Representations of finite groups

Homework #1, due Monday, September 21.

1. Describe all automorphisms of \mathbb{Z}_5 , the cyclic group of order 5. How many are there? Identify the group of automorphisms.

2. The general linear group $GL(n, \mathbb{R})$ acts on vectors in \mathbb{R}^n (an invertible matrix $A \in GL(n, \mathbb{R})$ takes $x \in \mathbb{R}^n$ to Ax). Describe the orbits of this action.

3. The center of a ring R consists of elements that commute with every element of R:

$$Z(R) := \{ a \in R | ab = ba \quad \forall b \in R \}.$$

We proved in class that Z(R) is a commutative unital ring.

a) Show that the center of the ring $Mat_n(F)$ of $n \times n$ matrices with coefficients in a field F consists of multiples of the identity matrix.

b) Show that $Z(R_1 \times R_2) = Z(R_1) \times Z(R_2)$.

4. Let I, J be left ideals in the ring R. Which of the following sets are left ideals in R?

$$I \cap J$$
, $I + J$, IJ , $R \setminus I$, RI , IR , $I \setminus J$.

IJ denotes the set of finite sums of products ij, over $i\in I, j\in J.$

5. Determine all \mathbb{Z} -module homomorphisms

(a) from \mathbb{Z} to $\mathbb{Z}/4$,

(b) from $\mathbb{Z}/4$ to $\mathbb{Z}/3$,

(c) from $\mathbb{Z}/4$ to $\mathbb{Z}/2 \times \mathbb{Z}/2$.

For each of these homomorphisms describe its kernel and image.

6. Describe ideals of the ring $F[x]/(x^n)$, where F is a field.