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8. Finite Subgmups of Su
o Cory'uga% closses in Uy
Reall the J%ﬂoooing standard fact J%m linear olgebra
An3 modrix in Uy s Conjugate to a di%ona,{ matrix. i.e.
Y AelUmny, 3Bemny st BAR'= aigg (A, . Ay, Where reS'ec”
The Mi's are ncthing but the eigenualues gf A.

Note that the order of Ai’s is unimportont Snce permuting Ai's can
be relized by cory'ugating by a matrix in U,

Consequently , the conjugay class of a manx Aelmy is determined
by the wnordered set of its eigenualues.

The some story applies to SUm) without much effort - the conjugany
doss of o matrix AeSUm is Oetermined by its unordered set of
eigervalues {2~ Aal A-dn =11 In J%ct Uy is gererated by Sl
and  Um =4 AId [ Al=t}, but under conjugation, UM acts trvially.

E‘S' SU2)
In"this cose, the conugacy classes are parametrized by 1) =1t 20
upto identification of A and A= X'

U(I)f‘\\x

* The conjugation representation of U on Mattn.©).
Let Uy act on Matin.©) by njugation. We shall aecompose it into
(realy irreplucible  Subrepresenttations.

The fmf observation to moke i3 that Uy preServes the Subspaces




g” Hermition onol anti-Hermitian  matrices
Mat(n.C) = (Hemitian) @ (Anti- Hermition)

* _n%

and the Umy qction preserves these subspaces:
B Hemition, AclUmn = (ABA™) =(A"*B*A* = ABA"
B onti-Hemnition, AelUm = (ABA™)*=(A"*B*A* = - ABA"

Notation:
Wi £ the spoce of Hermition matrioes
W-2 the space of arti-Hermitian matrices

Note that these are only renl representations of U and muttipliaation
by ¢ is an isomorphism of real Utm - modules:

\/\hf\:ﬂ/\/\J—

We an do a Lttle better, since conjugation preserves tmaces :

W+ ={Trace 0 Hermitian matrices} @ {11d | XeIR}

B — e-By |, Pu)
Denote WS 2{Tae 0 Hemitian matrices}, W° 2 {Trace O anti- Hermitian matrices} .
(We hawe Shown that:

Lemma 1 As reol representations of Um)
Matn. €)=~ IR-1d® WS @ iIRId ®W? O

® The double cover Su — SO@G)

We shall try to relate finite subgroups of SU to finite subgroups of
SOy, since 803, being the rotational Symmetry group of the unit
sphere S in IR®, is more intuitive.



Consider a 2x2 invertible complex matrix
A- ( a b)
c d

- _l_ d "b
A= detA( )
< al.
Thus J%r such an A to lie in SU, we just need
{deTAﬂ

d by /4 €
(-c aj—(E E)
ie. @=d, c=-b, ond detA=ad-bo= 10+ b=l (Write Q="+ i%:, D=XstiXa,
This idenuﬁes Suay as

su —{(a b)
(2) = -E 7

= i e M =1 | xeRt =P R,
the unit 3-sphere in the 4-diml Eudidean Space.

whose inverse i8

o.be €, 1a*+ibi*= }

Continuting our eartier example of conjugay classes of SUc. we see
that, the conjugoay - closs 9” AeSUw) s completely  determinedl by
TrAY= ot = 2%
Conversely. the get of eigenualues §X. X} is determined by:

{’XI x L,J - %7 }
A
< MA=2% . A\, A Qre roots of the equation
b 2= TrAYX +0etA = X= 2% X +1 = O

Thus, each conjugacy closs of SUy is just the set of matrices in
SU) with a fixed trace value 2% (-1£x<1y, which is iderttifiedl s
I x3endene=1- %2} 2 S



a two Sphere cf rodius Ji=xE. (When =11, this says that the matrices
t1 Jorm thein own conjugacy class ). Pictorially -

Imagine this to be the 3-gphere

‘g% of SU. The conjugacy closses
1 / 1 are just preimages of trAY=2x
‘%W Except for the poles” 11, these

| conjugacy closses are geometrically
Tr

—o— o 2% 2-gpheres with uarious radlii.
-2 2

Al’remaﬁue(g, SU@) an be described as the goup of unit quatemions. In
fad. Quatemnions [H may be identified as
H =R Id®WS:E Mat2,C)
| | +— Id
A N E PN I (A E R T (SIS S
Recoll that we have shown : under the conjugation action Qf Suc, W2 is
inuariant . Now
W® =4 Traceless anti- hermitian matrices’
=IRLOIRLDIRR
Moreover .
{AeSU@ | TrA=0} = {(“x:?:; ?x?-*:xf) )2"(‘=°. K o 104X = }
={’XZE+ Yo + Mol | KasX3+na=1 }
beng a conjugacy class in SU@). is also the unit sphere in WS
= The conugation action gf SU on W2 acts transitively on the

“unit sphere” = {tmceless elements in SU},

Now we are cose to what we need: We have produced a representation
S — GLIW) = GLE.R) so that Sl preserves the “unit sphere” of
R®. We shall impose a norm on WS so that SUc) preserves the norm,
ond the “unit sphere” becomes the genuine unit sphere under this nomm.



