CHAPTER i

SPECTRAL SEQUENCES

§18. FILTRATION IN A SPACE
AND ITS SPECTRAL SEQUENCE

Let X be a topological space with a sequence of subspaces X;:
¢ = X—ICXOCXIC"’CX’( = X.

If for example, X is a CW complex, one can take for X;=X ! the i-skeleton of X. Such
sequence is called a (finite) filtration in X.

(Usually we add to this sequence the terms X _,=X_3=... =@, and X}, =Xp 45~
=...=X.)

In the following we shall investigate homology groups of filtered spaces. As a rule,
the same arguments can be repeated for cohomology groups with minor changes.

Let C(X) be the singular chains of X. Then obviously

0= CXo)cCyX ) ... cC X - )= CX)) = C(X).

We shall say that a e C,(X) has filtration 7 if x € C (X ;) and a ¢ C (X;,,). Thus
C(X ) contains all elements of filtration at most i and no others. In short, we shall say
that on C(X) a filtration is given.

Let us take
qu—&l';—"- Cq(X,', Xi—l) = Cq(Xi)/Cq(Xi—l)‘

The numbers i and ¢ will be called filtering degree and full degree, respectively.
The boundary operator 9,: C,(X;, X, i) C (X5 Xioy) introduced for relative
chains will be denoted by di !, i. e. d§97': E§9" !> Eg47'"1. Obviously
d:’).q—iodgq—Hl = 0.

This way an algebraic complex has been obtained. Let us consider the homology
groups, i. €. the groups H(X;, X;_,) and denote them by E{97L :

Spectral sequences are defined so that each term is, in a certain sense, smaller than
the preceding one, namely, is a homology group of it.

Definition (The subgroup Z:4 ' Eg?7Y).

Let ae E577 = C(X;)/C(X;-). We shall say that ae Z7" ! whenever the.coset
contains some representative a € C,(X;) whose boundary has a filtration r unitssmaller
than a, i. €. dae C,_;(X;_,)-

Case r=0: Z§4 i =E§1 " ,

Case r=1: there exists @ € a such that dae C,_,(X;_;) i. €. ais a cycle in-
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Cq(Xis Xi-1) i e Zix'q_i:Zq(Xi, Xi_y).

Let us remark that ae Z (X;, X;_,) implies the property dae C,_,(X;_,) for every
representative a € a. The same is not true, however, when r > 1, as it can easily be shown.

With r increasing the group is, obviously, decreasing and for sufficiently large r it
reduces to Z,(X;)/Z,(X;-,). (This stable group is denoted by Z%97%) We
obtain a chain of inclusions: Zi ™ 'c ... cZM[icZt e | . cZEi = Ey1

Definition (The subgroup BX? ' c E§?7Y). '

Let us consider an element a € E§?~ ‘. We shall say that o€ B*?" ' if and only if the
coset o contains a representative ae C(X;) such that a = 0b, where be C_, (X, ).

What does it mean that o € Bg?~*? It means that the coset ae E§? ™" = C(X;, X;_;)
contains some a € C,(X;) such thata=0bwherebe C . (X;_,),1.€.ae C,(X;_,),i.e.
a=0. And so, B§? ' =0.

What is B{?~'? If a e B{*"*, then the coset ae E§? ' = C (X, X;_,) contains some
representative ae C(X,) such that a = 0b, where be C,, (X)), i. e. b7 is the
subgroup of relative boundaries in C(X;, X;-,): B{* ‘< B:47".

Obvious inclusion: BX4~ic Bi47¢,

If r is increasing the group B:?~ " increases and for sufficiently large r it is equal to

Bl;;)q—i = Bq(X) n Cq(Xt)/Bq(X) n Cq(Xi— 1)'
Now we have the chain of inclusions:
0 =B 'cBy" ic...cB" icB"'c...cB:,

The inclusion B: ‘c Z447% is obvious.
Thus we have a chain of inclusions

0=Bi""cBy" 'c...cB" cB]c...cBY ic
al ST
Bq(Xi’ Xi—l)
cZMc .. . cZMicZM e, . cZVicZir i = (%)
]
S = Efiq_i = Cq(Xi’ Xi—l)- Zq(Xis Xi—l)

Let us consider the quotient group E:4™F = ZH47i/Bia~i(r = 0, 1, ..., o).

For r=0 we have Eg?™' = Z§7//Bs 4™ = Eg77/{0} = C/(X;, X;_). And so,
E§*™ = CyX;, X;_,)i. e. E§* ! is the very group defined above and denoted by the
same symbol. Further,

Eil'q_i = Zil'q_i/Bix’qgi = Zq(Xia Xi—l)/Bq(Xi’ Xi—l) = Hq(Xia Xi—1)-

In the chain (*) the groups decrease as r increases: the denominator is increasing
while the numerator is decreasing. Obviously there exists a number g, such that E;:¢F =

W= =Ey 'foralliandq.
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Definition (The differential dia=i; Ehamin EimnatrTinl),

LetacEre~i = Z {/Bi4 "andleta’e Zi:4~i be a representative of . Assume that
ae C,(X;) represents o e Zb7H c Cy(X)/C(Xi-1) and b=3da has filtration at most
i—r. Then the coset f' of b in the group Cq_l(X,-_,)/Cq_l(Xi_,_l) belongs to
Zi-ratr=i=1 and defines in Ei-ma*r~i~1 an element depending only on a. Let this
element be denoted by di? ™ .

We leave it to the reader to check the correctness of this definition, show that di17tis
a homomorphism and prove the equality dimratrTitloghdTt = 0.

The homomorphism d?7: Eia~io EiY1471 coincides with 0: H(X;, Xi-1)—
->H, (Xi-1> X,_,) in the exact sequence of the triple (Xi, Xi—y, X;_;). (The
aennitions of these homomorphisms are, word for word, the same.)

Let us define E, by taking E, = @ i ER97". Then the differentials d>¢ ' yield a
differential d,: E,~E,, d,od, = 0.

The sequence of the groups E, and the differentials d, is called a spectral sequence.

Theorem. E, . ; is the homology group of E, with respect to the differential d,. That
is, E,,, = Kerd,/Imd,. Moreover, Er97i = Kerd:?™'/Im ditra-itrl,

Proof. (We keep the notations of the definition.)

Assume that d4~i(a) = 0. Then f' belongs to Bi—ra~i*r=1 i e. there exists a
representative c€ such that ¢ = dt, where 1€ C (X -

The element a is a representative of o and ae C(X)). Consider a—1€ C/X;). We
remind that C(X;- )= C (X ). By subtracting T we leave the coset in C (X )/ Cy(Xi-1)
unaltered,i.e.a—tis a representative of the same coset o € Z971. As the differential
497 is correctly defined (it does not depend on the choice of the representative),
therefore a—1 could have been chosen from the beginning, instead of a. Thus
d(a—1(eC,_4(X;—,-1) and o € ZH7E. Let the coset of o in E*47% be noted by & By
assigning & to o we obtain a homomorphism Kerdi4 ™ — Eviy i Now it remained to
prove that

(1) the homomorphism is correctly defined, that is & depends on o alone;

(2) it is an epimorphism;

(3) the kernel is the group Im di-ramitrl,

This part of the proof will be left to the reader.

