84 Grothendieck (3roups
There are mory uversions of Grothendieck groups. (We will need
two basic versions: Go and Ko.

(7o
let & be an ( essentially small) abelian category.

Def. (o(d) is the abelion group generated by Symbols M1,
where Me Ob(4) . subject to the relations:
[M:] = [Ml] + LMa]
wheneuver
O— M —Ma —Ms —0
I8 0 Short exact sequence in .

RmR: It fo((ouos ﬁom the deﬁ’lm’on that f Mi=Ma in & then
IM1=IM2] in @) . and 01=0 in Go(A)

Recdll that an object Me Obtd) is sad to be of finite length
iff there is a finte fittration on M-

M=Moe2Mi 2 2Mn2Mnn =0
8t MilMin=Lli is Simple in 8.

In cose M has finite length, we aon easily prove by induction

thot -

[M1=Xi5 [Li] N Geld)
Jf the Jordan - Holder property  holds for A e ol objects @‘”
A ore of finite length, then it follows that Gots) i isomorphic
to the free ‘abelion group generated by the isomorphism closses of



Simple  objects -
Go(d)= Pier ZILi]

Eg f Ais a Sinite dimensional k- dlgebra . then finite length
modules are nofhmg but ﬁnit@ dimensional modules . Thus

XA = finte diml A-mod
has the Jordan - Holder property.

For noetherian nings A. we aan also consioler
A = Jinitely generatedl A - modl
Here finiteness is needed to auoid collapsing Gold) too much:

A = A"DA
=  [A"1=[A"1+[A]
= [Al=0

In general, for @ noetherian ning A, the categories f.4. A-mod
ond” f. g A-mod are quite different unless A is artinion. Thus
one would expect their Go’s to be quite lfferent , although we
have an obuious Map:

Go( £l A-mod) — Gol 9. A-mod)

—g A=Z
An isomorphism class of simple Z-modules is given by
{ZIpZ | p: prime}. Thus
Go(f.{.Z-IYIOd) = Gp #Z
which 18 infinite. On the other hand. by the cassifiaation thm
of finitely generated abetian groups. Ay g, Z-module M:



Me 2% 0 @2/hz
so that

MI=r 4]+ 2:[ZniZ]
But

0— 2% 2 - 2Znhz—o

being a Short exact Sequence Shows that

[ZInig]1=[2#1-[#]=0
It follows from this that Go(f'g. Z-mod) & Z-[21, and the
cbuious map aboue :

Go(f1.Z-mod) — Go(f'g. Z-mod)

[#/p21 +—  [Z4pZ1=0

s the O map.

Ex. Compare Go( £1. A-mod) and Gotfig. A-mod) for A being
Crx1, Cx,y1., RIXI . and CLGT where G is a finite group.

If Fis an exact functor between abelian categories A and B
(exoct meaning that = sends Short exact sequences to short
exact sequences) , then F descends to a homomorphism ¢f abelian
groups
[F1: Go() — Go(B)
M1 =  [FM)]

4(% A warning s that possing to Go loses a lot Qf
information about the abelion categories (basically the morphisms
between objects), uniess A is semisimple.



o
We shall only deﬁne Ko ﬁ)r A=A-mod, where A is a ning.

Def. Ko(AR) is the obelion group generated by Symbols [P,
where PeObik) is a initely genemated projective A - module,
subject to the relations:

[P21=[P.I1+LCPa]
i

pz = p(@p:z.

Here ~ finitely gererated projective” means that P is a direct
summand O% some A% for some Ne N, which in tum
corresponds to Some  (dempotent (projection onto P) of
End(A®™) Thus to find f.g. projective modules, it's equiualent
to finding idempotents of Mat(N. End(A). For instance. if
ec A is an idempotent - €=e , then 08 a leff A- module,

a A = aAe ® aAl-€)
so that in Ko,

[Al=[Ael+ [An-e]
Similorly, if €€ Mat(N.EndA) . then

N-LAT =[A®NT =[AMel+[A® t-e)]

Agoin we stress that passing to Ko loses too much information.
=g Consider a ning where 3x.yeA ST xYy=1 but yx=+1.

