CHAPTER IV

COHOMOLOGY OPERATIONS

§26. GENERAL THEORY

Letnand g be two numbers and IT and G be two Abelian groups. We say that there is
given a cohomological operation ¢ of type (n, q, I1, G) if for every CW complex X there
is defined a mapping ¢, : H"(X; I)— H(X; G) natural in the sense that the diagram

H'(X; )2 Hi(x; G)

rlor

H"(Y; )2 H(Y; G)

is commutative for any mapping f: X - Y.

We remark that the mappings ¢y need not be group homomorphisms.

We shall write ¢ instead of ¢, when this causes no confusion.

As G is an Abelian group, so is the family of all cohomological operations of type
(n, g, I1, G). Let it be dendted by O(n, q, I1, G).

Theorem.

O(n, q, I1, G) =~ HYK(II, n); G).

This statement, beautiful and unexpected as it is, is almost obvious, as it will be
shown. o L

Proof. We know that H"(X; IT) =II(X, K(I1,n)). This equality is established by
making use of a remarkable element e e HYK(I1, n); IT); namely, we assign to every
mapping f: X - K(I1, n) (actually, to the class of mappings homotopic to f) the element
f*(e)e H'(X; IT). This correspondence between H"(X; IT) and I1(X; K(IT, n)) is mono-
and epimorphic, as it was shown. Let a cohomological operation ¢ € O(n, g, I1, G) be
given. Then we have, among others, a mapping Okar,n: H'(K(I1, n); IT)—» HYK(I1, n); G)
and an element @(e) e HYK(I1, n); G). As it turns out, the value ¢(e) determines the
operation ¢ in a one-to-one relationship, i. . once ¢(e) is known the whole operation

~can be reconstructed. In particular, ¢(e) = 0 implies ¢ =0. On the other hand, every
element xe HYK(I1,n); G) may be represented as ¢(e) with an operation e O(n, q,I1, G) *

(uniquely defined).

e
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In other words, we are going to prove that the homomorphism
O(n, ¢, 1, G)— HYK(I, n); G),

assigning ¢(e) to ¢, is an isomorphism. At first we prove it is a monomorphism.

Let X be an arbitrary CW complex and ¢ an operation such that ¢(e) = 0, and let
o« € H*(X; IT). Then there exists a mapping f: X — K(I1,n) such that f*(e)=a. Because
o is natural, (@) =@ f*(e)=f *o(e) = 0, hence the statement.

Let us examine the epimorphism property. Let x be any element of HYK(I1, n); G).
We set ¢(e) = x and shall try to extend this correspondence, given on the single element
e, to an operation.

Let X be an arbitrary CW complex. Let y e HY(X; IT); there exists anf, : X - K(II, n)
such that y = f*(e). Define ¢(y) = f}(x). The mapping is defined; it remained to prove
that it is natural. Consider X and Y and w: X Y. We have the diagram

HY(X ; [T) ———HYX; G)

R
< &/ pvy, m—2—HYY; G) e
4 N\
HP(K(, n); 1) : —H{(K(T, n); G)

We must prove that the square in the centre is commutative i. e. that ¢(w*e)=
= w*@(g). By the definition of ¢ one has @(w*e)=f%.(x) and ()= f*(x). Thus we
have to prove that f&, = o*f¥(x), i.e. fr.(x) = (fw)*x).

The mapping (f,w)* sends e into w* (¢). On the other hand, by the construction of the
MappIng for [ e:(€) =w*(e). Then, in view of the theorem about mappings to K(I1, n),
the mappings f,w: X—K(II,n) and f,.: X—K(I,n) are homotopic, i. e. (f,w)*=
= f*..; in particular, f3.(X) =w*f*x). Q. e. d.

Corollary. A non-trivial cohomology operation will never lower the dimension (i. e.
if 0 # @el(n, g, I1, G), then q=n).

Indeed, HY(K(I1,n); G) =0, for g<n, as the complex K(I1, n) contains no cells of
dimension less than n by construction :

Remark. Here is an example of a cohomology operation that is not a homomor-
phism. Let II be a commutative ring without elements of degree 2 and n be an even
numbser. Raising to the second power is a mapping ¢: H"(X; IT)-H*(X; IT) which is
obviously no homomorphism. Naturality of ¢ nevertheless implies that it is a
cohomology operation of the type (7, 2n, I1, IT). It is of course a homomorphism if IT

=22.
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(1) We already know the groups H*(K(I1,n); Q) for all integers n and ¢ and all
finitely-generated groups II. It is possible to interpret these results in terms of
cohomology operations. If IT is finite, H{(K(I1, n); @) = O for all ¢>0. Thus there exist
no non-trivial cohomology operations from cohomology with finite coefficients to
cohomology with rational coefficients.

If IT=2Z and n is odd, then HYK(I1, n); Q) is only different from zero for ¢ =n, when
H"(K(I1, n); Q) = Q. The generator of the group H"(K(II, n); Q) is the image of the
fundamental class e e H"(K(Z,n); Z) under the homomorphism q: H'(K(Z,n); Z)—
—H"(K(Z, n); Q) induced by the natural imbedding Z < Q. Thus every cohomology
operation from odd-dimensional integral cohomology to rational preserves dimen-
sion, assigning to each element o € H*(X; Z) the element Ag(e)e HY(X; Q) where A 1s a
rational number fixed for the operation. Finally, if n is even, then H*(K(Z, n); Q) =
=Q[g(e)]. Thus every operation from even-dimensional to rational cohomology
assigns to each element a e H"(X; Z) the element Aok e H™(X; @) where k is an integer
number and ¢ respectively fixed for the operation.

Exercise. Prove that for any field F of characteristic 0 any cohomological
operation from cohomology with coefficients in F to cohomology with coefficients in F
assigns to each element a € H"(X; F) the element Ao P H™(X; F) where k is an integer
and A e F, both of them fixed for the operation.

(2) Let us now interpret the results concerning cohomology modulo p of the spaces
K(Z,, n) in terms of cohomology operations. First of all, H'(K(Z,, n); Z,) = Z, and
every element of this group is of the form ke where ke Z,,. Therefore any operation from
cohomology with coefficients mod p to cohomology with coefficients mod p, preserv-
ing the dimension, is multiplying by a scalar from Z,. '

Further, we have H**Y{(K(Z,, n); Z,) = Z,. It follows then that for every n there
exists a unique (up to a multiplier from Z,) cohomology operation from the n-
dimensional cohomology mod p to the (n + 1)-dimensional ones. On the other hand it is
very easy to construct an example of such operation: the Bockstein homomorphism S.
Recall that forae H(X; Z,), f(0) € H" *1(X;Z,)is defined in thefollowing way. We take
a cocycle ae C*(X; Z,) representing the element a. It takes the values 0,1,2, ...,
p—1€eZ,. By considering them as integers we get a cochain de C*(X; Z) whose
coboundary 84 is zero modulo p, i. e. has only values divisible by p. Consider the
cochain 4 4d and reduce it mod p. We have then a cocycle that represents the element
fweH"*(X;Z,). The Bockstein homomorphism obviously defines an operation of
O, n+1, Z,, Z,) which is non-trivial for n>0. (For instance, if X is a complex
consisting of two cj;ell's 6" and ¢"*! such that [¢"*!:¢"]=p then B: H'(X;Z,)—

- H"*!(X; Z,) is an isomorphism.) : S g

We conclude that every operation from cohomology mod p to cohomology mod p
increasing the- dimension by one has the form kB where B is the Bockstein
homomorphism and keZ,. o

We remark that, by the construction, for any ae H'(X; Z,), p(o) is an integral
element of H**1(X; Z,), i. . it belongs to the image of the reduction homomorphism

TR

e reen et i RO




W Nt O ey

"

-




204 IV COHOMOLOGY OPERATIONS

H"*Y(X;2)-H""(X; Z,). Actually we have already used this in proving the integrity
of the element de H*(K(Z,, 2); Z,) (in the previous Section).