Let us now consider the “stabilizing” group Eie~i. By definition E bl
= Zi3 B |

Let us denote by ,H (X) the image of the homomorphism H (X ;)—H (X ) induced
by the inclusion X ,cX. We obtain a filtration

0 = ("l)Hq(X)C(O)Hq(X)C N C(k)Hq(X) = Hq(X)v

Theorem. Ei.’oq_i = (i)Hq(X)/(i— l)Hq(X)'
Proof. By definition

Zh97F = Z (XD Z{Xi- 1),
Bia~i = B(X)NC(X)/BX)NCy(Xi-1):
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GH{(X) = ZX)/BX)N CyX)),
Gi— 1)Hq-(X) = ‘Zq(Xi— l)/Bq(X) N Cq(Xi— 1-)~
The required equality
Zi&oq—i/Bi-'oq—i = (i)Hq(X)/(i~1)Hq(X)

immediately follows from the following obvious algebraic statement: If A-and B are
subgroups of a group then (A+B)/B = A/(ANB).

Let us now summarize the results. :

Theorem. If the space is filtered by the subspaces X;:0=X_,cXoc... c X1
cX, = X, then there exist groups EP4 for every non-negative r and every p and ¢
(where EP4 = 0 for p<0 and p>k), and homomorphisms are: Ef"’—»Ef”"”"‘,
dpratrlogrd = 0, such that

(1) EPe = Kerd??/Imd?™" """,
(2) EB% = Cpag(Xp Xpo1)s
(3) ER®= Im (Hp+q(Xp)_’Hp+q(X)) — wHp+dX) .
Im (Hp+q(Xp—1)_’Hp+q(X)) (p—l)Hp+q(X)
This statement is the Leray’s theorem. )
Let us explain the statement (3). It says that for every m the group H,(X) contains a

subgroup (o,H.(X) = E%™; the quotient group H,(X)/E%™ contains a subgroup
ELm™1 and so on, and, at last, the quotient group

(.. ((H,(X)/E%™)EL™ 1) EL™ 2. ) EGHm

is equal to EX™~*. The group @, +¢-m £%’ is, therefore, closely related to H,,(X); it is

* said to be adjoint to H,,(X) relatively to- the filtration H,(X) and is sometimes

denoted by GH,(X).

Let us note some formal properties of adjoint groups. Let A be an Abelian group,
0cAdycA,c...cA,=A a filtration and GA=®,A; where A?=A;/A4;, is the
adjoint group.

(1) If GA is finitely generated, then so is 4 and. their ranks are equal.

(2) If GA is finite, then so is 4 and their orders are equal.

(3) If all but one A7 are zero groups, then G4 = A. _

(4) If all but two A7 (42 and AP, where i;>1I,) are zero, then A) < A and

AJA2 =47 , N ‘ -

(5) If all A are free Abelian groups, then G4 is isomorphic to 4.

(6) If all A? are vector spaces over some field k, then G A 1s isomorphic to 4.
The proof is left to the reader.

By cohomology substituted for homology, a similar theory can be built up. The
final result is the following.
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Theorem. If the space is filtered by the subspaces X; (i.e. ¢=X < Xpc...C
cX,-,<X, = X), then there exist groups E?-* defined for r >0 and for every p and ¢
(where EP*4 = Ofor p<0Oand p>k) and homomorphisms df"4: EP? —Eptra T+l (where
dr*ra=r1,4r4 = () such that

(1) Er= Kerd?4/Imd?r "+ "1,

(2) EBt=C"MX, X,pm i)

o) e KEEHOH Xy ) oH? )

© = "Ker(H " YX)-H?"U(X,))  H TUX) ’

e @pig=mERT1S adjoint with H™(X) with respect to the filtration
0=puH"X)c...c oH"(X) < —nH"(X)=H"(X),

where ,H™(X) stands for the kernel of the mapping H™(X)—H™(X) induced by the
inclusion X;c X.

The proof, as we said, is similar to that of the homology theorem; one has to
introduce the filtration 0 = ¥CY{X)c ... c@CYX) =" NCYX) = C%(X) to the group
C%(X) such that ®C4(X) consists of the cochains y: Cy(X)—>Z such that y(c)=0
whenever ce C (X;) = C(X). Furthermore, E51i = CYX;, X, ) = 7 VCHX)/OCHX)
is taken and the boundary operator 9 will be substituted by the coboundary operator &
wherever it occurs.

Finally, the reader can prove the analogous statements both for homologies and
cohomologies in the more general case when coefficients are taken in an arbitrary
group.

The first example: a new understanding of computation
of the homology groups of CW complexes

Let X be a CW complex and let it be filtrated by its skeletons, X, = X*. Then E§* =
= €+ (X% X?~1) and .

0 for | q#0,
¢,(X) for g=0;

4. P -1,
dpa: ERa—E5 14

Bt = Hy. (X7, X"-*)={

i. e. d®% is a homomorphism of zero groups if ¢#0 and of €,(X) into ¢,,_ ,(X) if ¢=0.
In virtue of the remark following the definition of the differentials, the last
‘homomorphism coincides with the homomorphism of the exact sequence of the triple
(XP, X*P~ ! xP~2) |, e. with the boundary homomorphism 9: €,(X)—€,- i(X). We
obtain E29=0 if ¢#0 and E}°=H(X). '
Furthermore d%4: EZ4—E5~24*1 Now either E5or E5~ 2.4*1jsequal to zero, and
thus d8=0 and E4?=E%“. In the same way we get E;=E = ...=E,.
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No line p+¢g = n contains more than one group different from zero: E"° = E%°.
Heince, by property (3) of the adjointness, E%°=H, (X).

Thus the spectral sequence of a CW complex filtrated by its skeletons (considered
over any Abelian group of coefficients) is trivial.

(Remark. A spectral sequence will be called trivial if every differential d, is equal to
zero forr>2,1.e. E, = E; = E, = ... = E_.)

The second example: a new understanding of the homology
sequence of a pair

Let us consider a two-termed filtration: §< Y< X where X,=Y and X,=JX;
p=0, 1. Now E§?=C,, (X,, X,-) and

H,(Y) if p=0,

EY = Hyo o Xp, Xp-1) = {H X Y) i p=l
. p ’ |

Of the groups E27only E$? and E}'? are different from zero. As for the differen-
tials the only one a priori different from zero is di%: E}?— E}%; for p#1 the dif-
ferential d%? is trivial by consideration of the dimensions. (From now on “con-
sideration of the dimensions” will mean “by taking into account the indices p, g and r
of the group EP? and of the differential d?*%.”)

The homomorphism d}4: E}9— E$? coincides with 0: H ¢+1(X, Y)=H (Y) in the
exact sequence of the pair (X, Y). We have E3? = Kerd, E3'* = H,(Y)/Imd. For the
rest, E5'? = 0. Hence, by consideration of the dimensions, all differentials d,, r > 2 are
trivial,i. e. E3? = E%%. Thus E}* = EL% and E3? = E%9.

