Name:

Representations of finite groups. Midterm exam.

In all problems below only complex representations are considered.

1. (20 points) Mark those squares that are followed by correct statements.

 \Box The composition of intertwiners is an intertwiner.

 $\hfill\square$ Any one-dimensional representation of a simple group is trivial.

 \Box Any intertwiner from a representation V to itself is a multiple of the identity.

 \square Any representation of $\mathbb{Z}_2 \times \mathbb{Z}_2$ is one-dimensional.

 \Box If $\langle \chi_V, \chi_V \rangle > 1$ then V is reducible.

 $\Box \quad \text{There exist representations } V \text{ and } W \text{ such that} \\ \langle \chi_V, \chi_W \rangle = -1.$

 $\Box \quad \text{The inner product of characters is symmetric,} \\ \langle \chi_V, \chi_W \rangle = \langle \chi_W, \chi_V \rangle.$

 \Box Any irreducible representation of S_4 is faithful.

 $\hfill\square$ There exists a group with exactly 2006 isomorphism classes of irreducible representations.

2. (10 points) Determine the character table of the alternating group A_4 . What are the multiplicities of irreducible representations of A_4 in the regular representation?

3. (10 points) (a) Give the definition of an action of a group G on a set X.

(b) Give the definition of an intertwiner $\alpha : V \to W$ between representations of G.

4. (10 points) Among the groups below, select those that have exactly three isomorphism classes of irreducible representations:

 $\mathbb{Z}_5, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_3.$

For selected groups, list dimensions of irreducible representations.

5. (10 points) Give an example of a group G and representations V and W such that dim $\operatorname{Hom}_G(V, W) = 3$.

Extra credit: Show that the dimension of an irreducible representation of G is at most $\sqrt{|G|}$. Find all groups G which have an irreducible representation of this dimension.