz)tg/re/oﬁb t e@n/({f LX/S))/(Z /}{W}\/eré, according to thie)_
~ ’ / - Y I
SR ;ﬂwﬂ%@(s@ﬁmﬂx@ﬁﬁ Ca g
Both solid tori IT, and IT, are of the form (S™ x S”) x I/ R; where, according to the
equivalence relation Ry(i = 1, 2), the points(p, g, 1) on the upper face of the cylinder are

identified with (p,, ¢, 1) (for i = 1) and (p, ¢o, 1) (for i = 2) respectively. (Here p, and g, are
the base points of S™ and S", respectively.)

It follows from the above consideration that there exists a continuous mapping
smntl — 1, U, M,—»C(S™ x SHU,C(S™ x §") = Y (S™ xS

(where e is-the identity mapping and Cis a cone). To obtain it we have to contract two
spheres into a single point: S™ into I1, and S™into IT, (where S™ and S” are the “axes” of
the solid tods I1, and IT,). Since f: S"XxS'—>S" is already given, the mapping
H(f): S™*r+158"*1 = 38" is constructed in an obvious way. The mapping H(f)
may be given by simple formulas. Any vector x of the Euclidean space R™*"*2 may
may be givenin the form (p, g), p€ R"*! geR™*. The vectors(p, g) with|p|* +|q| 2=1
belong to the sphere S™*"*!, with (p,0),|p|=1 running through the sphere S”, and
with (0,q),lgl=1 running through the sphere S™. Every point (p,g)eS" ™+ is
uniquely represented as p' cos@+¢ sing where p'eS” and ¢ € S™. Now if f maps
S" x S™into S" then the formulas for H(f) are- '
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[H(f) (p, )] =sin2¢ fi(p',q') if [p| 1g1 #0 (1= 1,2,...,n4+1);
H(f) (0,q)=H(f) (p,0)=0;
LH(f) (s @)]ns 2 =C08 20,

where (p, g) = p' cos ¢ +¢' sin @.
Here the index i indicates the corresponding coordinate of the vector

H(f) (p.g)eS" ' <R,

and p' and ¢ are the projections of (p,q) into R"*! and R™"!, respectively;
sin2¢ = 2|p||q|, cos2¢ =141 —|p|’.

In this notation the boundary of the solid torus IT, and IT,, i. e. S™ x S" has equa-
tion |p|=1ql; (p,q)eS™* """, while the solid torus I1, and II, are given by the
inequalities |p|>|g| and |p| <|ql, respectively. "

Let us now consider the group SO(n+1). Let [g]€ n,(SO(n+1)), and g(S™) =
= SO(n+1) be a corresponding spheroid.

On the direct product S"x S™ the continuous mapping g*: S"x S"—- St is given
by the formula g*(p, ¢') = [g(¢')1(p’) where peS", qeg(S™)cSOn+1).

So g* maps S" x S™ into S”. Thus by assigning the mapping H(g*) to g we finally
obtain that H: — H(g*) maps the set 7,,(SO(n+ 1)) into the set 4,4 1 (S"*1), since
the replacement of g by its homotopic image § results a replacement H(g*) homotopic
to H(g*). The proof of the following statement is left to the reader.

Theorem. The mapping His a homomorphism of the group ,,(SO(n+ 1)) into the
group Tyt ps 1 (S™ 1)

It can be shown that the homomorphism H,, ,: T, (SO(n+ 1)) >y p+ (8" Y isan
isomorphismif m=1,n>1,orm=2,n>1.Ttis well known that 7, (SO(n+1))=2Z, and
Tye,(S"T 1) =12, for n>1. ﬂ

For a large enough n, the homomorphism H,, y is a homomorphism between the
stable homotopy groups

1 (S0) — 5 (S°)

and is called J-homomorphism.

An alternative definition of the J-homomorphism is the following.

Any transformation geSO(n) can be regarded as a continuous mapping
Sl
We obtain then an imbedding of SO(n) into the set of all continuous mappings of the

sphere S"~! into itself: SO(n)—l—+ (s, s '). Any mapping o sl gmd
uniquely defines a mapping Za: ZS" 128! which preserves the base point x, (€.g.
the north pole) of the sphere S" = ZS"~!: thus we obtain an imbedding

(s, oL m (s, s7)
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where on the right-hand side we have the space of continuous, base-point preserving
mappings of S" into itself, i. e. the n-fold loop space Q"(S™ (by virtue of the natural
homeomorphism 2%(X) = I1,(S", X). Here I1,(S", X) denotes the space of those
continuous maps from the sphere S” into the space X which map the base point of §"
into the base point of X, valid for any space X).