Many Such nings exist in operator theory.
Then yx is an idempotent:



(YxY= Yoy x = Yx
and in Ko. we have:
[AT =TAwyx 1+ [An-yxl
We cdaim that. as left A-modules.
A= AX = Ayx
Indeed. we have the obuious inclusion map Ayx<— Ax is also
surjective. since any element ax of Ax con be rewnitten as
ox = AxYx = @XYx € Ayx. Thus Ayx =Ax. On the other hand
A — Ax
a +— ox
s cleorly an isomorphism of " left A - modules , with inverse guen
D
: Ax— A
ox — Gxy=a.
It fo(looos thot in Ko(A4)
[AT=TAyxJ + LAG-yx)]
= LAl + [AO-yx) ]
— [At-yx1J=0 mn Kol
Thus passing to Ko ~forgets” the foct that yx-i#o in A

Rmk: Construction of Go and Ko genemlizes without diifficulty
to frionquiated  categonies , where we replace short exact
gequences bﬁ disﬁngashed m'angles (WIth approprigte ﬁniteness
and projectivity notions ). The shift functor 11 Clesends to "~
in Ko :

LMD1] =-[M1,



Ring structure on Ko
In commutative algebra we Rnow how to toke tensor products
of modules. In particulor, P®a- with a projective A-module
s an exact functor, which in tum gues a ning Structure
on Ko. ¥ P.Q fg. projective mooules.
[P1.LQI £ [P&Q]

with the unit given by the symbal ?)0 A

[P1.LA1 =[P®A1=LP]
so that Ko becomes a unital associative commutative Mng.

In general, one con get Ko(d) to be a unital associative ring
whenever A = H-mod, where H is a bidgebra. Other examples
also arise from D-mooules and algebraic geometry. we will e
more  exampes coming up  ofer.

.. Topological K- theory.
For spoces that are nice enough, like finite CW complexes, we
have - equivalence of  categories

finite dimensional | _, | fg. projective
vector bundles /X C*X.IRIC) -mod

E/X — [(X.E)
Thus we recover the usual topological K- theory by consiolem'ng
Ko(CUX.IRY) or KolCUX.CY (Swon's theorem).
It's quite remarkable how much topological information about
X is remmebered by the ring CtX), which seems to be



purely algebraic.

Daim‘ng between Ko and Go

(e shall look ot the case of & =A-mod where A is an artinian
rng eg. finite diml k-olgebms). We shall see that Ko(4) and
Go(8) ore dual to each other in Some sense.

Reaall the following general fact about artinian rings - Ay f.d.
projective module decomposes into o dlirect Sum OJ% finitely many
indecomposoble  projective modules ¢ Krull - Schmidt )

Furthermore, there exists a bijection between indecomposable
projective moaules and Simple modules . The correspondence S
given by matching & simple Li with its projective couer Pi. We
roughly sketch the progf of this foct.

Any simple left A-moole Li is of the form A/mi where mi
s a moximal left ideal of A. Thus it's readily seen that

Simple A -modules | <=5 | Simple ALJ - modules

where J=Nmi is the Jacobson radical of A, which is a two-
sided (deal. It's well-rnown that on artinian ring whose Jacobson
radical is trivial s semisimple . So,

Alg = @& Matni, Di)
where Di_is o finite dimensional dlvison algebra / k. Thus the
simples Li and indecomposable projectives P coincide for A/J
which are given by some  indecomposable idempotents  éi € AlJ .
( =.-.N. Since JT=0 for n>>0, we aan lift &i to idempotents



ei of A via Newton's method. This in tun Constructs an
indecomposable  projective module Pi =Aei . whose reduction
mod mi s the simple Li = Li=(AlJ)é:

In nice enough Situations, (ike the artinian k-olgebm @se. we
get a pairing between Ko and Go of A =f.d. A-mod.