Because HYK(Z,, n); Z,) = 0for n+1<q<n+2p—2, no operations increasing the
dimension by 2, 3,4, ..., 2p— 3 exist. There is a unique (up to a multiplier) operation
increasing the dimension by 2p—1. (Indeed,

On,n+2p—2,2,,Z,)=H"*"?*"2(K(Z,,n); Z,)=2,

fqr n>p.) It is called the reduced Steenrod power and is denoted by P! (or sometimes
by St?7~2%), We also know that (for n>4p—35) H"***"Y(K(Z,, n); Z,) = Z,D Z,,
H"* 2”(Kép, n);Z,) = Z,and H"*YK(Z,,n);Z,) = Ofor 2p<q<4p—4. Asit turns out
the generators in O(n,n+2p—1,2,,2,) = Z,® Z,and H"**?(n,n+2p,2,,Z,) = Z,
are not quite new operations but superpositions of P!, P8 and BP'B. There are no
operations at all increasing the dimension by 2p+1, 2p+2, ..., 4p—5. There exists,
however, an operation increasing the dimension by 4p — 4 (and is denoted by P?). In §28
we shall give a complete classification of the operations of O(n, q,Z,, Z,), also proving it
in the case p =2.

§27 STABLE OPERATIONS

A stable cohomology operation from cohomology with«coefficient in IT to
cohomology with coefficients in G, increasing the dimension by g, is a sequence of
cohomology operations ¢, € O(n, n+q, I1, G) defined forn = 1,2, 3, ... such that for
any complex X and number n the diagram

T:HYX; [I) ——— > H™'(ZX; )

l% | I%H

I H"™(X; G)—— H"™ (S X; G)

is commutative. (Here X denotes the suspension isomdrphism.)
- Theorem. Any stable cohomology operation commutes with the exact sequence of a
CW-pair, i. e. for any (X, Y) the diagram

i‘

s HX ) HNY, ) = B XY, )L B, T ——

lqo., l<p.. 1(/)..“.. o lcpm

S H™(X, G)—s H™M(Y, G)—s H™9(X]Y, G) L H 1 (X,G)——

is commutative.

S ——
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Proof. The squares containing i* and j* are commutative by the naturality of
cohomology operations. It remains to examine the square that contains the
coboundary operator . Because (X, Y) is a Borsuk pair, we have X/Y=~
~XUCY/CY~XUCY. Consider the mapping f: XUCY->2XY (XUCY—
—XUCY/X=2Y)

and the induced homomorphism f*: H**Y(ZY; II)-H"* Y (X/Y; ).
We show that the diagram

)
HYY; ) ——— H"*YX, Y; II)

12 1(=)

o y; 12 xucy; m

is anticommutative, i. e. f*Z = —4J. We take an element { € H"(Y; IT) and choose a
cellular cocycle z representing {. Consider the cocycle Z € €"(X; IT) which on the cells of
Y takes the same values as z and vanishes on the cells of X'\ Y. The cochain 4z is a
relative cocycle of X mod Y and defines in H"*!(X, Y; IT) an element equal to 6{. Let the

cochain 6z € ¢"*! (XU CY; IT) be defined as the extension of 6z to XU CY vanishing
on the cells of CY. It is actually a cocycle representing 6¢ in H"* (XU CY; IT). Next
we go along the two other sides of the square. Remind that the cells of 2'Y are
suspensions over the cells of Y.

The cochain X7 takes the same value on the cell ¢ as Z on the cell ¢. Finally, the
cochain f*Xze®"*(XUCY; IT) representing the class f*Z{ is zero on all the cells
Xc XUCY and is equal to Z(o) on the cell of CY over o c Y.

It remains to compare the cochains f*ZXz and 8% . Consider the cochain
£ €4"(XU CY; IT) that coincides with z on ¥ < XU CY and vanishes on the cells of
(XUCY)\ Y. Clearly 6% = 6z + f * Xz, hence 8{+ f*2{=0.

Now the stable operation ¢ commutes with X and f*, therefore it commutes with
the homomorphism J as well. Q.e.d.

An important corollary of this theorem is transgressiveness of the stable operations.
Namely, let ¢ be a stable Operation (E, B, F, p) a fibraton with simply-connected base,
and suppose a € H'(F;, G)=E3" is a transgressxve element, i. €. dya= =da=0.
Then the element ¢(a) € H "”’ (F G) = E9"*Yis transgressive, t0o, i. €. d3(p(a) =...=
=d,,,0(®)=0. Moreover if t(x)=d,, acE}{]°= =H"*Y(B;I1)/® Im d, contains

s<r
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Be H ' (B; IT) then t(pa) contains @fe H *4*'(B; G) (we may say that the
transgression commutes with the operation ¢; this is not too exact, but sounds nicely.)
This immediately follows from the representation of the transgression as a

composite H'(F; H)—» H Y (E F; H)—(p—)—+ H™*Y(B; IT) (and the same with G
instead of IT) and from the fact that ¢ commutes with § and p*. Indeed, if 5o € Im P,
namely da=p*B, then 6(pa) belongs to Im p* because 5(pa)=@da=qpp*f=
=p*(@p).

Let us examine the connection between the groups of the stable operations and the
cohomology groups of K(x, n). ,

Let e e H"(K(r, n); 7) be the fundamental class. Then See H"*! (ZK(m, n); m) gives
rise to a mapping f,: ¥ K(z, n)—K(r, n+ 1) (we recall that K(m, n) =QK(n, n+1); the
mapping f,: 2K(n,n) =2 QK(n,n+1)—K(n, n+ 1) is defined by f,(p, 1) = @(t) where
@ is aloop on K(n,n+1), i. e. o(t) e K(n,n+1); t€[0, 1]).

Thus, if e € H"(K(r, n); n) and '€ H"* '(K(r, n+ 1); n) are the fundamental classes,
then f¥(e') = Le.

Consider a stable operation ¢; applying it to the fundamental class e we get
ple)e H""Y(K(n, n); G). As ¢ is a stable operation, p(Ze) = Z(qe) H" 9 Y (X K(n, n); G)
Now the mapping f sends e’ to Ze, so ¢(e') e H" 41 (K(n, n+1); G) is sent to p(Ze).
The homomorphism f*: H*(K(z,n+1); G)— H*(ZK(n n); G) may be regarded as
one decreasing the dimensions by one unit:

H™ *YK(m, n+1); G)—»H"*Y(K(x, n); G), in view of
H" (K(n, n); G) = H"" 17" Y (X K(m, n); G).

We have the sequence
—H""(K(r, n); G)> ... >H"" {K(z, 2); G)—»H* (K(r, 1); G).

Each arrow is an f *. Given a stable operation ¢, there is given some element z,, in
each H"*4(K(n, n); G) (nis arbitrary) such that the homomorphism f ¥ sends z,, , into
z,. Defining a series of cohomology operations is the same as arbitrarily choosing one
element in each group H"*¥(K(=, n); G). But for an arbitrary series of cohomology
operations there are no relations between the terms of the sequence {z,}.
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27 STABLE OPERATIONS 207

Here we have obtained the condition that distinguishes the stable cohomology
operations among the series of operations: the sequence {z,} (n = 1,2,3, ...) must
satisfy the condition z, = f¥z,,,,1. €. 2y = f123, 2, = f%z4, ... etc.

Let us formulate the result:

The group ©%(q, I1, G) of all stable cohomology operations which increase the
dimensions by q is isomorphic to the inverse limit of the sequence of the groups
H*"(K(I1, n); G) and homomorphisms f}.