By the same considemation as for Um AMatin.€©), a natural andidate
Jor the nom g (X.YYETr(XY) sne Tr on W2 is preserved
under conugation action by SUcay: VAeSU@. X.YeW?:
(AX,AYY =Tr(AXA AYAY
=Tr (AXYA™)
=TTr (XY)
= (XYY
ond it's r*eadi(ﬁ Seen to be bilinear. Furthermore, we have :
Treb-Ey=-2 Tridy=o0
Trti-dyr=-2 Tk =
Tr(R-RY=-2 Tr-RY=0
Hence f we resale (X, Y)Z-3(X, Y)-——Tr(XY> we obtain a Eudidean
inner product on W2 . w.r.t. which 4L, i, BY forms an on.b.

Combinm\g the gbove discussion. we have exhibited a map -
Su) — Aut(We2, ¢,y 2 At(IR® ¢, ) = O,
It remoins to Show that:
(. The imoge of Su les in SO@) ;
. The map SU) —— S0 is Sunjective ;

(i, Anafﬁze Kery =17

(y s eosily guanranteed by the topolagy of SUe: The groyp homomarphism
SU@) — 0@y is continuous (i.e. elements in SU@) close to Id moues
lectors in W2 only @ ltfle), and SUc is connected, being o sphere.
Thus its image in O must be connected. Since SOB) is the connected
component qf O containg |, imcSU@» € 80@). We shall denote the
homomorphism
Y: SU) — SO@G).
Exercise: Show that any continuous homomorphism  S'— G, where G is @



discrete group, I8 the triviel ore.

(. To Show that ¥ 8 Surjective , consider the action of
A((p):(e‘<P O) (0@ <)

-

o e
on W2:
Ay R = A@yR A-py =R

0 iZ

ond on the plane Ri®Ri = {( o)]zﬂt}’-—ﬂf, Ay acts o8

- T
A«p)(o ‘Z)Af-@>=(.o_z,.¢‘e z)
iz 0 ez 0

i.e. it acts as Clockwise rotation qf the complex plane bg the angle 2¢.
J

\l L

Z-plane

In summary, Ay acts on W2 as the rotation about the R-axis by
an angle of 2¢ (0<2p<an : all the rotations).

Next. we have shown that SUa acts transitiely on the unit sphere
S of W Thus V Pe §, 3BeSUm st. B.k=BRB"'=P, and the
subgroup BA®R' € SU» (o<p<m) Congists of all rotwtions about the

OXiS Thnough {P.-P} : .

50

y
|-

L

Now we conclude from the well- known fact that SO@) consists of all rotations
obout uarious OXis through the origin that ¥ maps SUy surjectively onto
S0®».



i, What's the kemel of ¥: S — SO@7
AeKery & A acts trivially on W2 : ¥XeW?, AXA'=X.
(But A commutes with (IRId TNuiaU@s
< A acts trvially on W- = iIRIA@ W2,
(-0 W- =55 W+ an isomorphism of  SUc rep's )
< A acts Tﬁufaaﬁ on Mat2.€)E WO W-.
< Ae Z(Mat2.€» NSU) = €-Id NSU) = {£1},

ani
n

Ex. Show that Z(SUm)={3RId[3=eM , 0<ken-it

In summary, we hove shown:

Thm.2. There exists a 2:1, Surjective group homomorphism
y: SU@ — S0@3
of (Liey groups . with Kerv ={zId}.

® Finite subgroups of' SO@).
We sholl use the fo[(owirg well-knowon:

Thm 3. Finite subgroups of S0@ are clossified os follows:
There are two infinite families:
® Cn: aplic group of order n,
® Don: dihedral group of order 2n ;
and 3 more exceptional COSES:
® A+ the rotational symmetry group of a tetmhedlron.
* Su: the rotational synmetry grawp of a cube/ octahedron
® As: the rotational symmetry goup of on icosahedran/ dodeasheolron.

For @ proof, see M. Artin : Agebr.



More Qeome’cﬁcaUﬁ, we have the fé((owins presentation cf these groups:

G < 0B |G| | Geometric description of genemtors

\G

Ch=<alon=1> n g
b

Dn=<a.blo==wby=i> | =n /i;

b
Aa=<abla=b=pb=1> | n &

Si={a.bl@=t=obh*) | 24 I

A5=<a.b10.2=b3=(ab)5___l> 60 .‘

* Finite  subgroups of Suw

Observe that in SU, there is only one element of onder 2. ramely -1.
This is bease any matrix A€SUoy can be conjugated to a dliagonal
matrix of the jbrm * %) and J‘br it to be of order 2. A=-1. In
controst, there are lots of elementts of order 2 in S0 (take oy
rotation by T about any direction in IR*!). Thus the preimages of these
order 2 elements in IR® under ¥ are all qf order 4.

Now, let G be a finite subgroup of SU and H=v(G) be its image



in S0y, Since ¥ is 2:1, there are two posshbilites
M. [Gl=1H!, and Ylg: G oK,
v. IGI=2IHl, and -1€G, HeG/Hil}
Also note that j?nm our dass[ﬁcation list ﬁ)r SO®)y, IHI is even unless
H=Can is cyclic of odd order. Other thon this IHI is eeen = IGI is

even = (3 has an order 2 element (elementary group theory !y, ond we are
in case (in.