Now E, is known to be related to H,(X) and to the filtration 0 Im H (Y) = H (X)
in the following sense.

E%* = Im H,(X,)/Im H(X_,) = Im H,(Y),

Ey! = ImH,.(X,)/ImHg, ((Xo) = Hyy ((X)/Im H,, (Y)
or
Kerd = H,,(X)/ImH, . ,(Y),  H/(Y)/Imd = Im H(Y).

Let us now consider the exact homology sequence of the pair (X, Y):
0
- —H(X, Y)—H,_(Y)»H,_(X)-H,_ (X, Y)-...

Obviously this sequence is equivalent to the two equalities above. We conclude that
the spectral sequence of a two-termed filtration is eqmvalent to the exact sequence of
the pair.

Exercise. Compute the spectral sequence of a three-termed filtration and prove that
it is equivalent to the exact sequence of the triple.
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This far we have only considered finite filtrations. The constructions can be carried
out for infinite filtrations§ = X, c X,cX,c...c X = X, too. The first difficulty
arises at the definition of the group E%?. In fact the groups E%? do not necessarily
stabilize as N is growing. In the case of cohomology, for r>p, the group E?:¥, is
isomorphic to the kernel of the differential d?? (Imd? """~ = 0 follows from
dimensional considerations). Hence Ef¥,oENf,>... and we can set ER? =
=M;»oED¢;. In the homological case, for r>0, E¥Y, is similarly 1somorphlc to
the quotient group E??/Imd?*"4~"* 1 and E%fis defined as the limit of the sequence
EYL »ERY,— .

Statement (3) of the Leray theorem is vahd in this case without any modification.
The filtration ,H ,(X), however, will be infinite and a special proof is required to show

the equality _EJO oHn(X)=H,(X), which is valid if the filtration X, c X, c...cX =

= X satisfies the following additional condition: for every compact set K < X there
exists a finite index k such that K = X,.. (The skeleta filtration of a CW complex satisfies

this condition automatically.)
Under the same condition the filtration ;,H™(X) defined in the cohomology groups

has the propefty N oH"X) = 0.
i=0
The proof is left to the reader.

§19. THE SPECTRAL SEQUENCE OF A FIBRATION

Let.p: E— B be a Serre fibration with B being a connected CW complex.
(The assumption that B is a connected CW complex is actually unnecessary, as the
construction, following below, can be carried out to any topological space. Indeed, for
any topological space X there exists a CW complex X' and a mapping f: X'—>X such
that f induces isomorphisms between the homotopy groups. Thus any given base B can
be substituted by a CW complex B’ and an f: B'— B. The fibration p: E— B is likewise
substituted by p’: E'— B’ induced from it by f.)

Our next aim is to find the homology and cohomology groups of the space E,
assuming that those of B and F are known. ’

Let B* denote the a-skeleton of B. Let B be filtrated by its skeletons: § < B™' =« B°
cBlc...cB" !cB" = B. The projection mapping induces a filtration of E:

) =E 'cE°cE'c...cE"'cE"=E

where E' = p~}(B'). We shall consider the spectral sequence of E generated by this

filtration.
As it will turn out the term E, of the sequence can be expressed in terms of the

homology groups of the base and the fibre, i. e. the spectral sequence is rather strictly,
though not completely, determined by properties of B and F. :
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By definition, E§? = C,, (E?, E*~'). (We are going to consider the case of
homologies. Cohomologies can be treated in quite the same way.)

Again, E{*=H,, (E?, EP"")=H,, (E?/E*"'). We shall show that
H,, (E?/E*"')~¥,(B; H,(F)) (we consider the cellular chains of the CW complex
B).

We begin with describing E?/E?~*. The difference E? \ E?~! consists of the pre-
images p~ ! (¢7) where o? are the p-dimensional cells of B. These sets are openin E¥ and
pairwise disjoint. Therefore

EPJE?™! = V,EP/(E?\ p~'(a?)) = V,p~ Y (a?)/p~1(6?) =
= Vp 1 (?)/p~1(67)
where

P . P\ 4P
af = o\ o?.

-1
p (6P) E

6P . B

For the sake of simplicity the fibration will be assumed to be locally trivial. It will be
left to the reader to prove the statement for the general case of Serre fibrations.

Let us show that p~Y(¢?)/p~Y(¢?) ~ D? x F/SP 1 x F.

Let f: DP— B be the characteristic mapping of the cell 67. (We use here the
notation D” for the p-ball, because the symbol B” denotes here the p-skeleton of the
base B.) The fibration E— D? induced from p: E— B by f is trivial, as any fibration
over D?,i.e. ExD? x F.

E' cE -p Y (6°)cE
! Voo lp

SP~1c DP oGP cB
Since the image of f'is 67, this mapping can be decomposed to D 67 = B which
results a decomposition E::—>p.‘:,1(5,!’)c‘E of the corresponding mapping E—E. The
mapping E—p~'(67) maps E\E" homeomorphically onti p~!(¢?) and maps E onto
p~'(6?}) (the latter restriction not being a homeomorphism). Hence

p~'(@7)/p ' (6?)=E/E’=(D" x F)/(SP~! x F).
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Let us now turn to the proof of the statement.
€,(B; H,(F))=(by definition) H,(B”, BP™ Y, H(F))=
— (by definition) ® H,(d!, 67; H,(F)=
= @ H,(6?/67; H,(F)= @ H,(F),

H, . (EF[E" N=H,.,(Vip~(6D)/p (6D))=
=@ H,uglp™(")/p7(07) =

=@ H,., (DX F/SP~ ' x F),

where the direct sums are taken over all i-cells.

Let us show that H,, (DPX F/SP™1x F) = Hy(F). It will follow then that
H,. (E"|EP~ HY=@H/(F)i.e. H, . (E°EP” N=%,(B; H (F)). As it can easily be
seen the cohomology groups of X and ZX coincide up to a shift by one of the
dimensions, i.¢., for ¢>0, H,(X)= H, . (2X), therefore H, . (27 X)= H(X).

Were D? x F/SP~ x F the (p-th) suspension over F, we should have the required
~ statement. Itis not the case, however. Actually the suspension 2f can be obtained from
the space in consideration by additional factorization:

$PF = (DPx F/SP~' x F)/S”.

(Here SPc DPx F[SP~ 1 « F is the sphere obtained from D? cDP? x F by pasting
together the points of S”~ legr)

Let us proveit. Let X, Y and Z be arbitrary spaces, ¥ < X. Asitcan easily be seen
on the picture,

X
B XX Z)(YxZ)UX=(X]Y)x Z|ZN (X]Y).
IqburcaseX=D”,Y=S”“,Z——.Fi“'.e. . |

(DPXF/S"“><F)/S”=S”><F/FV'S”. ¥ PR
Let us consider the space S” X F/S? V SMQ.SLL SAF
~ This space is called the tensor product of S and F and is denoted by S @) F (one

defines the tensor produc%o arbitrary spaces X and Y in the same way).

