Representations of finite groups. Practice Midterm.

1. Mark those squares below that are followed by correct statements. Representations are assumed to be over complex numbers, unless specified otherwise.

 $\hfill\square$ Any representation of a finite group is completely reducible.

 $\hfill\square$ If a finite group is simple, it has only one irreducible representation.

 $\hfill\square$ Any two representations of the trivial group are isomorphic.

 \Box The cyclic group \mathbb{Z}_n has exactly *n* pairwise non-isomorphic irreducible representations.

 \Box Any representation of \mathbb{Z} is completely reducible.

 \Box The group S_5 has 5 conjugacy classes.

 \Box Any irreducible representation of a finite group G is isomorphic to a direct summand of the regular representation.

 $\Box \quad \langle \chi_{reg}, \chi_V \rangle = |G| \text{ for any representation } V \text{ of a finite group } G.$

 \Box If $\langle \chi_V, \chi_V \rangle = 1$ then V is irreducible.

 \Box The symmetric group S_3 has an irreducible representation of dimension 3.

2. Write down the character table of the Klein four group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

3. Give the definition of an irreducible representation of G.

4. Suppose that V is an irreducible non-trivial representation of the alternating group A_5 . Show that V is faithful.

5. Let χ be the character of the 5-dimensional permutation representation of S_5 . Find $\chi(x)$ for x = (23) and x = (54321).

6. Show that if every irreducible representation of a finite group G is one-dimensional then G is abelian.