Kold) & Go(Q) — Z

([P1 , IM1) = dimk(Homa(P.MY)
Sine Kold)= @ ZIP1. o= BN ZILI, the pairing I8
gien explicitly on the bases by

(LPi] [LJ‘]) = Olim Homa(Pi, LJ)

= dimi Sij Enda(Li. Li)

Since Li is simple, Enda(Li.Li) is @ fmn‘e dimensionol division
oloebra. over k. Thus dimw Enda(Li.Liy =" is always a squore
number ( Enda(Li.Li) @k = Matdi. k) for some di). Thus if
k=k, di=l, and Ko(Q) i8 cononiadly dual to Go(4) via this
perfect pairing. This 8 extremely nice and we say in this cose
that & or A is abso(wre(g irreducible.

In this artinion algebra Cose. we also have an obuicus map of
obelion  groups

Qe : Kol — Go(R)
since in this cse finte length projective mooles are also finite
dimensional.  Houwever, this map is neither injective nor sSurjective.
We shall see this Thrwgh some examples.

Eg. A=HXKk) , where X is a connected CW complex



Inthis cose A is a goded locdl NG whose Jacobson rodical
equols the unique moximal ideol which consists of elements of
stctly positive degree : m=H®(X. k). Thus A hos @ unigue
simple mocle k= A/m ., with al elements in m acting tnvially
on it. Thus

Go(B)= ZLk1.
On the other hond, any projective module over a local ring
S isomorphic to a direct Sum of free modules (Nokayama's
lemma) , 80

Ko ()é) = Z[A] .
Thus

Par: Kold) — (0(K)
[Al — [Al= dimk(A)-LlkI.

This won't be Surjective unless A = k.

We shall see more examples coming up i the rext subsection
when we discuss path agebras and  nil- Coxeter olgebros.

Example: path dgebras and their Grothendieck groups

One way of constructing many  interesting finite dlimensional algebras
S through path algebras . e first recall their definitions and basic
properties .

Let I" be an onented graph and k'l the k-uector space
with @ bosis spanned by all onented path in I" (vertices are
counted as length o paths). The product Structure on k' is
giuen by concantenation of paths.



In the cbove exomple, T hos as a bosis the paths of:
length 0: ). @, 3y, 4, (83, (6
length 11 w3y, 34y, 54y, (56), 32)
length 2: 134y . 032
with - products:
(N3 =03, U =0, UM =0, UNBA)Y=034), B4 U3>»=0, elC.

Poth algebras enjoy  the following nice properties :
* kil"1 is a unitol. associative algebra. It's finite dimensional
if there is no orented loop in T

* Their homological dimension is |, .e.any Submeolule of ony
projective module 18 projective.

* The Jacobson radical J(KT') is sponned by all paths of
length > kil"1/J = Tieverta kv, which is gemisimple.

* The complete set of indecomposable idempotents i given by
the set of uertices:

| = 2 evert@ (1)

® Mad - kIT'1. For our purpose 'S more conuenient to consioer



right KEI"1-modules. Any finife dimensional right KCT'2-module
can be cecomposed by the Set of idempotents:

M = D ievertmy My
ond the edges «j) now become (inear maps between uvector
spoces My % Mq). Conversely, any such ootum  { (M, @ [ (b e
vert (I, «j) € edge (I} dlefines @ night  kLT"1- module.

As in the gereral theme of representation theory. wheneuer one

hos an interesting olgebra in mind (KIGT, U@y etc.), one tries

to clossify all its representations. This 18 in general too hard. 8o
one restricts to Some Smaller category of representations (eg. finite
dimensional , irntegrable, highest weight etc.). Then one finds that for
nice enough coses (eg. CLGI. IGl<oo, Ulgy , g: semisimple Lie algebm)
one gets a complete list of representations. These were the C0ses
when A s Semisimple chomalogical dimension 0. The next Step would
be to mowe on to homological dimension ore coses « eg. Or. F:
number field : algebraic curves ; ker'1 ete). In this respect, one hos.