Let us prove S* @ F = ZF. First, the tensor product is associative: (AQ B)®C=

= AR (B& C){the verification of this is left to the reader), second, as it can easily be

seen, S!@F=ZF and §'=5'®...®S', i ce. SPQF=(58'®...®SHYQF=

N, asasminit?

: P P
=5'® ... SHZF=...=22"F.

NSRS
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Thus
((D? x F)/(SP~! x F))/SP = 2*F.

For g>0 it is obvious that H,, /(D7 X F/SP~! x F) = (from the exact sequence of
the pair) H . (D?x F/SP"'xF, %) = H,,,2ZPF) = Hy(F) and that has been the
statement. The case g=0 is left to the reader. As well a5 a1 %

If F is a CW complex the équality H,. (DPxF,S°" !'x F) = H,(F)canbe verified in
the following simpler way. The complex D” X F has three kinds of cells according to
the construction of D? as a three-cell complex: two of them belong to S~ ! x Fand
they are therefore ignored as cohomology is considered. The remaining cells are in a
one-to-one correspondence with the cells belonging to F, only their dimensions are p
units larger.

The fact we just have proved enables us to determine the first term of the spectral
sequence of the space E filtrated by the subspaces E”:

E}? =%,(B; H,(F)).

It is worthwhile to pay a little more attention to this equality. Let Za;0?, where

" ;€ H (F), be an element of the group %,(B; H,(F)). The element of Ef4=

=®;H,+, (0" (@))p” 1(6?)) corresponding to it is constructed by using same
homeomorphisms of the standard object D” x F/SP~ Lx F onto p~1(6?)/p~ (a?), fixed
for each i. This homeomorphism is not unique, even in terms of homotopy, and it is
important to know the one that has been applied. It obviously suffices to fix the
homeomorphism of the subspace F = D? X F[S?~ 1 x F which lies over the centre of
the ball D?, to the fibre F,, < p~*(67)/p~'(d7) over the centre X, of the cell 7. Once
these homeomorphisms have been fixed, the isomorphism E29~%,(B; H,(F)) is
determined.

Is it possible to choose the homeomorphism F~ F, universally in some sense for
every cell (up to homotopy)?

Each path connecting two points x; and x, of the base induces (up to homotopy) a
homeomorphism F, = F,, while homotopic paths induce the same homeomorphism.
If B is simply connected the homotopy class of this homeomorphism is totally
independent of the particular path. Thus we fix F —F, for some point x and define the
homeomorphisms F = F, for all xe B canonically (again up to homotopy). This
procedure gives a well-defined isomorphism E§?~% ,(B; H,(F)). The same can be
achieved if the base is allowed not to be simply connected but the fibration is simple (i.
e. given any pair x,, x, € B all paths connecting these points induce homotopic
homeomorphisms F, X F,,). :

We will only study simple fibrations. In the general case we restrict ourselves to the
basic formulations.

Let us now consider a fibration with simply-connected base (or a simple fibration).
We have

d89: B34 = €,(B; H(F))~>E;™ "1 = €,_.(B; H,(F)).
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The reader can easily verify that this homomorphism is identical with the boundary
homomorphism

0:6,(B; H(F))-%,_,(B; H/(F)),

thus E5? = H (B; H (F)).

Remark. As it follows from the universal coefficient formula if the domain of the
coefficients is a field, then E5? = H,(B)&® H,(F). The same holds for integral
homology under the condition that either H «(B) or H,(F)is torsion-free.

There exists a diagram very " convenient for the illustration of the term
E; =@®,, ,E%* which will often prove helpful:

4
q
0, k
E2 £37
¥
7
%EZ
o %
& 02
— E ¥
..'2. 2
01
E3
001020130 k.0
E:‘2 E; E2 E2 _ E2 the E)oselB p

o

The arrow shows the action of the differential d7°" (the knight’s progress). As r grows
the arrows showing the action of the differentials d;"" grow, trying to coincide with the
direction of the line p+q = const.

The botton row contains the groups E%° = H «(B; Hy(F)), i. e. (if the fibre is
connected) the homology groups of the base. The first column from the left contains the
homologies of the fibre (provided that the base is connected). In the diagram for the E
term, the line p+q = m consists of groups whose sum is associated with H,(F).

The case of the cohomology spectral sequence of a filtration =E 'cE°c
< ... c E"! < E"=FE can be treated in the same way. If the fibration is simple, we
have E34 = H?(B; H(F)). A similar diagram describes the spectral sequence with the
only difference that the arrows are directed in the opposite side.

Remark. The numeration of the groups belonging to the spectral sequence as given
in §18 might have appeared a bit strange there. Now it seems Justified.



ry

1€
al

Vs
1€
1S
1€

v
1€

143

820. FIRST APPLICATIONS

The bare fact that a Serre fibration possesses a spectral sequence contains enough
information to enable us to determine some homology groups. The number of these
cases is. not very large, nevertheless they illustrate the potential of this method quite

_convincingly.

Homology groups of the special unitary group SU(n)

The elements of this group are the transformations of the n-dimensional complex
space, satisfying the well-known conditions. The group SU(n— 1) will be considered as
a subgroup standardly imbedded in SU(n). The homogeneous space SU(n)/SU(n—1) is
then nothing else than the sphere of real dimension 2n—1, i. e. we have a fibration

SU(n—1
sUm) 20D g1 (55 9)

In the case n=2 the fibre is a single point. Therefore SU(2) = S?>. We could have got
the same result in another way by recalling that the elements of SU(2) can be
represented as the matrices

« B
_'B i

where |a|?+|B|?=1, « and B are complex numbers. The equation la|2+|Bl12=1
defines the three-dimensional sphere S* in C?, indeed.
Further, SU(2) is the group of quaternions of absolute value one, which is again S°>.

The relation SU(2) = S* will be useful because the homology groups of S are already
. 3
known. For n=3 we have the fibration SU(3)——§—({QL+ S’ e. SU(3)—S—+ S3.

By using the homology groups of the base and the fibre we are able to compute the
term E, of the spectral sequence:

B9 = H,(S°, H(S%)

§3
4

312 Z

2

1

02 y 4 S°
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The table immediately shows that d, =dy=d, = ... =0 by dimensional
considerations. Then E,=E_, and in E_ each line p+¢=const contains at most
one non-trivial group, i. €. the adjoint group is identical with the original one. (This
follows from the third property of adjoint groups.)

Then for the homology groups of SU(3) we have Hy=H,=H, = Hg=Z and H,=0
for the rest, i. e. H,(SU(3); Z)=H,(S> x S°; Z).

Consider the case n=4, i. e. the fibration

SU(3)

SU@4)—,87.
8|2 z
7
6
512 z
4
312 z
2
1
0|z z

By consideration of the dimensions, E,=E;= ... =E_ i. e. the spectral sequence
is again trivial and SU(4) has the homology groups Hy=H,=Hs;=H,=Hg=
=H,o=H,,=H,5=Z and for the rest H,=0. In other words

H(SU@4); Z)=H,(S*x §*x §7; Z).

