Introduction to algebraic topology, Spring 2013

Homework 2, due Tuesday, February 5

1. Classify all CW-complexes with two 0-cells and two 1-cells up to (a) homeomorphism, (b) homotopy equivalence.

2. Describe a CW-complex homeomorphic to \mathbb{R}^2 . Can you generalize your construction to \mathbb{R}^n ? Also describe a CW-complex homeomorphic to punctured \mathbb{R}^2 .

3. Show that punctured \mathbb{RP}^n is homotopy equivalent to \mathbb{RP}^{n-1} .

4. Construct a 2-dimensional cell complex that contains both an annulus $S^1 \times I$ and a Möbius band as deformation retracts.

5. Which of the following pairs (space, subspace) satisfy the homotopy extension property?

- (a) (S^n, p) , where p is a point in the n-sphere.
- (b) $(D^n, \partial D^n)$ an *n*-disk and its boundary.
- (c) ([0, 1], (0, 1]) closed interval and semiopen interval.
- (d) (\mathbb{R}, \mathbb{Z}) real numbers and its subset of integers.
- (e) (\mathbb{R}, \mathbb{Q}) real numbers and its subset of rationals.
- (f) (CX, X) cone over X and X itself.

6. Show that a suspension of any finite connected graph is homotopy equivalent to a bouquiet of 2-spheres. What can you say about suspension of finite graphs that are not necessarily connected?

(Exercise 4 is from Hatcher, Chapter 0).