Let us note that given any z, € H1**(K(Il, s); G), all z,, k <s are automatically de-
fined: z,= f¥f¥.1 ... fX 2% 1 (z,). Soif we are interested only in the action of a
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stable operation on the elements whose dimensions are < N, we may give the operation
by giving the single element zy € HY*4(K(xn, N); G).

On the other hand, as K(x, n) is (n— 1)-connected, f*,,: H" " (K(n,n+1); G)—
— H""9(K(n, n); G) is an isomorphism for n>g. In other words, with n increasing,
each group H' "(K(m, n); G) will stabilize, i. e. cease changing at some N. Hence

0%(q, 11, G) = HY*4(K(I1, N); G)

for sufficiently large N (namely for N >g).
Here is a diagram for a better explanation of the results:

v

I

NNNNENNN N

w
h
N

2R VD
/]

A
1 LA -
1234 .. oo

Each row, except that on the top, contains the cohomology of K(m, n) with
coefficients in G (n=1,2,3, ...). On the left end of each row we see the n-th co-
homology group (and not the zero-th one). Thus the groups under each other are of
different dimensions. On the other hand, the homomorphisms f ¥ are represented by '
vertical arrows. In the non shaded half of the diagram, all these homomorphisms are
isomorphisms, i. e. in each vertical line the groups are identical. The top row consists of
these groups which will be reasonably denoted by H*%K(n, o0); G) with the
reservation that they are not the cohomology groups of any space (at any case, not in a
natural sense), and are isomorphic to ¢%(g, 11, G).

The groups H**YK(r, n); G) are said to have stable dimension (or simply, to be
stable) if g <n and to have unstable dimension (to be unstable) if g > n. In the diagram
the groups of unstable dimensions are shaded.
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The Steenrod algebra

The multiplicative structure of H*(K(r, n); G) does not induce a similar structure in
® ,0%q, n, G), since the homomorphisms f*: H*K(z, n); G)—»>H*(K(n, n—1); G)
are not multiplicative. This is clear by the simple observation that they do not
preserve the dimensions, and, in particular, dim (f¥o /% f) = dim f ¥ (af) — 1 forany e, f €
H*(K(m, n); G);

7 .
e ef3 o e o3 I
Tl

xe ef} " o oxfB

) il
x® ef “T o xf3
xe of} o}

Aﬂ" I“Lu
xe o B I o8]
/,

moreover, as the diagram shows, even if a, f € H*(K(, n); G) have stable dimensions,
aff may have unstable dimension.

Nevertheless in the case 7 = G there is another possibility of giving a ring structure to
@ ,0%, , G). Indeed, for any pair ¢’ € 0°(¢’, G, G), 9" € 05(q", G, G) we may consider
the composite ¢ 0@ e05(¢'+4", G, G) which is again a stable operation. Multi-

2
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plication defined by the composition turns @,0%(g, G, G) into an associative
(non-commutative) ring.

IfG=n=2,thisringisalsoa Z,-algebra. It will be denoted by 4, and called the
Steenrod algebra. Much in the following § will be devoted to a thorough study of it,
especially of the case p=2.

§28. THE STEENROD SQUARES

Next we construct and examine some particular elements, called Steenrod squares,
of the Steenrod algebra A,.

Steentod squares are stable cohomology operations (denotee| by S¢') and at the
same time additive homomorphisms

Sq': H(X; Z,)~H""(X; Z,).

(Thus Sq'e H""(K(Z,, n); Z,).) They are defined for all i>0 and have the following
properties:
1)
0 for i>dega,
Sqi(e) = o for i=dega,
o for i=0;

(2) (the Cartan formula)

+q

S¢@p) = Y S4"(@)-Sq*(B).

Remark. Consider the formal series Sq=Sq°+Sq'+ ... +Sg'+ .... Then the
condition (2) may be written in the following form: Sq(aB) = Sqa SqB, i.e. Qisaring
homomorphism H*(X; Z,)— H*(X; Z,). The condition (1) may be written in the
following form: If « is a homogeneous element of degree k then Sq(a) =+ Sq' (o)
+ ... +Sq* D(a)+a’.

The theorem of existence and unicity of S¢'

We prove the existence and unicity of the stable cohomology operation satisfying
the conditions (1), (2). Unicity actually follows from stability and (1), so the Cartan
formula is already their consequence, .
Consider the fundamental class e, € HY(K(Z,, n); Z,). Set Sq'(e,) = 0 for i>n. We
want to define Sg'(e,), Sq*(en); - - -5 Sq" Ye,), Sq(e,)- Set Sq'(e,) = e
Why is e2#0? Because there exists at least one CW complex X and an element
0+#xe H(X; Z,) such thaf x?#0 ( For instance, X = RP®.) (Moreover, all the
powers ¢, k>1 are different from zero.) |

)
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K(Z,n—1 ’ |
Let us define Sq" !(e,). Consider the fibration *~E Ll N K(Z,, n).
We assume that n> 1, otherwise K(Z,, n— 1) does not exist. For E, we have

2n-2|e2 , SaMens 7. |
n-1 /

1_ NN e

n 2n-1 2n

colwimn . .

Teow zero is transgressive. Transgressivity of
e;_, does not follow from consideration of the dimensions, as the differential d,:
EX*"~ 2 Er"! is not necessarily trivial.

We see that every element under ¢?_; in

Nevertheless d,(e?_,) = 2(d,e,_)e,— = 2e,e,_, =0 in Z, (the other proof:
Ev" " '=FE%""'=2Z, and eee,_, is not in the image of d,(e.e,_,)=e?+#0).
Hence e?_, = Sq" 'e,_, is transgressive. It is mapped by the transgression into some
element fe E2°-1%, f #0. (Actually it must be, as this remained the last possibility
for it to vanish.) By E3""1®=E2"" 1.0 = H2""1(K(Z,, n); Z,) we may write 0#
# fe H*" " Y(K(Z,, n); Z,). Set Sq" ' (e,) = /. In this way we have defined S¢" ' (e,)
for every n> 1.

The construction of the remaining S¢" *(e,) is very simple.

Let n>2; then Sq"~ *(e,-,) is already defined and belongs to the group E9-2"~3 of
the spectral sequence.

Clearly it is transgressive, and is sent by the transgression to some nonzero cle-

ment of E3"~20° H?>""%(K(Z,,n)Z,). We choose this element for the
value of the operation Sg"~2 on e,. So we have defined Sq" %¢, for n>2. Let us

en-1
Sqn-Zen.-1-
Sqn-3en.y
Q| 79//0995.
Sqlen.y
B9 %5
€n-1

£5q" eny

‘ //////////////// »

Sqnfn

Sy Jsensdéasdan <
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make now a step backwards and define Sq"3(e,) for every n>3 as the image of
Sq" " 3(e,_) by the transgression; and so on, until Sq!(e,) has been reached.

By now we have Sq" *e,e H*" XK(Z,, n); Z,) for every n> k>0 (i. e. we defined
Sq*e, for k>0 and n>0). In order to make a stable operation the elements
Sq*(e,) € H"**(K(Z,, n); Z,) must satisfy the equality

- [XSqe)) = Sq'e,

for every n. Let it be proved.
(1) For k>n+1 the equality is obvious, for both sides are zero.
(2) Let k<n—1. By definition,

f¥: H*(K(Zy, n); Z,) > H*(K(Z;3, n—1); Z3)

is the composite mapping induced by 2 K(Z,,n—1)=2XQK(Z,, n)»—»K(ZZ, n) and the
suspension isomorphism. It was shown in §21 to be the inverse mapping of the

; ) K(Z,,n—1 , .
transgression 7 of the fibration *——(—2—-—)—>K(Zz,n). Now, by construction,

o(Sq¥e,_,) = Sq*e, for k<n—1, we have f ¥(Sq*e,) = Sq*e,_, as needed.