We analyse case by cose
@. He Cn. There are two posshbilites:
@i n=2k+. Then GaHz Grn or Gz=GxHz Cagkey
@.iv n=2k. Then G/{il}2Hz Gk => G2 Cs or GxCGr. The latler
is ruled out Since there would be more than | order 2 elements in G.
Thus G is aways cycdic. Such G is olways conjugate to one of the

Jorm: Lo

Gz{(o s") s=em . °5h<”}

b, He D= Ha=G/{1iI}, In this case H2Cn as @ (normaly Subgroup
= V'(Ch=GCnCEG tby cose @, of index 2, and thus must be
normal. Since Dan=Chlla-Gr (o of order 2)=> G=Y"(H)= Gn Ll a'Can, where
=0 and @ must have order 4. Then G con be conjugated 1o the group
enerated  oy:

: Y [E 9.6 0=als-e%  ocrenm}

We denote this group bg Dan, lled the binary dihedral group. Note that
Dan % Den since the latter has mony order 2 elements .

D;n ___V__) :DZH 01V
v g  with Yle)=
Con —1— Ca



Rmk: It's not hand to fgwe out the Structure of D directly from elementary
group theory: Let t be the generaton qf Gn. 8=vct) €Cn (EDan) a generator.
Then vyt va™ = asa’= 8" =Yty = a'ta'=t" or -t". But uf ato=-t"
= @tY=-t'a'a't=1 = Qt=11=7@)"=>t=30'= G is abelion. Controdliction.
So ata'=t" and it's isomorphic to the group above,

©. HzAw, St As. = H=GH1I} In these coses the comesponding G's
e denoted A4 . Si. A5, called the binary tetrahedron grow. binary
octahedron group.  binary - icosshedron: group respectively.

Rmk: Note that A% S, As £ Ss. &ince S&. Ss have more than |
order 2 elements.

By now, we have clossifled all finite subgroups of Suc

Thm 4. Finite subgroups of  SU@) are classified as follows:

G < SuU Presentaition fell
Cn wlah=1> n
Dan La.bla*=b= > | 4n

Ay w@.blo=B= abys | 24
Sa W.bla=bB= caby*> | 48
As w.bla= b= aby®y | 120




82. The McKay Graph

Let V=C* be the 2-dimensional represertation qf SUr. By restricting it
to any finite Subgroup G gf Sue , we obtan o 2-diml representation
of G. dtil denoted by V. Note that V is imeducible unless G = Ch,
the only finite abelan subgroups of Sl (otherwige V= UBW 18
a sum of 2 1-dim'( representations —> G S C*xC™ is abelian). This
representation plays a pivotal role in what follows,

Lemma 5. V is a self-dual representation
Pf: YgeG. 3BeSUm st BgB'= (5 %), where =1, Thus
M@y = trv(g) = TrvBgB™=ArX =242 €R
= %v is real = V i8 self-oual. =

Rmk: Using charocter theory for comnected compoct Lie groups , we see that
V s a self-dual representation for SU. Such an isomorphism N/ — V¥
is not haro to exihibit:

vo=(2 BeSun=> g'= (4 )= @t=(3 7). Let h=(0 3). Then

h'gh =@g"t=g*

Let Vi.Vj be two imep's of G. Consider the multiplicity of Vi in Vj®V.
m(Vi, V@V = dlim HometVi. V@V;) = dim Home (V@V;. Vi),

Lemma 6. m(Vi, VoV)) = myj, Ve,
Pf. Since mVi, V@V))ye Zz0, MVi, VOV)) = M(Vi, VOV)). =
MeVi, Vo)) =MV Vav)
= 1@\ S gec %i9) Kug Xig)
= \en 2geG i) Nu@yXi(g)
8 T N NG X (Vs seif-dlualy
= (’XJ XiXv)




= m(Vj, VeV,

Rmk: In gereral. it's true that v X.Y,Z reps of G-
Homa (X, Z® Y ) = Homg(X®Z*, Y)
I X2V Yay), Z=Ve VY, toking Oimengion of both Sides, we obtain:
MV, V@V)) = dimHoma (Vi, V®V;)
= oim Homa(Vi®V, V>
= m{V;, VieVv).

* Construction of the graph
Notation: & m(Vi.v@V)) . Then aj=0i. by lemma 6,

Now to each finite subgroup G of SU), we associate with it a gmph
I' as :ﬁ)UO(DS:

Vertices - Irep's Vi of G
Edges: The (. th uertices are connected by 0y edges.

Moreover, to each vertex, we assgn to it an integer di = dimVi, called the
weight.

E8 G'E Ch=<olo'= 1>

We know that in this case, Ivep's of G are all 1 dimensional:
Irrep(GY=1Vo. Vi. -+, Vna} ki
where Q. octs on Ve by multiplication by R=e" | ozk<n. Moreower,
since a=(" £, we see that VEVi®V- ( Vi=Vni). Thus vV
\/j ®V =z \/j@(\/l@V-n) ’="\/J'+l V.
Hence in the groph:



and the whole groph (ooks (ike:

\/n-\ Vo

V2
\

® Common ﬁatums of McKoy graphs.
Now we discuss Qeneral properties of the graph.