One should not be led astray by the idea that this procedure can be carried on
infinitely, by verifying step-by-step the triviality of the spectral sequence by dimension
consideration. In fact, n = 4 turns out to be the last value of n for which simple
consideration of the dimensions gives the full answer: for n = 5 further information is

SU@4 .
needed Let us consider the fibration SU(5) ——— @ ————8°. The term E? is
By consideration of the dimensions we obtain d, =dy=...=dg = 0butdy,asit
seems, may be different from zero since d3'°: E3°—ES8,i. e. d3°: Z-Z.
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1512 ‘ Y4
14

13

121 2 z
11

10 Z y4
9

8|2

712 N

6

512 y 4
4 N

312 N z
2 .

| N

0| Z z

As a matter of fact d, is zero, yet we cannot prove it by merely using the facts at our
disposal. (Here dy is the only “suspicious” differential since for k> 9 all d, are again zero
by consideration of the dimensions.) Later on we shall prove the following:

Theorem.

H (SU(n); Z) = H(S?x8°x... x 271, 2).

We remark that for n>2 the spaces SU(n) and S3x...x8%"! are not
homeomorphic to each other, and they even have different homotopy groups (the
reader may try to prove it, though it is not so simple).

In Chapter I, §9 we formulated the theorem of Freudenthal for suspensions:
(X)) =m;4(ZX) for i<2n—1 where n is such a number that n,(X)=n,(X)= .
=nu,_,(X)=0. : : '

Then it was proved only for the special case X = §". By applying the Leray theorem,
we are now able to prove the general statement.
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Remark. In the topology there exists a principle (the so-called Eckmann—Hilton
duality) that establishes duality between, among others, the suspension and the loop
space, the wedge and the direct product, the homotopy and the cohomology (we
mentioned this in §2). Some examples for dual theorems:

* n(X)=mn;_,(2X) foreveryi,
’ Hi(X)=H*'(2X) foreveryi;

(X x Y) = m(X)+n(Y) for every i,
H{(X V Y) = H(X)+H{(Y) foreveryi -

n(X)=m;,,(ZX) with some restrictions on i,
Hi(X)=H"*(2X) with some restrictions on I,

Let us now verify the last equality.
As it is known, for every space X there exists a Serre fibration whose space EX is

contractible in itself to a single point and whose fibre is the loop space over X, 1. €.

QX
x~EX—X.

Since X is (n— 1)-connected, i. e. mp=m,=...=7, =0, we have H(X)=
HY(X)=...=H" 1(X)=0.
The spectral sequence is

|| 9x Py
Ezn,n

7 2

zeros

[ 1

n-1

I ' zeros
i [
‘ RS n

Now EX ~ * and so E_, contains nothing but zeros. All differentials from the groups
in the shaded column are equal to zero by dimension consideration. Therefore the
column itself, being transferred by the differentials into the term E, without
modification, may contain only zero groups. Let us draw E, once more, shading the

elements which can be different from zero. (See the next page.)

Let us follow the i-th group of the column on the left-hand side. If iis not very large,
o

only d;, ; may be different from zero. As E  is zero,d; . isan isomorphism (Kerdyy, =
— E-9; Coker di?, = E%*1X). Hence H'(2X) = ES° = EY*t = H" N (X).
We can even tell the largest for which this observation holds. We must not forget
" about the “angle”. How does it come into our considerations?
Ifi>2n—2,d%, is not any more the only non-trivial differential defined on H{(QX).

(For example, if i=2n— 2, a differential E32" 2> E3"~ 1 is still possible.) Similarly, in
/ .




. W o= O w»

e e e AR i

20 FIRST APPLICATIONS 147

2n-2

n-1

U, 4%
Zn

0 n i+]

the case i > 2n several non-trivial differentials are possible with values in E>°. In other
words, ati = 2n— 3 the differential d, , | still slips by the angle butati = 2n—2 1t clings
to it, therefore H(X) = H'~Y(QX) only for i<2n—2.

There exist a canonical imbedding i, and a canonical projection 7y:
iy X>QZX; ny: ZQX-X. |
For the suspension we can choose between two slightly different definitions. Here we
shall assume that

ZX = X xI/(X x{0})U(X x{1})U(* x I)

where * is the base point of X.

=

" Let xe X, then iy(x) must be a loop on the suspension; let [ix(x)](t) =(x,1).

Further, set ny(¢, t) = ¢(¢) where ¢ is a number, ¢ is a loop and ¢(¢) a point in X.
~ Let us examine the homomorphism 7% : H{(X)— H(ZQX). We know that H{(X) and
H{(ZQX) = H'~'(QX) are isomorphic for i<2n—1. As it will be proved in §21, the
isomorphism is established by the particular mapping n§. Let us consider the chain

5
XL, rerx-", yy.

The first mapping is ordinary suspension over the mapping i, while thé second is Ty
where Y=2X. The composﬂe TyxoZiy: XXX is 1dent1ty Really,

(x, £) > (ix(x), t)'—'[lx(x)](t) (x, ).
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If X is acyclical up to n,then sois ZX up ton+ 1, therefore 75y induces isomorphism
of the cohomology groups of X and 2Q2X in the dimensions <2(n+1)—2 = 2n.
Hence the mapping Ziy: X — 2QX X induces isomorphisms between the cohomology
groups up to dimension 2n and the mapping iy induces isomorphisms of the
cohomology groups of X and QXX in the dimensions at most 2n.

Next we are going to make use of the fact that iy is simply an imbedding of X into
QrX.

We consider the exact cohomology sequence of the pair (QZX, X):

H(QZX, X)— HI(QZX)—2 s Hi(X)— H*Y(QZX, X)

(isomorphism for i <2n— 1)

This means that H(QZX, X) = 0 for i<2n—1.

Hence H(QZX, X) = 0 1if i<2n—2. Now by the relative Hurewicz theorem the
homotopy groups of the pair will be zero in the dimensions <2n—2. (We assume
n>2, so reference to the theorem is justified.)

By employing the exact sequence of the pair we obtain: the inclusion mapping iy:
XY—QXX induces an isomorphism of the homotopy groups 7m(X)=m(QX X)=

=n,,,(2X) fori<2n—-2.Q.e. d.

In some cases (for instance, in the proof of the theorem of H. Cartan in §28) we shall
need the following addition to the Freudenthal theorem:

Theorem. In the critical dimension the suspension homomorphism X: 7,5, ;(X)—
—7,5,(ZX) is an epimorphism.

Proof. We recall the following theorem of Whitehead. Let X and Y be two arbitrary
simply-connected spaces and let f: X—Y be such a mapping that f,: m,(X)—
—7,(Y) is an epimorphism. Then the following two statements are equivalent:

(1) the homomorphism Sio: (X))o m,(Y) is an isomorphism for m<n and an
epimorphism for m=n;

(2) the homomorphism f,: H,(X )—H,(Y) is an isomorphism for m<n and an
epimorphism for m=n. (The homologies are taken over Z.)