(3) Let k=n. Then Sg*e,_, = 0 and we have to show that f XSq¥e,) = f¥et = 0.
Again let us recall that f¥ is a composition H*(K(Z,, n); Z,)->H*(ZK(Z,,n—1); Z;)—
—H*K(Z,, n—1), Z,) in which the first homomorphism is induced by a continuous
mapping. It sends e, into Ze, _, and so ¢ into (Ze, .)%. The proof will be completed if
we show that (Ze,_;)? = 0. This indeed follows from an elementary observation.

Lemma. In any suspension the cohomology multiplication is trivial. L. e., for any
we H/(ZX; A), Be H(ZX, A), p>0, ¢>0, and any ring A we have aff =0.

Clearly the diagonal mapping ZX—ZX x ZX is homotopic to the composite 2X—
L3X V IX < ZX x ZX (where the first mapping is defined above and the second is the
natural imbedding). Constructing the homotopy and deducing the lemma is left to the
reader.

It remained to set Sq°, = e, for every n to finish the proof of the existence of stable
operations Sq’ satisfying (1). Actually we also proved the unicity of such operations, as
we computed rather than constructed the elements Sq*e, by using the equalities Sq"e, =
— 2 and the transgressivity of the operations Sg*.

The Cartan formula will be proved somewhat later.

We think it will be worth-while to make the reader acquainted with a direct proof of
the transgressivity of Sq'. If the reader is on the opposite opinion, he may continue
reading this book at the proof of the Cartan formula.

Consider an arbitrary Serre fibration p: E—— B. Choose an element be H'(B; Z,).

There exists a mapping /- B—K(Z,, n) such that b = f*(e,). We want to lift ittoa
mapping of the fibrations »
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Clearly that cannot always be done. We only need the case when b represents a coset
be H"(B; Z,)/21md, covered by transgression by some element ae H" " !(F; Z,).
Because b = 1(a), p*(b) =0 in H"(E; Z,).

The composite mapping g= fp: E—~K(Z,,n) is null homotopic, as g*(e,) =
=(fp)*(e,)=p*(b)=0, i. e. there exists a h: Ex [->K(Z,, n) such that A|;,, =g and
h(Ex1)=x*eK(Z,,n). As E(K) is the space of the paths starting from the point *,
thus the problem is to assign to each point xe€ E a path in K(Z,,n) starting from
* = h(E x 1). This is very easy: Let f(x)=h(xx I); f: E—E(K).

Clearly we have a commutative diagram

Pl F oy lK(ZZ, n—1)
B—7 Kz, n)

(Indeed, p' f (x) = h(x, 0) = g(x) = fp(x))
We have then a homomorphism between the two spectral sequences.



214 IV COHOMOLOGY OPERATIONS

Sqic

b Sqib

Here f*(e,)=b; f*Sq'f*(e.)=Sq'(b), t(es-1)=es Sq'(e,-1)=5q"(e,)
because in the universal fibration Sq' commute with t by construction.

The homomorphism sends e, _ ; into some a' € H" ™ }(F; Z,) where ©(a¢) = f*t(e,_,) =
= f*(e,) = b. The same s true forae H" " 1(F;Z,).If a’ and a are equal the proof may be
finished easily:

1(Sq'a) = f*(1(Sq'e,—1)) = f*(Sq'e,) = Sq'f*(e,) =Sq'(b).

However, a’ =a is not true in general. We can obtain that, however, by proper use of

the freedom left in the construction of f.

Consider an arbitrary mapping ¢: E—+QK(ZZ, n = K(Zz, n—1). We define a
mapping f ': E— E(K) by adding for every x € E to the path f (x) startingin x€ K (Z;,_, n)
and ending in f(x) € K(Z,, n), the loop ¢(x) with its vertex in xe K(Z,, n). Clearly f ' is
continuous and by no means worse than f (i. e. it may be substituted for f in the

construction). The reader can verify that
(f 1P a-1) = (f |9)* - +*@*(en-1)

where i: F—E is imbedding of the fibre into the fibred space. Now (f |p)*(e,_,) = o’
while p*(e,_ ;)€ H* '(E) by proper choice of the mapping ¢: E—K(Z,, n— 1), may be
any element of H" ™ !(E, Z,). Because t(a—a’) = 0,a—a’ e H"'(F; Z,) belongs to the
image of the homomorphism i*: H*~Y(E; Z,)-»H"" (F; Z,). So the mapplng ¢ may be

chosen such that i*¢*(e,.,) = a—a’ and
(Sl n-r) = d+(a=d) =a

The transgressivity is proved.
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Proof of the Cartan formula

We have to prove that for any CW complex X, any number i and any elements x and
y of H¥(X; Z,) the relation

Sq'(x-y)= T Sg"(x):Sq*(y) (#)

holds.
Let X and Y be arbitrary CW complexes and let xe H*(X, Z,), ye H¥(Y, Z,). As Z,
1s a field, then

X ye H X xY; Z,) = H¥(X; Z,)Q HXY; Z,).

By the definition of the cohomology multiplication, it is sufficient to prove the
following formula:

S¢(x®y)= I 5¢°(x)® Sq*(y)
ptg=i
instead of (). |
Clearly it is sufficient to consider homogeneous elements. So let xe H*(X; Z,)
and ye H™(Y; Z,). There exist mappings f: X—K(Z,,n) and g: Y- K(Z,, m) such
that f*(e,) = x and g*(e,,) = y. Now only the following relation is left to be verified:

Sqen®e) = T Sq(en) ® Sq'(e,)-
ptqg=i
Assume at the beginning that i > m+ n. Then both sides are zero. Now let i = m+n.
Then

ST en® €) = (€n® ) = @ € = S"en) ® Se'tey)

On the right hand side in the wholesum £ there is one single term left which
ptq=m+n

is equal to Sqg™(e,,) ® Sq"(e,). The case i<m+n is left to be examined. Suppose that
the formula holds for i = m+n—(s—1); let us prove it for i = m+n—s (s is fixed).

We empbhasize that m and n are arbitrary numbers, while the induction is on the
difference m+n—i. _ o

Let us consider Sq™*" (e, X e,). As before, we write K, instead of K(Z,, n). Take
the tensor product K,, ® K, of the complexes K,, and K,,. Let us recall that for a pair of
spaces X, Y the tensor product is defined as X x Y/X V Y; for example, SPQ X =
= 2?X, and in particular, S!® X = ZX.

By theassociativity of the tensor product we have (S* @ X)IY=5S"Q XRY),
ie(CX)® Y = Z(X® Y). Moreover H¥X Q Y) = HXX x Y)/J where J is the
subgroup generated by the elements x® 1+1® y where xe H*(X) and ye H¥(Y).

In §27 we constructed a mapping f,_;: 2 K,,, 1—~>K .The following pair of
mappings -
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k////gl&i/’(ZKﬁ I)CD'K Z(Km—ICDI(J
\ Kn® (5K, 1) = Z(Kn® K,_1)

m

gives rise to a pair of homomorphlsms

///;)gllﬁ>/aIITZ(K;" ICD Kf) ZZ)
()-Kn’ZZ)
MH’(E(K",@ )i 2,)

or

/W'Hr'l(Km'*l@ K,; Z3)
g Um
H'(K,® K,; Z,)

21

%‘H'”(Km® K, 1;2Z)

where X is the suspension isomorphism. The homomorphisms X~ !(f,,-; ® 1 )* and
(1, ® f,-1)*send e, ®e,intoe,_; ® e,and e,, ® e, , respectively. As shown
in§27, f*_,: HY(K,) - HY(ZK,_,)= H* (K, -,)is theinverse of the transgression
in the spectral sequence of the Serre fibration of K,,, and is an isomorphism for
0<g<2m.