Note that for G non-obelian, V is irreducible. C®V=2v. Thus T
always contoins & portion Like:

| :_/'

C \'

For any vertex Vi. consider all the uertices Connected to it:
d;

ol
Vi

Then bg dg‘fnition, VieV e 69\/J‘a5_ Tala‘ng dimensions of bath Sides, we
get:

20i = 2 Qjdj.
Later we will show that, except for two degenerate cases, uertices in
any McKoy graph are comnected by at most | edge.

Thm. ¥ McKay grophs are connected.
Pf: By the example above, it suffices to prove for G nonabelion. We
shall prove by contradiction.

Assume J%r‘ some G. I" is not connected. Then, by our dliscussion
obove, 3 irmep Vi of G not Cortoined in the connected component of



the graph:

I 2 .
N
Note that the imeps of G oceuring in this component are precisely
those irreps oocum‘ng inside \/®" jBr\ uarious ne Zzo cbg dgﬁruubm.
Thus such Vi must satisfy -
(. %P =0, ¥nz0
& (K, X)=0, vnzo
= él‘Zg N Mueg) = 0
& EZN@ K@ =0 (V is seff-dual)

83 eprlier discussion in 81, Nv@r€r2,21 and Xuer=-2 ff g=-1 .
%@=2 iff g=1. Since we have assumed that G is non-obelion, 1€ G.
Divicing both Sides of the equation by 2", and multiplying by 1G1, we obtoin:

Ty %@ (22" =0, ynso

& XD + KD N+ Ziugrac iy 22 -0 . vnzo
Since -1€ 2(3). by Shurs lemma, -1 acts on Vi by @ salar matrix. Since
CI¥=I. it an only act a8 tIovi. Hence Xuic-Iy =trvictIdvd=tdi. Now,
divide both sides of the equation by dli. we have:

I+ 8¢+ Zl'xvzg)lzl<|i;;;g_)"«7‘/®)n=0 ., YNz2o0,
where 8=l.(jt,-—1)=il iS ﬁxed J%r Vi. Tal{ing n>o0, Since \L‘;@K\. the
the Summation term 8 very Small and has to be on integer, and
thus it must be O. Hence we get an equation for all n>o -

I+ €c-Y" =0
This is impossible and leads to the dlesired contmdiction. O

Cor. 8. Qij 1 unless Gz} or G
Pf+ G={t = T hos only | vertex. namely Vo=C. V2Vo@Vo =>
Oo=2. I" looks like



" O (the edge. considered leaving and entenng,
connects Vo twice)

For (5. we have shown that its graph is Like:

>

Conuerseud. assume that G {1y, and there /s @ multiple edge between
Vi and V:
o \_gi \IJ'_—_."- Vi

Vi

we hove Qij=0ji22

{ 2di = Qijdj + ZOik0k

20 = Qjidi + =050 dle

= 2di=2dj+ (Qij-20)+ ZCiede = Qjidi + T Qjedle+ (Qj-210j + X Qindli
= 2(0j -0 + ZQikdr=0
= Ok=0, Qk=0, Qj=2. i.e. no vertex other than Vj comnelts to Vi,
By symmetry. this must also be true for Vj. Since we know that [ is
connected, I must then be-

«c—»

ond G =2Z/2 (the only group with only 2 conjugacy closses).

® |ist Of MeKay - graphs
We have seen that the MecKay graph for Cn is

Vn- Vo

Vha
\

This groph is alled  An-



The graph for Dan is actually the following with n+3 vertices:

The groph is alled Dra. One can check the relation

Gl = £ d
fom: 4n= 4.1 (- 2%
The exceptional graups:
I
2
l 2 3 2 l
A+ the goph Es
t—l——o——lz——o—o—~
| 2 3 4 3 2 !

A5 : the graph Es

We shall prowe, in the next Section, that these are the only possibilities :

Thm.9. Ang connected groph 1" with positive integral  weights di - assigned to



each vertex  satigfying:
. goddiy=I
(ir. 20i= i dj
s one of the grophs listed aboue.

We shall also show how to match the groups with their cormesponding
McKay grophs in the next Section.



33. Classification
Our moin goal in this section is to dassify McKay gmaphs Cie. to prowe
thm 9 of §2).

® The associated inner product space of a graph.

Let T" be & connected groph, whase vertices are 1€, enf, and between
any two uertices there is at most one edge comnecting them. To such a
" we associate @ real vecter space IRY and an inner product on it, as

follows:
IQP—A-' @irll Pen
ond the inner product on it. defined on the bass and extended bilinearly

2 if =]
(e ej»é {—I DC (%] ond (.] are connected
0 otherwise

Recoll our definition of the Mekay graphs An, Dn Ee.Er. B in thm. 9,
together with the weights {dit assigned to each vertex. Remork that in
the above definition we exclude the Olegenerate cases of MeKay graphs:

Oi > a

E.g.
e
=9, then IRF=IRe and (e e)=2

= e then R'=IRe@Re:, with e. e: forming an ange of 3r.
€2

2
a3l
,.\ e

Lemma I0. If I is among the McKog grophs An (n22) ,1/3\n’+z cnz:z),gs,

E, gs, the associated inner product (. ) on IRF is positive seml‘-dejr‘ni’ce.
n

with a 1-dimensional null Space Spanned by the uector we = 2 dié:.