Let us now turn to the original statement. We shall consider cohomology rather
than homology spectral sequences. We can use the old picture, by simply turning the
arrows in the opposite direction. Obviously H an—2(X) = Hj,—3(QX).

By substituting ZX for X we get

H2n—1(QZX) = H2n(ZX) = H2n—1(X)°

Since this isomorphism is induced by the inclusion i: X—QZXX, the homomorphism
Tgn— 1(X)>Tzn— 1 (RQZX) > mp(2X ) is an epimorphism by the Whitehead theorem.
Q.ed. ' ,

Remark 1. Here we have isomorphism between the 27— 1-dimensional homology
groups, which is more than what the Whitehead theorem requires. Nevertheless it does
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not help us to prove isomorphism rather than epimorphism between the corresponding
homotopy groups. The Whitehead theorem implies only epimorphism, and nothing
‘more. '

Remark 2. One can actually do without referring to the Whitehead theorem. The
equality H,,_,(X)=H,,_,(2XX) implies that H,,_,(Q2X; X)=0 (all the preced-
ing groups are known to be isomorphic). By applying the relative Hurewicz theorem
one obtains

T, (QEX, X)o7y, (X)o7, - (Q2X)> 7y, 1 (QEX, X)o7y, o(X)

I
0

Here 7,,(QXX, X) # 0in general. Therefore n,,_(X)—n,,_(QEX) = n,,(2X)is
always epimorphism but not necessarily isomorphism.

§21. AN ADDENDUM TO THE LERAY THEOREM

Let X and Y be two spaces, both of them filtered, and let f be a mapping of X to ¥
compatible with the filtrations, i. e. f(X;) < Y, k=0,...,n

Then f induces a homomorphism of the homology spectral sequences, i. e.
homomorphisms YEP?—Y EP4 for every p, q and r. They commute with the
differentials, and so all the properties of the groups commute with the homomor-
phisms. The same can be said about cohomology spectral sequences only the arrow
must be in the opposite direction.

Assume now that we are given two fibrations (E,, B,, Fy, p;) and (E,, B,, F,, p,)
and a mapping of fibrations, i. e. a commutative diagram

f

El'—“‘"’ Ez

nl b

8, 5,

The spaces B, and B, are assumed to be CW complexes (let us recall the remark
made in the first paragraph of §19). The mapping is homotopic to a cellular one, so it
can be considered as such, and /' : E, - E, as a mapping compatible with the filtrations
of Xand Y. -

That generates a homomorphism of the (homology) spectral sequences 'EP1—>" EPY
(where'and " denotes that the item belongs to the first or second fibration, respectlvely) ,
We have, among others, a mapping 'E%?—"E%%. Now f takes the fibre F into the fibre
F,. As it can easily be seen, 'E8?—"E%4 coincides with the- mapping H (B,, Hy(F))—
—+H,,(B2, q(Fz)) induced by f: B, —»B, and. f|n F,—-F,.
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Since the homomorphism of the groups E?? commutes with the action of the
differentials, if the homomorphism 'Ef?—" E'? is an isomorphism for some particular

k =r for every p and ¢, the same is true for all k > r; the differentials 'd{*? and " df will
act in the same way.

“E rp'q

The spectral sequence is, up to isomorphism, independent of the particular cellular
structure of the base. _

- Indeed, if it is somehow divided to cells, there exists a homotopy, connecting the
identity mapping of the base with a cellular mapping of it into itself, which is a cellular
mapping of the first cellular decomposition to the second. This homotopy induces
isomorphism of ' E, and ” E, as has been shown above, and the isomorphism of ' E, and
"E, follows for every r>2. '

The analogous statement is true for the cohomology spectral sequences (up to the
direction of the arrows).

0

AN

% Hq(F)=E2"¢ E,




162 Il SPECTRAL SEQUENCES

Let us now examine the homology spectral sequence of a Serre fibration p: E—B.

The Leray theorem is usually formulated in more detail by adding three
statements which give a good grasp of the general situation. The first one concerns the
first column on the left-side; the second one concerns the bottom row; the third one
informs about the connection between the left-side column and the bottom row.

The left column of E, consists of the groups H(F). All elements of H,(F) are cycles
with respect to the action of d,; some of these elements are “covered” by elements
coming out of the inside of the table, thus transition from H (F) = E39to EY%is made
by factorization, and so on. Each consecutive step is by factorization of the previous
group. We come to an end at some group E% = o H(E)/ (- yH (E)=Im Hq(EO) c
— H (E), i. e. we have a chain of mappings:

H (F)=E3*—EY ... > EST ... = ... > Bt < Hy(E).

All the arrows are projections of groups to their quotient groups; in the last step we

have imbedding, i. . we have obtained a mapping H JF)—H(E).

Now there exists an imbedding i: F—E and the corresponding mapping of the
homology groups. The first addition to the Leray theorem states that the mapping we
have constructed is nothing else than the mapping i, induced by the imbeddingi: F—E.

Proof. Let us consider the fibrations (E, B, F, p) and (F, *, F, p), and the obvious
imbedding ‘

i

F— FE

which induces a homomorphism of spectral sequences.

Hq(F) / . 7 Hq(F)

7.

The sequence of (F, *, F, p) is trivial and consists of a single column; the mapping i,
is induced by the imbedding i: F—E. By passing from E, to E; and so on, we have the
left-side table unaltered while the left-side column of the right-side table starts going
through the factorization process considered. Once this is finished, we have on the left-
side the same H,(F) as before while on the right-side the result of a chain of
mappings. -



—

ao o o

I n O w»n wn

he
ng

ft- .

of

21 AN ADDENDUM TO THE LERAY THEOREM 153

F) - ), Hq(F)
///// S |\ D
Hq(F) ’//////////ﬁ i U777

The chain of mappings we ar¢ concerned with is framed by dotted line. The left
column is an identical copy of the group H (F). Now let us notice that in the second
term the mapping 'E}?—"E$? is an isomorphism and that the diagram is
commutative. Then in the resulting square we have isomorphism on the upper and the
left-side. The first statement is proved.

Let us consider the second addendum. We begin with examining the bottom row of
E,,i.e. the family { H (B)}. No element of E%° can be image of a differential, therefore
no factorization takes place as we are passing from E%° to E%° only “cleaning” i. e.
ignoring all elements of E%° which are not cycles (sent to zero by the differential d,); in
other words, transition from E%° to E%° means transition from the whole H 4B) to
some subgroup, and so on. We obtain a chain of mappings:

H(B)=E{°* > E{°>E{°> ... o E%°,

i. e. EZ° < H (B). On the other hand, £%° is known to be a quotient group of H (E),
hence there is a natural mapping of H,(E) to E%° and so, to H,(B). We have obtained a
mapping H,(E)— H (B). The second additional statement to the Leray theorem says
that the obtained mapping is nothing else than the mapping of the homology groups
induced by the projection p: E— B.