Consider the intersection

[Ker 271 (fruo1 @ D*IN[Ker 27 (15, ® fo-1)*]

in H'(K,,® K,; Z,). Let p = X;a; ® f; be in this set.

Then Z,(f*_,2)®B;=0 and Z,0;®(f}¥ 1p:;)=0, hence fr_ ;=0 and
f*_, B, = 0 for every i. Because p is in the cohomology of K, ® K,,, we may assume the
elements o; and B; to be different from 1, and in consequence deg «; > 2m, deg ;> 2n,
and deg p >2(m +n). We have proved that the intersection of the kernels contains no
elements of degree smaller than 2(m+n).

Now it is time to return to the Cartan formula. Suppose that

p=Sq""" (e, ®e)— T  Sqf(e,) ® Sq(e,)

ptg=m+n—s
is different from zero in H2™*"~%(K, ® K,; Z,).
We have
’ ZTM o1 @ I ) = 8Sq" " i en® €,)—
=X SPPETfEl en)® Sqie, =

ptg=m+n—s
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= Sqm+"_s(em~1 ® en)“_ Z quem—1® Sqqen =0
ptg=m+n-—s
by the induction. Similarly Z " '(1x ® f,_,)*p=0.
As dim p =2(m+n)—s<2(m+n), we have p =0, which ends the proof of the
Cartan formula.

§29. THE STEENROD ALGEBRA

The Steenrod algebra A is the algebra of all stable cohomology operations over the
field Z,, with multiplication defined as by composition of operations. As it will turn
out, for a system of multiplicative generators of A we may choose the operations

1, Sq*, Sq¢%, Sq°, ..., Sq", ...

i. €. every stable operation is linear combination of composites of the Steenrod squares.
The set of all Steenrod squares does not make a free generating system of 4. We can
choose for an additive basis of A the set of all iteratives of the Steenrod squares

Sq' = Sq" Sq™* . .. Sq** Sq™*

such that the numbers of I=(iy, iy, ..., _;,i) satisfy the condition i, >2i,, i, > 2i,,
., Iy _ 1 = 2i,. Such sequences I will be called admissible. An iterate Sq' is admissible if [ is

admissible.
The multiplicative structure of A is defined by the Adem relations

Sanqb — g(g_;c 1 > Sqa+b.cch.
We notice that on the right side we have linear combinations of admissible iterates;
actually the iterate of any two Steenrod squares is a combination of two-term
admissible iterates. It follows then that any iterate Sq’ may be written as a linear

combination of admissible ones.

Indeed, consider all the sequences I with the sum Z i; equal to a fixed positive
j=1

number. We have a finite set which may be equipped with lexicographic ordering, i. e.
(B, s - s B > iy, ig, - - -, i) Whenever iy =iy, ..., 0y = i;_, and i;>i, for some s.
Consider Sq' = Sq'* Sq** . . . Sq™. Either it is admissible or i; <2i . ; for some s. Using
the Adem formula for Sq*Sq**', we replace it by a linear combination of Sq I, where
I. > I for each r. Next we replace in a similar way other pairs of neighbouring Steenrod
squares. Again the Adem formula guarantees that in each term the index has increased
in the lexicographic ordering. Thus the process is finite and ends with a combination of
admissible iterates.
As particular cases of the Adem relations we have

Sq“*t!. for k even
1 k __ -
S5 = {0 for k odd.
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For example, Sg* Sg* =0 as we have already known, as Sg' = and pf=0. For
a=b=2 we have Sq2Sq? = Sq°Sq"'. By the way we see that the Steenrod algebra is
non-commutative: Sq*Sqg* # Sq*Sq'.

The rest of this Section is devoted to proving all these statements. The main tool will
be the Borel theorem. '

The Borel theorem

Theorem. Assume that we are given a spectral sequence of some fibration such that

(1) E,=0;

(2) in the fibre we have a skew-symmetric algebra with a system of transgressive
generators ay, a,, 4s, .. .;

(3) this system is simple, i. e. the monomials a; a;, . . . @, i; <, <...<j make an
additive basis of the algebra. (It follows then that either a7 = 0 or the elements a?
decompose into sums of monomials, with each term containing each a; no more than

once. For example, if
H*(F; Z;)=Ay(ay,a,, - - @)
then clearly a,,a,, .. ., a, is a simple generating system. If
H*(F,Z,)=2,la,,a,,...,4]

then again ay, .. .,q; a%,...,at; at,...,af; af, . .. ,al; ... is a simple generating
system.)

Now the Borel theorem claims that if conditions (1)—(3) are satisfied, then in the
base we have the algebra of polynomials of the generators b; = t(a;).

Proof. We assume that the dimension of the generators a; is non-decreasing with the
index i.

We are going to construct some abstract spectral sequence (EP9; d,) satisfying the
conditions and then to prove that it coincides with the original.

Let A denote the algebra in the fibre of the spectral sequence. Consider the tensor
product A® z2,Z5(by, b,, b, ...] where the generators by, b,, bs, . . . are in a one-to-

. one correspondence with a;, a,, as,... and degb,=dega,+1 (n=1, 2,3,...). Let

E,=A4 ®2z,2,[b,, by, b3, . ..] (with the natural bigrading). }

Next we define the differentials d. Tt is natural to make them equal to zero on ele-
ments of the bottom row. On the fibre (i. €. on elements of the left column) we set d(a)=
= 0 for r <dega, (implying that all generators will ‘be transgressive in the new spectral
sequence) and d,(a;) = b; if r = dega; (for brevity we shall sometimes omit the sign of
tensor product). Now let us be given an element ae E,. It may be written as a linear
combination of elements a; a;, ... a, ® bjib32.. b7 where ;;<i,<...<i; j;<...<
<jp+ Sm>0. ‘
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Set gr(ail e aik® bji . bji =

0 for r<dega;, if iy <Jjj,

=1!a,...q,& b;,bj ... bS for r=dega;, if i;</1,

1N

0 for all r if i>];.

Clearly we have an (additive) spectral sequence. In other words, dyd, =
—=0; we set £y =Ker d,/Tm d,; the differential d, is defined as usual; then ds d, =0, and
we set £, =Ker d/Tm ds, etc. Here E,, =0 (every generator annulled by all differentials
belongs to the image of some differentials). It remains to verify the existence of
multiplication. Leaving the details to the reader we only consider the crucial equality

d(AA")=d(A)A+Ad(A")

_ s s " sy s T A .
where A=a; ... a; ®bj, .- b, A=a; ... a; ®bj; ... bit, i=ip=r, i <Jis
i, <Jji. We have

d(4)- A=(a, ...a,®bb} ... br)asay .. a, @b} ... bjr)=

—aa, .- ) - a;)®b; (b - - BYbS: - - b))
and the analoguous formula
A-d(A)=a;a, - - - @)@y - a;)® by (b - - b5 - - b))
ie d(A) A +A-d(A)=0.

We must prove d,(44) = 0. But AA" = @.... ® ...Weshowthata? isa sum
of generators a;,+ ... +4a,.

Suppose it is not so, 1. e. a? is a sum of products of the type 4y, . - .4, with [, <i;.
This contradicts the conditions of the theorem, as on the one hand dal =
= 2d,.a;, = 0, on the other hand d,(a,, .- a,) = ay-.-.a, & by, (the differentials in
consideration are of the original spectral sequence).

Thus AA’ begins with a factor whose index is larger than il,so'ail(AA’) = 0.

We are almost ready. We have two spectral sequences. Both of them are
multiplicative, with E, =0, and have identical left columns in the E,-term. The
bottom row of E, is H* (B; Z,) in the case of the first sequence, and something eqaal
to H*(B; Z,) by the Borel theorem, in the second case.

