Homework 2, due Wednesday Sept 23.

NAME:
Mark the squares that are followed by correct statements.
\square If M is a submodule of N and N a submodule of K , then M is a submodule of K .
Any finitely-generated module over a ring R is a quotient of a free module R^n .
\square The $\mathbb{Q}[x]$ -module $\mathbb{Q}[x]/(x^2-x)$ is simple.
\square The $\mathbb{C}[x]$ -module $\mathbb{C}[x]/(x+\sqrt{2})$ is simple.
\square The \mathbb{Z} -module $\mathbb{Z}/33\mathbb{Z}$ is simple.
\square Direct sum of two simple modules is simple.
\square Any division ring is commutative.
\square A module over a field is cyclic if and only if it is
simple.
\square If a module has no proper submodules, it is simple.
\square Any left ideal of a ring R is a left R -module.
\square Direct sum of two cyclic modules is cyclic.
\square A quotient module of a cyclic module is cyclic.
2. Give an example of a Z-module which has exactly

three proper submodules.