Proof. The arguments repeat our former considerations. Again we consider two
fibrations (E, B, F, p) and (B, B, *, n) and the mapping of fibrations

_?, B
/\*ln
B — B

The spectral sequence of the second fibration consists of the first row alone which is
not changed by transition from "E, to "E, , ,. Under p,: E,—"E, the elements of the
first row are being mapped isomorphically, then transition from ‘E%° to ' E$ etc. starts
the process of realizing the chain of mappings in question.

The rest-of the proof is word-by-word the same as above. The second addendum is
proved. :

We have proved both statements for homology spectral sequences. Since the proofs

~ are similar in the case of cohomology we limit its treatment to the formulation of the

following statements:
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The mappings

H(B) = E$° - E3°/ ® Imd, = E%’ ="“"VH(E) < H*(E)

r22

and HYE)—HYE)/QHYE) = E3* = QZ Kerd®?c EY? = HYF)

coincide with the mapping p*: HYB)— H%E) and i*: HYE)— H%(F) induced by the
projection of the fibration and the imbedding of the fibre, respectively.

. The most interesting addendum is the third, especially as it includes the definition of
transgression, a notion playing outstanding role in the theory of fibred spaces and in
the cohomology theory of compact Lie groups.

The transgression

Let us examine the term E, . As we were examining the behaviour of the first row and
first column we observed that as r was growing the elements of the row were being
“swept up” in the sense that E%° lessened and was replaced by its subgroup; on the
other hand, the group E9 in the column was replaced by the quotient groups. That is,
both groups were decreasing but in entirely different ways. Therefore, had we stopped
at some moment at.a certain r we should find a subgroup of H,(B)in the cell (¢, 0) and a
quotient group of H,_(F) in (0,4 — 1). If we stopped at r=q we would find that the
appropriate differential d, was acting just from the cell (g, 0) to (0, ¢— 1).

the quotient go.q-!
group of

Eq’
7

the subgroup of Hq(B)

The differential d,: EZ°—EQ4 ! will be called transgression, and denoted by 7.

Transgression is a partially-defined, multivalued mapping. Indeed, it is a mapping of
a subgroup to a quotient group (thus being not everywhere defined and assigning to
each element of its domain-a whole coset). The elements of H ,(B) that belong to Eg'o are
called transgressive. : -

Let us now consider a purely geometric construction.

The mapping of pairs p: (E, F)—(B, ) induces a mapping H(E, F)>H(B,*) =
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= H,(B). By means of the boundary homomorphism of the exact sequence of the pair
(E, F) we obtain a diagram

H(B) = HyBow) e H,(E, F) ~" H,_ ()

\\ -
——

Y= pyt

(assuming that ¢ >2 and the base is simply connected). Then the third addendum to
the Leray theorem states that doy = 1.

The notion of transgression may be similarly formulated for the cohomological
case. Then fibre and base change their places, the transgressive elements appear in
cohomology and t: [subgroup of H?(F)]— [quotient group of HY*!(B)].

We shall give the definition of transgression in cohomological terms by applying so-
called “transgression cochains”.

Let (E, B, F, p) be a fibration. The imbedding i: F — E induces an epimorphism of the
cochains ¢ E) to the cochains *(F); i*: ¢4(E)— %(F). The mapping p*: ¢4+ 1(B)—
—%*(E) is a canonical monomorphism, thus ¢ * *(B) is imbedded into ¥* }(E). The
images in ¢?*!(E) of the cochains ¥**!(B) will be called basic cochains. An element
z € HY(F)1is transgressive if there exists a cochain o € ¢4(E) such that i*(«) € zand da is
a basic cochain (da is the coboundary of «). If p* (@) = da, the class of the cochain w (@
is a cocycle) will be called the image of the class z under the pretransgression £, {w}
= 1(2).

Even though i*(a) e Z(F) is a cocycle (a is called a transgression cochain) the
cochain o 1s, as a rule, not a cocycle, i. e. da # 01is general. The transgressive elements of
HA(F) constitute a subgroup, thus £ is defined on a subgroup, rather than on the whole
HA(F). Further, the cocycle w is not uniquely determined. Indeed, assume p*(w,) = da,,
p*(w;) = da, and i*(e;) = i*(a,) € z. Then w; —w, = & where @ is such that p*(@) = dd
where i*(&) =0. The classes of the cocycles of the type & form a subgroup I'*!(B) <
< H?*'(B) and the image of an element z under 1 is defined in Ff** '(B) up to elements
from I'**'(B), thus one has a mapping t: 17(z)=7(z) mod I'**(B), i.e. TY(F)—
—H?*Y(B)/I'"* }(B) (here TY(F) denotes the set of transgressive elements of HYF)). The
mapping 7 is called a transgression.

This definition expresses, for short, that. the transgression is the partially defined
multivalued homomorphism of H4~(F) to H%(B) given by the composition

®)—1

e () -2 5yE, -2, HB).

Exercise. Prove that the “relative” definition is equivalent to that using “transgres-
sion?éhains”. '

Exercise. Formulate the homological definition of transgression by applying
“transgression chains”. :
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Let us now prove the third additional statement to the theorem of Leray. Namely,
we shall prove that the differential d®° coincides with the transgression as defined in
the homological case in terms of transgression chains. (We have not actually given the
homological definition; anyhow, it is the exact analogue of the cohomological
version.) Let us recall one of the definitions from the first section.

An element ae B3¢~ = € (X,)[%,(X; ) belongs to Zb47i < E5771if and only if
there exists a representative a € %,(X;) of o whose boundary has a filtration smaller by r
than has «, i. e. dae%,_(X;_,).

In the case of a fibration X; = p~*(B’) where B! is the i-skeleton of the base space.
Puti=q,r=4q.Then%,_,(X;_,) =€, 1(B%) = €,_,(F)(assume that the complex B
has a single vertex; as earlier proved, this means no loss of generality)i.e. ae Z&% if and
only if o has a representative a€ € ,(E) such that dae¥,_(F).

As for the differential, d%° we have now the following. In the group E4° = H(B) we
have a subgroup EZ° consisting of of all elements o € H (B) which are represented by
cochains a € €,(B) whose pre-images d€ ¢ JE)aresuchthatéde€,_,(F)(i.c.de z29%),
The last condition expresses that & is a relative cycle of Emod F. The homology class of
the cycle dde %, ,(F) is one of the values of 7o (by the definition of transgression) and
also a representative of d2%« (by definition of the differential). Q.e.d. (Later on, we will
rathér often have proofs that contain only old definitions repeated quite a number of
times.)

Let us stop at an important example where transgression has obvious geometric
meaning,. F :

Let 7: E—— B be a fibration such that n,(B)=0 and E is contractible. Let B be
aspherical up to the dimension n, i.e.m(B)=0fori<n We consider the cohomoés‘)/gical
spectral sequence. By repeating the reasoning of §2 (where the fibration EX —— X
has been considered) we get the following picture:

ar-1 Ny
d N

%

n-1

N

777
N

The differential d°" ~! is an isomorphism as long as the angle has no effect onit. (We
mean isomorphism between H'(F) and H'**(B), for d®" ! is an isomorphism for every
sufficiently large 7, however if r>2n— 1 the isomorphism will be between a subgroup of
H™~'(F) and a quotient group of H"(B) rather than between H'~ Y(F) and H'(B).)