Suppose that H*(B; Z,) is isomorphic to the algebra Z,[b,, by, ...](where b; =
=1(a;) € H*(B; Z;)) up to the dimension g, i.e. in the dimension ¢ there occursin H*(B; Z,)
either a new generator c or a relation which we do not have in Z,[by, b, .. .]. Then
both E,-terms have the same columns up to the g-th one; the differentials are also
identical. The difference in column ¢ results that E_ #0: either the new generator
remains in E, or there will be left in E, an element which in the constructed spectral
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sequence is mapped onto an element which is zero in H*(B; £,) because of the relation.

Q.ed.

Let us return to the Steenrod algebra A.

Theorem (Serre). H*(K(Z,, n); Z,) is the polynomial algebra of the generators Sq'e,
where e, € H"(K(Z,, n); Z,) is the fundamental class, I = (i}, 1, . - -, i) 1s admissible, i.c.
i, >2iy, iy>2iy,. .., >2i and excI<n. Here excl meansthe “excess” of the
sequence I defined by excl=(i; —2i,) +(iy —2i3) + . . . + (-1 —20) + 5 =20, —(i; +ir +
+ .. i)

Remark 1. excI>1 for I#(0).

Remark 2. Let us examine the condition exc /<n. Consider an iterate Sq’ on the
clemente,: Sq"'Sq™ . . . Sq'(e,). Suppose that all Sq** (as operations) are not identically
zero on the preceding element Sg** . . . Sg*(e,). We get the inequalities i, <n, i, _; <
<+, G, <ntitiq,. ., <nti+i_+ ... +i,; the last inequality imply-
ing that 2i, <n+|I|, 1. e. excI<n.

Proof (by induction).

For n=1 the statement of the Serre theorem is obvious. Indeed, K(Z,, 1) = RP*®
while H*(RP®; Z,) = Z,[e,], dege, =1 as already shown. There exists no admissible
sequence of excess <1 except (0).

Suppose that the theorem is proved for every k<n—1. Consider the spectral

sequence of the fibration *——K—"_J—-»K,,. Let |I| denote the sum i, +i,+i3+ ... +i; the
iteration Sq' will raise the dimension by |/|. By definition, exc I = 2i; —|/|.
By the induction hypothesis H*(K,_; Z,) is the polynomial algebra of the
multiplicative generators p; = Sq'(e,—,) where exc/<n—1 and the iteration Sq' is
admissible.
Now E_ =0;e,_, is transgressive. Thus all p, = Sq’e, _  are also transgressive. The
multiplicative system {p;} is not simple. There is, however, a simple generating system
in the algebra Z,[{p,}] = H*K,_; Z,), consisting of all elements p?,i>0. Clearly

(p1)* = (Sq'e, - )= Sq''*" "1 8q'(e,- ),

(pa)?" = S0 g1+ 7L oS¢, )
etc., so each power of the form (p,)?' admits such representation. Therefore all of them
are transgressive elements. Now the glements (o,)*' donot belong to the original system
{p;} because for J, defined by (p;)*" = Sq’e,_,, we have exc/=n—1.

Conversely, every element Sq’(e, _ ;) such that defI = n—1,is of the type (p )% with
excl'<n—1. Indeed, let I=(iy,iy,...,5), Sq'e,_,=8q¢"...Sq*e,_,. Then excl=

.=i1—(i2+i3+...+ik)=n—l, Hence i1=(iz+i3+-.-+ik)+n—l=deg(Sqi2...

Sq'e,-,) and Sq'e,_,=(Sq"...Sq™e,_,)>. Further, either I'=(i,,i3,...,i) has
excess<n—1 and Sq’e,_, =(p;)? or excI' =n—1, i, =deg(Sq" ... Sq*e,_,) and
Sq'e,_, =(Sq"...Sq*e,_,)* Going on this way we get the statement.
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It remained to apply the Borel theorem to the spéctral sequence, making use of the
transgressivity of the operations Sq'. Q.e.d.

- As it has been shown the Steenrod algebra A can be obtained as the limit of
H*(K(Z,, n); Z,). Thus we have the following result.

Theorem. The operations Sg’ where [ is admissible (without restriction on the
excess), make an additive basis of the algebra 4. .

Here the operation Sgq’ is trivial on all elements of dimension <exc /. This statement
actually generalizes the equality Sq"(x) = 0 for dim x <n.

" Let us remind the reader that the multiplication in 4 has no relation to the
multiplicative structure of H*(K(Z,, n); Z,), as it is defined by composition of
operations. '

The above theorem implies that all stable cohomology operations ranging and
taking values in the cohomology mod 2 are linear combinations of iterated Steenrod
squares. Moreover, it shows that there are many relations between the iterates because
every operation may be represented as linear combination of admissible iterates which
make only a smaii part of the set of all iterates. In what follows, we shall study these
relations.

Consider the product X = IT™_;, RP of N copies of the infinite-dimensional real
projective space RP®. Clearly H¥X; Z,) = Z,[x;, ..., xyJ, the algebra of
polynomials of N one-dimensional generators. Let u denote the product
X.X,...xye HNX; Z,).

There is a natural grading in 4: A=A, @ 4, @ ..., where 4,=0%(q,Z,,Z,) is
the group of the operations increasing the dimension by g. Let g be fixed and take N> ¢.

Let peA, and consider the mapping j: A,—~H *X; Z,) by setting j(¢) =
= @(x1xz ... xy) = @(u).

We have the following remarkable fact:

The mapping j is a monomorphism, i. e. if ¢(u) =0 in H*(X; Z,) then necessarily
=0, i. e. for any complex Y and element o € H?(Y; Z,) (of any dimension p) the
equality ¢ () = 0 holds.

Let us prove this statement. Consider the subgroup B, = j(4,)= H¥(X; Z,). We
shall try to describe the elements of B,. Again we shall see that naturality is a very
strong property implying a lot of the most interesting consequences. Let Y be an
arbitrary cohomology operation (not necessarily stable); then y(x,x,.. .Xy) 1S a
symmetric polynomial of x,, x,, - .., Xy

To prove this it suffices to consider the mapping f;: X— X permuting the i-th and
J-th factors.

A further consequence of the naturalness: y(x) is divisible by «, i. e. Y(u) =
= uP(xy, X, .., Xy) where deg P=gq. To prove this consider the imbedding
RP® x ... x RP®— X where in the left-hand product the i-th factor is omitted. The

' .

N-1 . .
mapping induced in the cohomology sends ¥ () to zero, since u 1s sent to zero. Hence

| Y (u) is divisible by x;, and this is true for every i.
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As an arbitrary stable operation is a linear combination of the operations Sq’,
further study of their behaviour can only be carried out by considering iterates of
Steenrod squares. We show that in the polynomial j(p)e Z,[x,, x,, . . ., xy] €ach x; has
a degree which 1s a power of 2. Consider RP®. The Cartan formula immediately gives
that

x?  for i=0
Sqi(x*) = 1 x¥*" for i=2*
0 for other i
(Sq'(x?) = ({)x'*7), so in the polynomial S¢’ (1) the degree of every variable is a power

of 2. Thus j(¢@) = uP(x,, x,, . .., xy) where deg P =g, P is symmetric, and every x; is

on Aevdegfde a power 2 —1.

Conversely, each polynomial of that type is the image of some ¢ by the mapping j.

. . k k-1 k-1
Indeed, consider the polynomials Symm (x2°...x2° ... x% ... x2 _ .+
e XE Xy w1 XN where Symm denotes symmetrisation and

1<n,<n,<...<n, <N are arbitrary numbers satisfying n, (2*—1)+(n, —n,) (2* 7!
—1)+ ...+ (n,—n,_,;)=gq. Such polynomials form an additive basis in the space of
all polynomials. The polynomial considered is the highest term in

Sq¥ 7'M . St Sq™(u)

if 'decomposed by the basis ordered lexicographically. Hence the statement is
immediate. _

Thus we have a complete description of B,. It remained yet to calculate the
dimensions of B, and A, (as vector spaces over Z,). To get the dimension of B, it suffices
to count the representations of a given number as sums of integers of the form 2% —1.