Pf: Indeed IRwo Llies inside the null space g“ ¢, Vi=i-.n,
(Wo. €Y = (dier, &) + X jxi (djej. e
= 2di - Xi-j d]
=0
To show that () I8 positive emi-definite . we assign an auxiliony

orientation (0bitranlyy to oll edges of T'. so as to keep track of tens
we Qare summing Ouer:

Now, V w= ZiXiei, %elR. we hae :
0< Xc—>j didJ' (%\% - %%: Y (Summing over all oriented edges)

= Ziosj didj (KPal’ - 2%%;/chid + ]k

= Lioj (%%9(?— 2%%; + %j*’)(jz)

= Zc-aj%iifx:z =22 i) i)+ Zj—»i%{"xf

= 22 LI z_j:j—»i%i;")(iz) -2 i) XX

= Si(S) i) - 2 i ]

= 25 % - 22’)(#)()' ( Since 2 jij-i dj =2di)

= (W, WY,
with “=" holoh‘ng ff X =% /dj = AR for all fjef-ny, e W=,
The result follows. O

Next we introduce Some Standard olgbin'ruons fmm combinatorics :

Def’ Consider a comnected goph " as above ¢ these graphs without muttiple

edges between any two vertices are sayed to be simply (aced)

. T is colled affine if we aon assign weights ci€IN 1o is vertices st.
20i= 2j-idj, vi.

Rmk: Lemma lo = all McKay graphs are affine. Furthermore. the resutt of



the lemma, a!:tuall\;j holds J%p aﬁ?ne graphs. since in the proof® we used
nothing but the relation 2di = Zi-j dj.

iy, I is called cfinitey Dynkin i it's @ proper subgraph of some qffine
groph.

Rmk: By slightly modifying the proof of lemma [0, it's readily seen that in
this cose the associated inner product is positive definite on RT (C.7" the
proof of lemma 11 below).

E.g.

RS

v, I s colled indefinite if' I contains  properly an offine gnaph.
Rmk: Lemma. 11 below shows that in this case the associated inner
product on IR™ is  indefinite.

Lemma 11 If T is indefinite, then the associated inner product on

R™ is  inoefinite.

Pf: Let "< T be a subgaph which i8 affine. There are two possibilities:
/’/j_—§\\ P




m. I” contains a vertex not in I'', say eiel”, eigl”

By def, 34dj} weights of I st 2dj=Sw-jerde Let Wo=Sjerdjej,
and W'= Wo+ €6j. Then:

(W, W) = (Wo. We) + 2E(Wo.Li)+ 282
Note that (Wo.Wo)<O0 :

to distinguish dlifferent inner products for I” and T
we wnte (, )

o))

(Lo, Wo)r = (Wo, W) + X j. k(—k>&T" (d; €, delrd
= 0 - Xjry-berdidr
<0

However (wo. €)= X jer dj (6).€1) =~ Xjer'dj <0, Hence gp we toke O<€<«l,
28* < -2E(Wo.8i).

= (W', W <0
. T i obtained from I" by removing more than one edges

_————

. ~
,/ J \\I-l
/
\
/

I \
[ \
| |
\ ' /
\P /

\

(Wo. WX = (Lo, WINT' + X (j-R&T 00k (&), Er)
= = 2 (j-pigl"0jde
<0

Since the inner products associated with affine graphs are dways positive
semi- definite, we dleduce that:

Cor 12, Affine graphs do not contain each other property.

* (lassification of affine graphs



(We summarize the d@?nm‘ons we mode into a. toble:

Gropn type '.Deﬁhiﬁon Associated inner product on IRT
Affire r positive  semi-definite
Dynkin rer positive dgﬁnite

Indeﬁnite r2r indeﬁnite

Clam cthm. @)+ The McKay graphs An (n22), Bnnaay, Bs. B5, Bs s
a complete List of csimply laceo) affine grophs.

Pf: e shall actually shaw that. [f T7 is neither Dynkin nor gffine. it
contoins propenly one of the MeKay graphs , andl thus is indefinite.

(). If I' contains o cycle. then it contains An properly.

ih. If ' contains a vertex of walency 24, it's either 3y, or it contoins
B properly.

adf > ><: Bs

By iy and . we may assume that I" has no loops cie. it's a tree), and

oll vertices have ualency <3.
(). If I" contains more thon 2 ualency 3 vertices, choose a path betoeen
them, Then these two uertices, the vertices connected to them, together with

the path connecting them form a On:

—————————————————————————

Then T is either n, or it contains Dn property.

dvy. If T contains no uolency 3 wertex, it 1§ properly contzined in An and is



then  Dynkin.