Thm. a). ki1 has finitely many non-isomonphic  indecomposable
representetions {ff I hos its uncerlying graph of  Dynkin type

(An (nz1). Dn (n24). Es. E7. Es). In this cse the indlecomposables
gre in bijection with positive roots ¢f the cormesponding Lie dgebra.

o oo A oo ~< . Dn

o—o—l—H:Eé H_I_._H:E? H—I—Q—O—H:ES



2). k[T’] has |- parometer fam:'(g q” non- iSomorphic - indlecomposable
modules for each dimension vector (i.e. a non-negative element in
Go(K['l) iff T hos its undenlying graph of affine type : An, S
Es.Es. Es-

@. For any other I, there are higher dimensional moduli Spaces
porometnizing - non-isomorphic - indecomposable - moaule.

(bse () is said to be of finite repn type , while case ) & )
are said to be of tame and wild repn types respectively.

=g We look at one of the ensiest examples = Az,

*—>—0
l 2

There are 3 indecomposable night KLI"1 -mooalules , Conresponding to
positive roots of s

Pai k-5

L2 k——o0 L,:0——k



We observe that:

*The module L. is simple and projective ., Since Li = 1)-k[A:]
* The module L2 is Simple but not projective.
* The module P> = (2 k[Ad is projctive. I's an non-trivil
extension of La by Li:
0 —>Li—P —|, —o

which , writlen out as vector spaces with maps , corresponds to  the

commutative dicgram  (note that reversing the vertical amrows doesn't
Work ! ) :

k — o : La
o7
k —k : Ps
oM

o—lk L
Thus on the Crrothendieck groups. we have:

Ko(lk[A21) = ZLL.1 ZLP:]

Go(k[A:]) = ZLL 1@ Z[LJ]
and Pe¢ is of the form:

Pak: KolkLA21) — Go(Ik[A:])
CL.] —  L[L,]

[Pl +—  [LJ+CL.]
Example: quotient path olgebras

The path algeora. construction gf artinian algebras has @ variation,
nomely we can med out relations among  poths.

Notice that, gc the relations we are moddrng out (e inside JWA). it



doesn't change the sizes of Grothendieck groups Ko and Go.
B2
B B2
A £ KT/ oldka + ABiBaBs >
A€l

ol A2

g

=g Quotents of path algebras:
1), Consider the quotient path algebma ASKITI/ <20 =, 212y =(2)>

== T

What we get I8 a 4-dm! dgebro. spanned bg the paths (0, (2,
(12.2n. It's readily seen that this algebm is isomarphic to the

2x2 matnix algebra M(2.1k) :

0=(0) @n 9 @n(3l) e (29

The relations do not lie in J(A) and the Sizes cf Ko and Go
chorge:

ond @Pax=1.

KolAMY= 2 = G(A)

(). We consider the same I but different relations .

A& kiT1/<a2y, 220>
A is still 4-diml but the sizes of Ko and Go are different from
above. They cre both of rank 2 now.

Simples - Lek——=o0 . La:0S5=k



Projectives: ~ Pi: lk_éllk Pa: k $O k

Thus we haue extension relations:
00— | —P — |, —o0
0O— | —P2— |2—0.
This in turn implies that the natural map Pex is neither injective
nor surjective.
Qe+ Kol Q) —> Gol)
[P] — [LJ+CL,]
[p2] > [L|]+[L2]

Now we have seen that Pex is in general neither injective nor
surjective. Nevertheless , we have a necessary condition when A
S finite dimensional .

Prop. If A is finite dimensional and has finite homological
dimension, then:

CPGK'- I(o(/@) — 'ro(/@)
iS an isomonphism.
Pr: If so, every simple module has a finite Step projective resolution:

0—Pir— - — Py —Li —o.

Then, in (G(R), we have,

[Li1 = Soo (~D*LPi]
Thus [Lile ImPak. But since A s ﬁnn‘te dimensional, Ko(&) and
Got4) are free abelian groups of the some rank. Thus Pax must
be an isomorphism , Since it's an epimorphism of flee Z-moclules
of the same rank. =



Example: nil-Coxeter rings
Now we shall giue an interesting example of  functors - inducing
maps on Grothendieck groups.