The dimension of A, is equal to the number of admissible sequences I with [I| = q.
Let I be any admissible sequence I = (i, i3, - - -, i); i = 2i5,i, > 205, . . ., i, = 2i;,and
let ij+iy+...+i=q. Consider the sequence o, =i} —2iy, Gy =1Iy—2i3,...,04_;=

k
= Gy —2i; =i, Clearly ¢ = ) a,(2° —1). Any such partition of g defines an
=1
admissible sequence. ’
Again the number of the admissible sequences I with |I| = g is equal to the number

of partitions g =) (2%—1). So dimB,=dim4,, i. e. j is a monomorphism, i. e.
A, = B, as stated.
Example. We give a new proof to the relation Sq'Sq! = 0. Indeed,
Sq'Sq (xyx,. . xy) =

— 17,2
= Sq (xle. . .xN+x1x%x3. . .xN+ PPN +x1x2. . .xir) =

Xyt xoxtooxE oo xy+... =0

= : 2 2
= o EXpe XX

since each summand has the coefficient. 2.
Exercise. Prove that Sq*Sq* = S¢>Sq'.
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The Adem relations

As mentioned before, the Adem relations

5] <b——c—l

a b __
5q°5q" = a—2¢

)Sqa+b~cch (a<2b)

c=max(@a-b+1,0)

form a complete system of relations in the algebra A. To prove them it suffices to verify
that

[

—e—1
Sanqb(u) — Z(bajzc >, Sqa+b—c ch(u)

where u = x,x,...xye H¥(X; Z). By applying the Cartan formula we bring the two
sides of the equality to the form

Z<b+a—3s

s b -
(for the left-hand side) and

4 4,2 2
>Symm(x1 ce e X Xse1 oo - Xgrb—sXarb-s+1 - xN)

b+a—3s\ [b—c—1
ZZ( -Za__s S)( a4—2c )Symm(x‘f-~-x:xszﬂ--~x§+b~sxa+b—s+1---x1v)

(for the right-hand side).
So we need to verify the congruence

b+a—-3s\ b+a—3s b—c—1 A
< b—s >:Z:< c—s ><a—2c> (mod 2)

or, by substituting d=a—2s,e=b—s, f=c—s,

[5]
d+€ _ 2 d+€ e—f_l
< 4 ) - f=max(;d—e+1) < f )( d—2f > (mOd 2)

This can be done by elementary means.

Completeness of the system of Adem relations follows from an earlier remark that
any iterate of Steenrod squares can be reduced to a linear combination of admissible
ones by using the Adem relations. Because the admissible iterates are proved to be
linearly independent, any relation between the iterates is a consequence of the Adem
relations. (Let us take a relation F =0 and, by using the Adem relations, bring it to the
form F,=0 where F is a linear combination of admissible iterates. Then F,=0,i.e. F
reduces to zero by the Adem relations, i. e. the relation F=0 follows from Adem
relations.) C

Corollary. The system 1, Sq', Sq?, Sq*, Sq°, . . . is a minimal multiplicative basis of
the algebra A. _ .- : :

The proof is left to the reader.
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Computing @ ,0%4q, Z, Z,)

The modulo 2 cohomology groups of the spaces K(Z, n) were determined by Serre at
the same time as of K(Z,, n), a fact after all not surprising as they need completely
analogous computations (induction on n, and application of the Borel theorem).

Theorem. For n>2, H*(K(Z, n); Z,) is the ring of polynomials of the generators
Sq'é, where é,€ H"(K(Z, n); Z,) is the generator of the cohomology group and /=
= (i, iy,...,0) is any admissible sequence such that exc/<n and i > 1. (The last
inequality is the only difference between the cases of K(Z, n) and K(Z,, n).)

Passing to the limit we obtain:

Theorem. The group (-Dq(OS(q, Z,Z,) considered as a vector space over Z, has a
basis consisting of all operations Sqg’ such that I= (i, i,,..., i) is admissible and
> 1. |
The proofs are left to the reader.

Remark 1. We are considering Sq’ as an element of 0%(i, Z, Z,), i. . as an operation
HYX;2Z)-H""Y(X; Z,). Actually S¢' must not be directly applied to integral elements.
We mean that first of all this element is reduced mod 2, i. . S¢° and Sq’ are understood
to stand for Sq'- p, and Sq’ o p, where p, is the reducing of the integral cohomology
mod 2.

Remark 2. One should not believe that Sq* acts trivially on H¥*(K(Z, n); Z,). There is
only the equality Sq'é, = 0, while, for example, Sq'Sq*¢, = Sq’¢, # 0 for n>3.

The Steenrod algebra mod p

A theory analogous to the case of p=2 may be developed for the operations
05(q,Z,, Z,) for any prime number p>2.

We may recall one example. Consider the Bockstein homomorphlsm ﬂ p related with
the sequence 0—»Z,—Z .—Z,—0 of the coefficients. Clearly 2o Bp ﬁpo 2 (this sign
was ignored in the case p=2) so the operation f, given by B,(x) = (- 1)dimx Bp(x) is
stable. This operation is going to play the role of Sq' when p>2.

There also exist gperations smxlar“the other Steenrod squares. Namely there exists
a unique stable cohomology operation P! (called a Steenrod power) in 0°(2i(p—1); Z
Z,), i>0 such that Pi(x) = x” for xe H*(X; Z,).

Similarly to the case p=2 the operation P) is the identity mapping and Pi(x) = Ofor
deg x <2i. We also agree that P, = Sq* for p=2.

Let us denote by Ay the group 0°(q, Z,, Z,) of all stable cohomology operations
increasing the dimensions by g. The direct sum 4,) = Ao, D A1) D A2 D

. will be considered as a vector space over Z,,. Moreover, the composition of operations,
as multiplication, provides it with a graded algebra structure. It will be called the
Steenrod algebra modulo p. Up to now we have been studying the Steenrod algebra
modulo 2: A= A,,. Clearly 4q,) = Z,, for any operatlon preserving the dimension is
the multlpllcatlon by a scalar.
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The question of the bases of A, arises as it did in the case p=2. Let us define the
following operations St* where k=0, 1 (mod (2p—2)):

ik — {P; for k= 2i(p—1)
ByoP, for k=2ip—1)+1.

Thus far we have been using iterates of Sq°; we shall now have to deal with iterates of
Stk. (For p=2, St*=84¢*)

Let us be given a sequence I = (iy, i,, ..., i) such that i, = 0, 1 (mod 2p—2). We
assign to it the operation St! = St Stz | .. St

A sequence [ is admissible if i; > pi,, i, > piy, i3> piy, - ..

Theorem. The admissible iterates {St'} form an additive basis of the Z -module 4.

The relations between the operations St' are generated by the Adem relations

Gl ((p—l)(b—c)—l

Pan — _1 cta Pa+b—cPc,
Pt p CZO (=D a—pc > P p

3]
Pig, P = 3 (—1)“‘“((”" )(b"c))ﬂppg+b—cp;+
c=0 -

a—pc
+ [g_é—l] (__l)c+a+1 (p—l)(b‘“C)—l Pa+b—cﬁ Pc a< b
=0 a—pc—1 P plp AP

For a system of multiplicative generators of 4, (as in the case p=2) we may take 1,
B,, P}, P, PE* Pl

Let us recall that we have already obtained some partial information about the
algebra A, in §25.

The first proof of the theorem was given by H. Cartan. If the reader is willing to get
acquainted with it we shall recommend the paper of M. M. Postnikov (Russian Math.
Surveys, 1966, Vol. 21. No. 4.).