Thus there is a chain of imbeddings

SO() ——II(S™ 1, S"~ 1) o M1, (5", 8% = 2'(S")

which induces a chain of homomorphisms of the homotopy groups
T (SO(1)) = T (27(S™) = T (S™) = T 4( 275°).

For a large enough n, we obtain a homomorphism between stable homotopy groups
J: 7, (SO)—n5(S®) called a J-homomorphism.

Exercise. Prove that the two definitions are equivalent.

The stable homotopy groups ,,(SO) of the full orthogonal group SO = lim

L imdive]

SO (n) are well known. They are periodic with period 8 (orthogonal Bott periodicity)
and have the following form

ol1 12134567819

z,lz,]0olzlojololz|z]|2

The following theorems are due to Adams.

Theorem 1. For m=0 (mod 8) and m>0 (in this case =,(SO)= Z,) the J-
homomorphism is a monomorphism and its image is a direct summand in the group
7S (S°).

The methods developed by Adams for computing the image of the “stable”
J-homomorphism makes it possible to show that for m=1 or =2 (mod8) and m>0,
the group 75,(S?) contains an element ,, of order 2 (for example, p, =1, u, =n° where
nens(S°) =2, coresponds to the generator of =, {(S"), n> 2, and n? is taken in the
sense of composition product in the ring 7§ (S°)).

The elements p,,, m>1 are characterized by a series of interesting properties that
specify their set among the elements of stable homotopy groups of spheres as a
particular class.

Theorem 2. For m=2 (mod 8) and m> 0 the group 73 (S°) contains Z, as a direct
summand generated by p,.

Theorem 3. For m=1 (mod 8) and m> 1 the J-homomorphism is a monomorphism
and the group n3,(S°) contains a direct summand of the form Z, @ Z, such that the
first summand in it is generated by u,, and the second is Im J.
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Before passing to the formulation of the further theorems nf Adams we define the

Bernoulli numbers.
Definition. The rational numbers B, (m>1) given by the expansion

t t & B,
—=1- = —1 s-l__-s_t2s
i Bl PO A ]

are called the Bernoulli numbers.
Here are the first twelve Bernoulli numbers.

6’ 30’ 42’ 30’ 66’
5 691 5 7 5 3617 43876
e=5730 P17 T 6 BT 5107 7 798
5 - 174611 854513 236364091
10= T339 > 1T 38 PP 2730

Theorem 4. For m=4s—1=3(mod §) (in this case 15, (S0)=2Z) the image of the J-
homomorphism is a cyclic group of order (s), which is a direct summand in 75(S°).
Here 1(2s) is the denominator of the irreducible fraction form of B;/4s where B;is the s-
th Bernoulli number. :

Theorem 5. For m=(4s—1)=7 (mod 8) (in this case 73 (SO) = Z) the image of the
J-homomorphism is a cyclic group of degree either 7(s) or 2t(s). Moreover there exists
a homomorphism w: n5(S°) = Z,, such that o J: 15(SO) - Z, is an epimorph-
ism. Hence, if the order of Im J is equal to (s) then the image is a direct summand in
73 (S°). Such cases are, for example, m= 7 and m=15.

As it is shown by Mahowald this is the case for all r=2°-1.
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Homotopy groups of spheres

T +4(S")
h ]

X 2 3 4 S 6 7 8 9 10 >k+1

1|z |z Z,

1|1z z Z,

2 12,| 2, z, Z,

3 ;Zz Z, | 202, | Z,, Z,,

4 12, Z, (Z,)* Z, 0 0

5 Z, | Z, (Z,)? Z, A 0 0

6 |2, 2y | 2,,92, | Z, z, z, Z, Z,

7 2, | Z,s Z; Zs Zoo |Zi20| ZDZy20 | Z240 Z,.

8 |Z,s| Z2 Z, Z, | 2,02, |(Z)° Z,)* (2,)? Z,)? (2,)?