(v, It remains to discuss the aose when I7 contoins exactly ore vertex of
udency 3. Let p.q.r oenote the number of vertices on each “antenng”
of T. Without loss of gererality, assume that p<g<r , and dencte T
by Ipar

BS lemma, o, Pa.s.a'—‘-gél [%44= E?, T236= E% are G_tﬁ‘fne.
By remouing one of the weight one uertices, we obtoin those Ipgr's that
are Dynkin:

’D\‘n+2 > [%2n (5 Dm) Ee — P233(=E6)
= — %34 (2 E7) Ee — Thag (5 FR)

Finally, any other ualues of p.q.r other than those listed aboue will
cortoin one of Es. Es. Es properly:

Plalfr Result

2|3 |27|Ipgr2L236= Es

2| 4 |25] Ihgr 2l244= E

2 | 25|25 | Tpgr 2 [244=F3 5
23| 23| 23| Ipgr 21333 =F¢




Rimks.
(). Whot we hove Shown 18 Stronger than thm.Q, namely. we haue portitioned

all simply-loced) grophs into 3 types:
Dyrkin Affine _"Lndeﬁni’ce

An An Al the

Dn :Sn crther* ones
Ee.Es. Es | E:.Ex s

McKay graphs ore exactly the Same as ¢simply-lacedy affine gmphs
(ib. Note that the types of [pgr is defermined by the wlue of s+g+7:

AT T Tpar
>\ DOynkin
= Affine
<l Indefinite

We shall see some interesting application of this foct in the next section.

® Matching groups with graphs
To fully establish McKay corvespondence, we only need to match finite
subgroups (G & SU@ with its coresponding McKay (affiney graph T

For G=(n. we have shown in on example of 82 the assooiated Mekay
groch &5 An. Conversdly, An can only be assooiated with Cn since all 1ts
weights being 1 implies that the associated group has all its imep's I-dlim'l,
and thus must be on abelian group.

To determine the Mekay graph J%r* G=Din, note that we hawe Shown
that Dan 2 Gan. @ ormal)y ingex 2 Subgraup which is abelion. e
need the following -



Lemma 13. If a finite group G cortoing an index r subgraup H wohich
8 abelion, then any imep V of G has dimV<r
Pf: We know that the regular rep CCG1 of G contoins all imeps of
G, and
CrG1 = Inds (CoHD)
= Indf ( EBMGIH‘GP(H) \/,:M m
= Duerent IndH(VM)
Now H abelan = dim\u=1 => Ind Vu has dimension [G:HI=r —>
Any irvep of G is then cortoined in one of IndH Vi The result follows .
O
App(ﬁ the lemma to G=Dan 2H=Cn. We condude that the imeps
qf Dih have dm<2. Since Din I8 nonabelion, it does have 2-dim!{ irreps
( for instance the fundamental V). Hence the McKoy graph for Din Con't
be E¢.Es or Es . since they contain vertices of woeights 23, Then, to
ientify  which Dr is associated with Dih, we can use the relation
IGl=Z di,
0s we did before, to find the McKay groph Dra for Dh

GBdlmVM

For Ak, Sk, A5, remll that »:Su—S0@) restricts to 2:1 Surjective
homomorphisms  of  them onto As. Se. As . Recall from basic rep. theory
that As. Se. As have imeps of dim =3. Thus their McKoy graphs must
be among Fe B Es, the only graphs having some weights di 23. Once
0gain we opply the formula IGI==di to findl the right graph for G

In summory. we have shown:
Thm 14 Assigning ench ﬁnl”te Subgroup Qf SUa) its McKay graph gives

a bljeCUOﬂ qo gets
{Finite subgroups of Su} <= {affine graphs} 0



* Application
Let G be a nonabelion finite subgroup of S, By our dassification of
all such G's . we know that z=-Im e SUe lies in G. Let i be an irrep
of G. then 26 Z(G) => 2 acts a8 +Idvi on Vi, Since 2*-L. Sinee 2=
-Idv on the fundamentel V., i \jE Vi@V cie. j.i are connected in the
MeKay groph of G, we have:

f 2 acts as Idvi on Vi, 2=(-Iow@Idvily;= -Idv;

if 2 acts as -Idvi on Vi, 2=(-Tow@CIdvi)lyj= Ioly;.
If we portition Irrep(G) into

Trrep(G) = { Vi 2lwe=Tduit LIV 2lyj=-Tdy;)

and mark them by different cdors on the McKoy groph, we have:

Any vertex on I' has its neghbors with a different color

! [ | [
2 o 2 22 ® : 2 octs as -Id
| ( | | e .z octs o8 Id

Din , n even D n odd
2 1 2 3 4 3 2 | 2 4 65 4 3 2
A4 Sh As

Note that. those Vi with 2 octing as Id are exactly those imeps of G
that descend to Gi/41.2} =ImwG). For instance. for S&, we recower the
result that there are & ireps of Sa, of dimensions 1.1, 2,3.3 respectively.

The aboue remarks says that the MeKoy graphs are bipartite, ie. it's q
graph  whose uertices an be partitioned into 2 classes such that the edges
of the groph only connects wertices from different classes. A typical bipartite



graph can be obtnined 08 shown below:

Finally, recoll that tensoring with a. I-oim'L representation of G induces an
automorpism o  Irep(@). This induces an automorphism of the MeKay

groph.

Eg Let's identify the vertices of E¢ with specific representations of A4
By the above discussion, we Rnow that the 1-dim'l imep's all come from
that of As. Since 1-diml representations of any group G forms o group
(GITG.GYY', this says that the natural mep of abelian groups

Al LAE AST— AalTAs, Ad]
induces an isormorphism of the ool groups , and thus is an isomorphism
tself ( both = Cs)

Observe that the Jull symmetry group acts thansitively on all weight |
vertices (this is true for oll Mckay grophs!y, S0 we can pick ony of
them to Stond for \o=C. Let Vi and V> be the other two 1-dim'l imeps
of A%, then Vi®*2\a, V™2 Ve, Let V be the fundamental irrep.