Recoll that if F: 8 — & is an exact functor between atelian
groups, it desends to abelian group homomorphisms on Grothendlieck
groups:

[F1: Go(®) — Go(B)

[F1: Kold) — Kol®)
But in practice, how cloes one get exact j&nctor‘s between abelion
@tegories , say. the most common ases K=A-mod, B=8-med 7

One could try tensoring A-modules with o (B.A) - bimadule aNa:

aNaA®a- : A-mod — B-mod.
Howeuer, this is In general only nght exact:

00— Mi — M2—>Mza —0
—  aNa®M — aNa® M —aNa® M — 0

To restore exoctness, one con require N to be night A - projective
or more genendlly right A-flat. Moreover, to get maps on Ko's.
we need eNa®a- to Send projective A-modules to projective
B-modules. For this it suffices to fake N to be left B-projective
0s well, since if P is any proective A-module. then P@QzA"
for some A-modue Q. and

8NA ®aP © 8Na®aQ = gNa @4 (P Q)
aNa ®a A"
= N",
which implies that sNa®aP is projective.

now



Henceforth we shall always take the (B, A)-bimodue N to be
both left and night  projective. (We shall dlso denote the map

induced by N on Ko and Go bg [N3.

Def. (Nil-Goreter ning on n Stranos)
The nil-Coxeter ring on n Strands NCn 78 the k-algebra generated
by gererators Ti . i=1.--. n-1, Subject to relations:
@, Ti=0
an. i T Ti = Tin i Tit
iy, TiT =TT i-j>
It admits the followmg grophical presentation, where Ti s depicted

by a crossing
X

I 2--( [+-n- N

The conalition ¢ becomes a. planar isotopy relation of  for

away Stranos:
| i [+1 Jﬁﬂ 1\

L T o
so that all relations can be drawn loadlly. Relation (h Soys
that

while relation i) is a Reidemeister I move:



§é<=

[l 2 P 2

Rmk: NCn 18 0 deformed version of kLSn1 whese Si=1:

<=1

One aan Show as ﬁr\ kCLSn1 that:
*NCn is a graded locol ring bty setting 0eg Ti=1, aond
JINCn) = (T, -+ Tn=1)

* It's a finite dimensional k-algebra, of clmenson n!. A basis
of NCn is porometrized by Sn: fix a reducedl expression for
eoch element we Sn: wW=S:-Sir. Then we Set

Tw 2 T Tie
® The ring structure of NCn is given by:

Tz nf L2y = Lo +4wo)

Terwz = {

0 lf L2y > Lo +4woa)

i.e. the product iS 0 whenever two Strands Cross each other insSide

the picture

It fo([ouos that fid. NCn-mod has a unique irmeducible module
k= NGCn/(T.-.Tn-). and a unique projective module NCn .




In Go(NCn), we have:
[NCnl=n!LCk3

* There are induction functors
Iﬂdn : NCn-mod — NCn+ - mod
coming ﬁom the obuious inclusion NCn < NCn cprcz“on‘a(@ Just
put one more Strght Strand on the rhs. of any picture in
NCn), ij.e.
Iﬂdn =NCnﬂNCn+l ®nen — + NCna-mod — NCnt - mod .

It's left adjoint to the restriction functor:

QGSnﬂ: NCn NCri @Neny = NCn+ -mod — NCn-mod .

(We shall Oenote for Short  nenNCranen by a(NCrln . and
®nen b\‘j ? ).

Diagramatically, we con depict these flinctors a8 follows  (whene
we tum out head 90" and read pictures from bottom up ).

NCn+ - QCtiON

N

\

Indn : NCn - elements

NCn-oction

Resns - NCrs - elements




The composition NCnr-mod — NCn-mod :
Resns o Iﬂdn = n(NCn) n‘l'l(NCn-H)h ®

=n (NCnﬂ) S
Let's (ooR at the (NCn. NCn) - bimooule n(NCna)n more closely.
The bimodule consists of pictures:

NCn -action

NChn-Qction

This bimodule naturally splits into two  summoands -
NCn -oction
| T

N

(I B (P

4

NCn+i

I
\

/ \

NC n -action NCn - action

A\

NCn-action [ NCn-action



The first pictures constitute a copy of n(NCa)n. (e andyse the
second  summand .