Let us introduce some notations and definitions. If £ is a field, by A(m, £) we mean
the #-algebra with the #-basis (1, x) where dimx=m and x2=0. It will be called the
exterior algebra of the generator x. Now let P(m, £) denote the £-algebra with the basis
({1, xk‘”, x2, ..., x® ) where degx® =km, and the multiplication formula is
x® . x® = (T x®*D Tt will be called the algebra of divided polynomials of the
generator-x")=x. Obviously x =x!" is a generating element of the algebra P(m, £). By
the term tensor product we shall always mean the left tensor product, whenever used in

the context of the above algebras (i.e. a® b - ¢ ® d = (= 1) %™ gc ® bd) with the

word “left” omitted, for no other tensor products will be considered.

Definition. Let p be a prime number. A sequence I = (iy, i, . . ., I ) is said to satisfy
condition (C,) with respect to the group n=2Z or Z,,, if
(1) iy 2piy, i 2piy, - .., b2 2Py, i1 22p—2;

(2) i,=0for n=2;



228 IV COHOMOLOGY OPERATIONS

(3) i,=0 or 1 for m=Z;

(4) i,=0 or 1 (mod 2p—2) for 1 <t<k.

We shall use the standard notation H*(n, n; Z,) = H*(K(r, n); Z,).

Theorem. (H. Cartan). For any n>1 and any prime p>2 the cohomology algebra
H*(m, n; Z,), where n=2Z or Z, 18 isomorphic to the tensor product of the exterior
algebras A(m, Z ) (with generators of odd degrees) and of ordinary polynomial algebras
(with generators of even degrees). Forn>2,p=2,and n = Zor Z,., the algebra H*(r, n;
Z,)is isomorphic to a tensor product of ordinary polynomial algebras. In each case the
number of the generators of degree n + g is equal to the number of sequences I satisfying
(C,), for which |I| = g and pi; <(p— 1)(n+q).

Remark. The previous results can all be regarded as special cases of this theoem. If
n=2Z,(C,) implies that j,=0and j,_, >2p—2. Forp= 2 the last inequality means that
i,_;>2, 1. e. Sq" is not contained in the iterate Sq'; further, pi, <(p—1)(n+gq) is
equivalent to the well-known condition exc I <n.

"It turns out that the homology algebra of K(m, n) also permits full description.
(Multiplication is induced by the H-space structure of K(n, n) = QK(rn, n+1).)

Theorem (H. Cartan). If n> 1 and p>2 is a prime, the homology algebra H (n,n; Z,),
where n=2Z or Z,, is isomorphic to the tensor product of the exterior algebras
A(m, Z,) (with generators of odd degrees) and the divided polynomials algebras (with
generators of even degrees). If n>2, p=2 the homology algebra H,(n, n; Z,), where
n=2Z or Z,., is isomorphic to a tensor product of divided polynomials algebras. The
number of generators of stable dimension ¢ is equal to the number of sequences I with
|1| = g, satisfying the condition (C,).

Theorem (on the choice of a basis; H. Cartan). Let n=2 and é,e HY(Z, n; Z,) be the
fundamental class. Then for the generators of exterior and- ordinary polynomial
algebras composing H*(Z,n; Z,) we may choose the elements St}(é,) such that [
satisfies (C,) and pi; <(p—1) (n +111).

The proofs and further exhaustive information on the integral cohomology of K(=,
n) can be found in a paper of H. Cartan (Algebres d’Eilenberg-MacLane et homotopie.
Sém. H. Cartan, ENS, 7e année, 1954/1955.).

First applications

Let us return again to the homotopy groups of spheres, more exactly to their 2-

. : K(Z,n—1
components. Consider the first killing space S"l,,——(n———L+S_". We shall study the

small dimensions and so the effect of the “angle” in the spectral sequence will not
concern us; we simply dismiss it. Because we find the ordinary picture of a spectral
sequence, containing in the present case only zeros except in a single row and column,
not really efficient, we shall use a-simplified version more convenient for the
calculations but containing no new idea.

R A o
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fibre

base

full dimension: n—1 n n+l1 n+2 n+3

Letae HY(S";Z,) be a generator. Clearly t:e,_, —~a. Ast=2Z, we have Sg'(e,_,) = 0
and the scheme takes the form

4G 2
fibre €n-1 0 Sq*e,— 1 | Sq e,y | Sq*e,—1 | Sqe, S%Ssq En-1
q en*l
base a 0 0 0 0 0
n—1 n n+1 n+2 n+3 n+4 n+5

All elements of the upper row go into E  without being altered or annulled on the
way. So it remained to examine the action of the operations in the small stable
dimensions in H*(S"|,; Z,).

Let us denote by h, the image of Sq%e,_, in E_. Then Sq®e,_, = Sq'Sq%e,_, =
=Sq'h, - Sq*e,_,. Now Sq*e,_, has no such representation since the system {Sg>'} is
a minimal basis, so we must take the image of Sq*e,_, in E, as a new multiplicative
generator h, of degree n+ 3. Thus Sg°e,_; = Sq'h, = Sq*Sq*h,;Sq*h, = Sq*°h, = 0.

Here we end. For the first four stable dimensions we have

Sqth, =

1 2

b Sq°hy ha = Sq%Sq*h,
n+1 n+2 n+3 n+4

Thus we have calculated a part of H*(S"|,; Z,). Let us determine =, ,(S"). We are
interested in the group H, , (S"|,; Z) which is isomorphic to 7, ;. ; (S"). In §23 we have
shown that ,, ;(S") and =, , ,(S") are finite and have no p-components except the 2-
component. We know that H,, ,(S"|,; Z) is the sum of the free part of H" " (S"|,; Z)
and the torsion subgroup of H**2(S"|,; Z). So the first summand is zeroand 7,  (S")
= Tors H"*2(S"|,; Z).

Now Tors H"*2(S"|,; Z)=H""2(S"|,; Z) =Z,. Indeed, Sq'h; =p,(a) where
ae H""%(8"|,; Z) and a has degree 2. (The latter is true for any element of the form
Sq'¢e H¥(X ; Z,) where X is any space, as follows from Sq' = B and the definition of g:
the last step in constructing B¢ is reducing modulo 2 the element 16¢ which, by
construction, is of degree 2.) We obtain that H"*%(S"|,; Z) contains an element of
degree 2 which is not divisible by 2 (otherwise p,a = 0).

It remained to apply the universal coefficient formula
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H*™* (8", Z,) = H™2(S"],; 2)@ Tor (H"(5"1,5 Z); Z5)

and the equality H"**(S"|,; Z,) = £,.
We have shown that 7, , (S") = Z, for any n>3. (As already known, 5(S%) =2Z.)

Let us now calculate 7, ,(S™) by using the next killing space:

K(Z,,n
Sn’n+1 —_L_Z_)—)Snln

1 2 SqZSqlen
fibre €, Sqe, Sq“e, SqPe)
™~ Ne 20,10 — Qat
base ™ h, Sq'h, 0, h, \Sg Sq*hy = Sq'h,

n n+1 n+2 n+3 n+4

We obtain E_, by the standard considerations:

0 pi |P2 S4'Py

n+1 n+2 n+3

We see that in the dimension # + 3 two generators occur: g, and Sq'p,. The situation

is similar to the one above.

Again we have to find Tors H,,,(Y; Z) =7,4,(S"). Again we have
H™+2(Y;Z)=0 and H"**(Y; Z,)=Z,. Now H"3(Y; Z,)=2,®Z, with p, and
Sq'p, as generators.

By repeating the previous reasoning word for word we obtain that Tors
H**3(Y; Z)=2,. Thus 7, ,(S")=Tors H,,,(Y;Z)=Tors H""*(Y; Z)=Z, for

n>3.
The reader may attempt to move forward to find 7, ., 5(S"), however this will not be

quite trivial.