Then the central vertex U eatigfles V® 2 Vo ®U. But we dlso hove
V& = NV SV

ond SUcey acts trivially on NV, Heree UzSV. N

Now tensoring with Vi induces an order 3 automorphism of  Es



and it sends Vor—Vi. Thus we obtain:

Note olso that tensoring with 1-diml rep's do not giue the full symmetries
of the McKay groph here: SYmEey=Ds but here we only obtain Cs. Note
that, howewer, these automorphisms permute trongitively o weight | vertices
and the group has order exactly the number of weight | vertices. This /8
true for all finite subgrouwps of  SU).

Eg / Berie For Si. the full symmetry growp of E5 s the same as
thot  induced by fensoring the non-trivial I-dimensional irrep:

2
Vo V Vi

) 2 3 4 3 2 |
QI/

Note that from the diogrom we have. Similor as J%r A, that
(84 /LS4 Sa1)'= 1-diml ReptSa)
= 1-dim'l Rep(S4)
= (SI/[&F, s
—> Si/ISE, $12 GallSk S1=Ca. Vi comes from the sign rep of &
We leave it as an exercise to check the diggram:

u
Vo sV l SVeV Vi

vV sV Y
and U is the 2-diml imep of S S22 84— G R,



84. Fun with Graphs
Previously we have partioned all (simply-laced) graphs into 3 closses:

Finite  Dynkin Affine Indefinite
(=) I I (2™

As o corollary, we have:

Cor. 15. There is o bijection:
{Aﬁfme} I { Finite Dgnkin}

grophs grophs
I — I 27"~ a wepht | vertex
Note that remouing ony weight | uertex giues the same result since the
group of automorphisms of I' acts tronsitively on them. 0

Rmk: We agree that for the Special coses:

O —
i — - oA

Rmk: The Dynkin graphs An, Dn, Ei. i=6.7.8 first occured when people were
trying to classify simple Lie groups/ clgebras. The history s much (ongen
than McKoy correspondence (~1980.

So for. what we hove estoblished is the following: Start with any finite
subgroup G € 8U)

M h affiney ———— Finite: Dynki
G cKoy grap Caﬁqﬂe ini an in
McKay Remouing any
Correspondence weight | uvertices




We shall look at the nonabelion G's. But let's summarize what we Rnow:

G G H* Presentation of G (H) Dynkin groph
Dan | 4n Din @?=b*= (" (=1 .2
An | 24 As @ b= (ob’ (= 1) T2.3.3
S| 43 Sa o= b= by =1y I236
A5 | 120 As 6= b= (0bY (=1 T2.35
*: H= Y@ : ¥Y:SU2) — 803)
Obseruation:

® The numbers (p.q.m oceured twice : in the exponents of the group
presentation and in the Dynkin graphs I'pg.r.
° The relation ++T++ =1+ holds.

Question:
® Is there any other oaurance of g1 ?
® How do we explain the relation TrgtTE =4 T

e A Coxeter group H'
We shall introduce another group H' associated with H. Recall that when
clossifying finite Subgroups of SO@). we introduced them as  rototional
symmetries of requiar n-gons and polyhedrons, Then. G was itroduced
os the preimage G=v7(H) under v: SU@) — S0, ( Spin” symmetry!)
Houever , the regular n-gons and polyhedrons also have *reflectional
symmetries, coming from H < S0@3)— 0. Note that in dim 3,

Oy =803y UL (-1)S0@) = S0 xZ/z
(This is not true J%r even olimensions : det(-I1= (-17R=1 = -1e SOk,
Thus we would expect H'=HxZ/2. However, this is not true in genenal.
let's look af them cose by cose.



M. Qegular* n-gon:
z

§é—;g} A:Z—s-2 . id on ’X-S plane.

%

Note thoat in this cage.
cosBk -8iNGk O R o c®6r 8Sin6p ©O
Don = §inGk  (oSBR o) , ( >(-sinen Coer o)

o o | 0 -1/\' o o

Or= 121, osken, R: a]
reflection in x-y plane
Thereﬁ:re Dan commutes with A=(' 12) €0\ 80@3) ¢ A acts Triufauﬂ on
the n-gon!) and in this mse it's DwxZ/2.

(2),

Rot(cube)s Ss Rot (Tosahedron) = As
Now it's easy to see that -1€ O@\SO@ actuolly preserves these regular
Polyhedron.  Since -1€ Z(0@), H' in these ases are just

Sux 22 As x 2[2
respectively .
(3), A '
Rot (tetrahediron) = Aa

Note that in this cose -Iss Cloesnt presere the tetrohedron. Instead. the
mflecaon A acts as (), St‘mi(adg we have 3y, 34y and thus in this
cose H'e Sa.