9 Z, {(Z,)? 2,)? Z,)? 2, | (@)* (sz)5 (2, Z8(Z,)® | (Z,)°

Stable homotopy groups of spheres
k 10 11 12 13 14 15 16 17 18
B | Ze | Zsos | 0 | T | @) [Zew®Z | @) | @' | 2,07
k 19 ’: 20 21 22
73 (S%) Z,6. D2, 'zu (Z,)? | (@)?
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k 23 24 25 26 27 28 29 30
7‘E(SO) Zesszo®zs@zz (22)2 (22)2 2,02, 2, Z, 0 Z,
k 31 32 33 35 36 37

”E(SO) 216320 Z, (22)2 24@(22)4 Z55728 69(22)2 Z, 2663(22)2

ABOUT THE ILLUSTRATIONS

The pictures scattered everywhere in the text are sometimes based on particular
topological constructions, sometimes they are graphical realizations of certain theo-
rems and sometimes reflect the atmosphere and colours of a specific group of ideas
underlying the text of the book. Beside that, some of the pictures contain further
information not connected with spectral sequences or those parts of general homotopy
or homology theory that is expounded in the first two chapters. Picture 1 represents the
“sphere with horns” of Alexander, i. e. the example of an imbedding S2 < R? which is
not locally flat at a point and which divides R? to domains that are not simply
connected. The first step in constructing this sphere is shown on Picture 2. The basic
elements of Pictures 3 and 4 are discussed in the text of Chapter L. Picture 5 shows a
locally-compact Hausdorff space which is not locally homologically connected (in the
sense of Czech) in the dimension 1 (because each open neighbourhood of the endpoint
has non-trivial homology group). The decomposition of the same space on its
elementary particles is shown on Picture 8 which also contains a solenoid (the first step
of the construction, the necklace of Antoin (the first step of the construction), and an
example of J. F. Adams. The necklace, resulted as the intersection of the sequence of
rus T, is a completely disconnected compact perfect metric space, and as such,
homeomorphic to the Cantor set. Its complement is not simply connected. The
example of Adams can be obtained by taking the sum of the M&bius band with the
“triple Mobius band” given in cylindric coordinates by the following formulas: r=
—1+¢t cosu, @=3u, z=¢t sinu, ¢=constant, 0<t<1, 0<u<2n. The result is a
complex X which is not a manifold, because at t=0 we have a singular line where the

2 i )
three sheets intersect at angles —; The boundary of the complex is the circle St

nevertheless it is a retract of the space X, as it trivially follows from the theorem of Hopf
on the extension. That example has a not insignificant role as an illustration for various
aspects of contemporary theory of minimal surfaces: S! is a boundary in the case when
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the group of coefficients is Z,, and is not a boundary in the case of the group U=S§' On
the same picture, on the right-hand gallery we see a torus T2, '

Picture 7 can be regarded as an illustration for the covering homotopy property of
Serre fibrations. The contents of Picture 9 is the theorem about unlinking of complexes
P and Q if dim P+dim Q<n—1. The scheme of the unlinking procedure is shown
also on the Figure on page 70. Picture 10 applies the process of turning the sphere

. . . 1 :
S?inside out in R* which has been caught at the moment ¢ = 5 after that the series of

actions will be repeated in the opposite order. o
Picture 11 is based on the division of the sphere S* to a pair of tores. The scheme of
the same decomposition is shown on page (together with the Hopf fibration S§*-53).
The detailed description of the procedure is also given in appendix 4. The action of the
fundamental group as a group of left-side operators on the higher homotopy groups
motivates Pictures 12 and 13. Picture 14 is devoted to the orthogonal version of the
Bott periodicity: the flattened body is the group SO(16m); one can well distinguish the
quaternion Grassmann manifolds G%,, ,,, (the white ribs) diverging in both directions
with changing n; in the centre we see its component of maximal dimension, Gl om
which contains the other loop spaces that take part in the periodicity at 4 <k<8.
All pictures in the second part of the book admit interpretation in terms of the
Adams spectral sequences. The elements coming from the term E, are most frequently
~used. For example Picture 24 illustrates the difference between the annihilating
i1 processes of Adams and Serre. The long ledges projections represent the dimensions.
o | The elements in the first dimension are already annihilated. Far away behind we see the

cohomology ring already “cleaned”. /
On page 38 we see the “overwound triangle” which first occured in the literature in

l

gl

o ! a paper of the English genetician L. S. Penrose and his son Roger Penrose, “Impossible
|
I

object. A special form of optical illusion”. British Journal of Psychology, February
1958. The figure in point is the torus, with a trajectory of the type 4a+ 3b, i. e. going
round three times along the meridian and four times along the parallel. On page 50 we
have a figure obtained by putting together two such triangles.
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