The second summond congists of pictures where the blue Strands
dways Cross each other. MoRing Sufficiently many RII moves, we
Moy arrarge the blue Crosses appenr ot the mght end of the pictwe:

NCn -action NCn -action

NCn-action

NCn-Y action NCn-Qction NCn-Qction

Thus by putting the blue cross in the right end and middie of the
box. we may always arrarge pictures o (ook like:

NCn -action

NChn-agction

Now we readlily see that any element from NCn- con pass freely
from the bottom box to the top box. and uice uersa:



NCn-action NCn-action

NCn-Qction NChn-Qqction

Hernce we ocan concude that the Second Summand IS nofhfng but

(NCn & NCn )
ond what it does when tensored with an NCn-module s just
(NCn ® NCn ) ® M = Indn-e Resn (M)

In conclusion. we have established the isomorphism of functors:

QQSnﬂ o Indn= Ion ® Indn-°Resn

Now we look at what this functor equation does on Ko and Go.
.e. the * decategorifiaation” of this equation.

It will be conuenient for us to take all n into account. sinee
Ind. Res change iregories | by I. Thus we define:

NC £ Bnzo NCn
X = @HZO Iﬂdn
D 2 @nzo QeSnﬂ

Then:



Ko(NC) = @Dnzo Ko(NCn)
= @nzo ZINCA]

—
—

We will formally write [NCnl 08 X", gince
NCn = Indn- (NGh-)
Indn-i e Indn-2 (NCn-2)

= Iﬂdn—ﬂ - Jndo (k)
is the repeated induction cour X functor) of the tivial module

of NCo. Thus we idlentify Ko(NC) = ZIX1.

Simi(a!‘{g,
(3o(NC) = @®ns0 Go(NCn)
= @nso ZL NCr/J(NChY]

But in Go, [NCal=n'LNChIJINCnI. Thus we again J@r\rm((\q wNte

[NCA/J(NG) T = Fir LNCA]
0
n

Then in this notation
[X1I: KO(NC) — Ko(NC)

/xﬂ — /er'l

[X1: GO%C) — Gro(n[}llC)

Tnr = ?—éﬂm (M)

.e. X1 is just the muttiplication by X on Grothendieck groups.

On the other hond.
[D1: Ko(NCY— Ko(NC)

XM ("
Go(NC) — Go(NC)
XN

/xnﬂ
n = (n+)!



Hence LDI acting on the Grothendieck groups Ko(NC) = Zr:
Go(NC) = @nzo ZLH1 € Zixa 1S just the usual djfferential

operator,
In sum, we have established:

Thm. (Nil-Coxeter ring categonies the finst Weyl algebra. port 1.
The Nil-(oxeter nings together with the induction, restriction
functors X and D Categonify the polynomial representation
of the first Weyl agebra  Z<X. 3>/ (3% -%3-1)

Morecuer, 0s we mentioned before, the painng befieen Ko and
Go is just the “Oecategonification” of the Hom epace:
(. ) Ko(NCn) ® Go(NCn) — Z
(P21 , [M1) +— dimk Homnen (P, Q)
Thus on Ko(NC) and Go(NC) we hawe
(X", 5 ) = dimic Homwe( NCn . NCmlJINCm)

= Snm,
which in tum implies that, if we introduce the bilinear form
(X" ™ = Snm N

fhen x. Ox become adjoint operators under this inner proouct :
(X" %™ = Onsm (N+1)!
= Sn.m- M-
= (X", ox(X™).

Thm. (Nil-Coreter ring categonies the first Weyl algebrma. port 1),
The adjoint functors X/D and Homwne categonify the adjoint



opertors X, @x ond the bilinear paining . ). O

Rek: This Story can be pushed further. I we use the obuious
indusion NCnx NCm = NCnem and extend it To NCxNC
— NC, this would ge us a ategonfication of ZIx1 @S Q
biolgebro.. and even morecuer, 08 o Hopf algebm.