As a rolloy. we see that [H'l=2IH|=IGl. Qe odd these dota into the
Sfollowirg toble:



G |IGl=H1] H H' | Presentation of H (@ | Dynkin groph
D | 4n Dan [DanxZl2| (2=b*= (b (=1) .20
Av | 24 An St | @:=b= @by (=1) T233
S | 48 Sy |SaxZl2| a:b= (b =1 [%36
As | 120 As |AsxZh| *=b’=bP (=) T2.35

Next. we shall find nice presentations of these groups. To do this, we
inscribe the regulr n-gons and regular polyhedrons into the unit sphere 8

Since H' preserves both the regulor polyhedrons and the unit sphere, H'
will olso preserve the central projection images of the regular polyhedrons
onto the unit sphere S Let A be a fundamental domain of the H' action
on the polyhedron. then its image on S wauld be o spherical triangle
whose boundaries consist of ares of great circles

a centrl i TT
_
projection

A and its sphenicd image



< >
_—

projection

Note the slight difference here: the Zk fictor acts trivially on the
regulor n-gon but non-tnuially on the ephere. Instead. we an think
of the n-gon has some thickness”, so that its upper and lower

foces are different .

Since H' octs foithfllly on the gphere. and transitively on all findamental
domaing, it acts faithfully transitively on their spherical images . Thus
IH| = #{ sphencal fundamentol domains}

Now using these spheriaal fundamerttal domains, it's easy to describe the

gerenators of H' in tems of the sphenical reflection about the sides
of a sphenical fundomental domain ctrionge)

A
K _—< A
W A sphericl reflection: y The spherical reflection
v obout the equator 8 Q d. generators X, Y. 2.

It's easy to see that. the composition of =y i8 the rotation about the

A direction by 2
&A/ notation bg 200

ond thus (xy"=1, where n=2m/ot. For example. let's work out the cube



A
The j&ndamem‘ol central .
domains 0bost  projection R=2M/6="5
a vertex A V

Thus oxy® =1. Similarly. it on be checked that the B. v angles are

m8= %, ami4=3 respectively, and thus (y=y*=1, (zx)*=1.

In generol, we con check that , the angles of a sphenical fundamental
Comain is TIp, T, Tr respectively, where p.q.r are the numbers in
Tvgr of the comesponding group H Cor G) -

Moreover , it follows that H' has the following presentotion for H' cpossibly
need to rengme X.y.2).

H'= dxy 2| xi=y=2=1 ayP=wyprt=@x'=1>
It's also easy to see that the presentation of H in terms of a.b is also
related o %y, 2 by:

Q="%y. b=yz, by'=2x

The obove discussion then gues another occurence of (p.g.r!
* (reometrization of ST =G
Actually . the title is a slight misnomer, and what we will *geometrize” is:

! 1 | 4
PrITT = 00

(IH1=1GI anywoy!)
To exploin this we sholl use the Jollowing;



Thm 16. (Area of a sphenical niangle). A sphenical triangle on the unit
Sphere with angles o, B, » hos area  x+B+v - TL.

The proof of the thm wil be deferred. But using this thm ond the
previous  disscussions about H' and the spherical fundamerttal domains,
we can give o satisfactory explanation of formula %)

Since H' acts simply tronsitively on the collection of all spheniaal
Jundomentol domoins ctriangles). they all hove the same area. Since

T
‘ |
T Q dvy_ T
B=§ v= r
T

their angles are .9, T respectively . their areas are all equal to
X, T T
Ao (AN =ptgtT - T
On the other handl, the sum of  their total area is just the totol aren of
the gphere, we then hove:
Area(Ar = 4T/ |H|

Now 1 follows by equating these two.

Proof of Thm 6.
We first prove this formula in the degenerate case where one of the
angles s degenerate

ol

f

N

Observe that in this cse AreatA) is propotional to o, and when s=2,
A covers S& ond Aren(Ay=4 :>Anea=41r-%=2oe.

(@

2 ((



Next, let A be any &pherical triangle and consider all the great circles
Jorming its Sides:

Note that any two gpeat circles , eay, thase cutiing out ¥, form o Situation
we considered abave :

and thus the total Shoded area is 2-2v =4¥. Similaly for o and g.
Altogether, these shaded oreos cover the whole unit Sphere. but with
A ond its mirvor image about the center counted 3 times. Thus :
AQ+4B+4Y - 4. ArealA) = 4T
= Area(A)= ol+B+y - T,
as Cloimed. O

* Affire and indefinte aoses

For the offine / indefinite grophs 1p.g.r c—‘p+§+—%= 1/ <), we may
consider the  same  presentztion of Coxeter groups:

H'2 ¢xy. 2l R=y=2=1, oy=ypr=@x'=1>,

but things will be oifferent : H' won't be fhite any more !
EQ [as. X Y. 2: reflections on IR*
about the 8oes of a reguiar
triangle




Then 4y I8 the rotation of R* about A by ST. and thus exyp’=1.
Sy wzr*= @xr’=1. Clearly this group is infinite, but it contans
a finite subgroup H={ oy, wo), @nf.

In gererl jor affine I'pgr. the resut is simiar ond H' acts by qffine
thnsformations on IR, and that's why these graphs are colled affine.

In the fndq‘fmf? ase. such o triange no longer Lives on & or IR?,

but rother on H*, the hyperbolic space, where the area of a triongle
'8 glen by T- o-B-V.

B Y

The Coreter group oefined this woy will be very lorge ci-e. the number of
group elements grows exponentially with respect to “length” of the group
elements , it's like a free group). These groups are aalledl hyperbolic.