Now we are going to construct a mapping H'(B)-H"~'(F) which will be an
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isomorphism in the small dimensions (r < 2n— 1) and the inverse of the transgression ©
in all dimensions.

Since E is contractible, so is F in E, and the imbedding F — E may be extended to a
mapping of the cone CF to E (this extension is, of course, not uniquely determined).

Wln\

nml

The projection 7 sends the bottom F x {0} of the cone into a single point, therefore a

mapping X F— B arises. Let ¢ denote this mapping. It induces a homomorphism of the
homology groups ¢*: H'(B)—»>H"(XF)— H"~!(F). The mapping is constructed for
every value of r and is induced by a mapping of spaces. Moreover, for every r the
transgression 7 is defined and is a mapping (in this case an isomorphism) between some
subgroup of H "‘1 (F) and a quotient group of H"(B). The inverse maps the quotient
group of H"(B) onto the subgroup of H"~!(F), i. e. it can be considered as a (single-
valued) homomorphism of H"(B) to H" ! (F). We want to show that it coincides with
@* (thatimplies, in particular, that the homomorphism ¢* is independent of how ¢ has
been constructed).
H"~(F) and a quotient group of H'(B). The inverse maps the quotient group of H'(B)
onto the subgroup of H" !(F), i. e. it can be considered as a (single-valued)
homomorphism of H'(B) to H"~!(F). We want to show that it coincides with ¢* (that
implies, in particular, that the homomorphism ¢* is independent of how ¢ has been
constructed).

If r is small both the transgression and ¢* are isomorphisms. In this case the
meaning of the theorem is that they are the inverse mappings of each other. This was

Qx
used in §19 in the particular case of the Serre fibration EX ——— X. The mapping 7 :

2QX — X is one of the possible choices for ¢ (obtained by contracting EX to a point in
the usual manner).

Thus the 1somorphlsms H"(X)—»H‘I(ZQX) @) H*"Y(QX) and (d%~ 1)1
coincide. (We have repaid our debt together with all the interests.)
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Let us prove the statement now.

We construct a chain of mappings (CF, F)—(E, F)—(B, %) where the first one is an
imbedding and the second a projection. Consider the mapping of exact cohomology
sequences induced by the former and examine a square in the diagram (it is

commutative as all the others are):
HYF) —— H®"\(CF, F)

1 ~ 1

HYF) —— HYE, F)
Both rows of the square.are isomorphisms. Let us consider the whole chain and the
composite mapping

He*1(B) > HO*\(E, F)— H*}(CF, F) s H" 1 (£F) < HY(F)

: ’ which is the mapping ¢* in question. Let us collect the whole in one diagram:

_H**(CF, F)

HY(F) _/,_____-—-)‘,H‘H' YE, F)
T

- The dotted lines denote the transgression t and the homomorphism ¢*. As the
o triangle is commutative, we have @* o7 = lya), i. e. they are inverses to each other.

Q.ed.

The first obstruction to a section

We are going to show how to define and calculate the characteristic class of a
fibration (i. €. the first obstruction to extending a section, cf. the end of §17).

F
Consider the cohomology spectral sequence of the fibration E—— B with
coefficients in =, (F) (n;(F) =0 if i<n—1). The term E, is as follows:

i

v
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The base B is assumed to be simply connected. (This assumption comes from the
obstruction theory where it has has been essential.) The first non-trivial group in the
column of E, is H"(F; n,(F)). The fibre F is (n— 1)-connected, therefore there exists in
H"(F, n,(F)) a canonically distinguished element: every cell of dimension # is an n-
dimensional sphere defining an element of n,(F); that means, there is defined an n-
dimensional cochain with coefficients in 7,(F); this cochain is actually a cocycle. (We
have already used this construction but only as applied to the space K(r; n); the fact
that the cochain of C*(F, n,(F)) is a cocycle can be verified by repeating the proof that
the cochain E (in K(=, n)) is a cocycle.)

The class of the cocycle E will be denoted by e. It is the same that we called earlier the

fundamental cohomology class:

eec H'(F; n,(F)).

The element e belongs to ES"; it cannot be the image of a differential, and since
there is a trivial stripe in E, consisting of 1-st,...,(n—1)-st rows, e is a cocycle
with respect to the differentials d,, d,, d,, . .., d,. Hence it is transgressive, i. e. it
belongs to EX7;. The transgression t=d,,,; maps e onto t(e)e H"*(B; n,(F)).
This element is the characteristic class of the fibration.

We shall prove this with certain restrictions.

Let B be a simply-connected CW complex with a single vertex, Ea CW complex and
p: E— B a cellular mapping. Moreover the pre-image p~ (o) of each cell 6 = B will be
assumed to consist of a union of whole cells of E (i. e. if any cell of E intersects p~ }(o) it is
contained in p~!(g)). The last assumption concerns the n-skeleton of E, which will be
supposed to consist of the n-skeleton of F c E (where F is the pre-image of the single
vertex of B by p) and of a section over the n-skeleton of the base B.

These restrictions can be overcome by showing that every Serre fibration is
homotopy equivalent to a fibration with the properties required. The reader may try to
prove this, even though to prove this in general is more difficult than for any of the
paricular cases we shall meet.

Let us consider a representative

ee¢"(F; n,(F))

of the homology class e e H"(F; n,(F)) and the cochain ce ¥"*!(B; n,(F)) defined
by the section which was given over B". Then the group ¢"*1(E; n,(F)) contains the
cochains ¢ and p*c. We show that §é=p*c.

Let t"*! be a cell of the complex E. As it follows from the assumptions t"* ! is either
projected to a cell 6"*! of the base or to a cell of smaller dimension. The boundary
dt"*!is a sum a, +a, where «; € €,(F) and a, =p*(da"*?!) (if 7"* ' is projected to a
cell of dimension smaller than n+ 1, we have a, =0).

Clearly dé(z"* ') =é(a,) i. e. we have the homotopy class of the chain a, (chains in
€,(F) are linear combinations of n-dimensional cells of F, which are spheres).
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Further, we have p*c(z"* ) =¢(p, 1" 1) =c(¢"* "), 1. e. the class defined in 7, (F) by
the section over the boundary of 6"*! (i. €. a,). This projection defines a spheroid
homotopic to «,: the homotopy is realized by the image of the cell "*!. Hence
de=p*c. Q.e. d.

§22. MULTIPLICATION IN COHOMOLOGY
Lon SPECTRAL SEQUENCES

Thus far we have used both homology and cohomology spectral sequences without
experiencing any significant difference between them except that the arrows are
directed opposite. The reason is clear: we never used the multiplicative structure of the
cohomology. In what follows we shall concentrate on cohomology sequences.

Assume that the group of coefficients is a ring. (For example, a field, or Z.) Then the
spectral sequence is equipped with a multiplicative structure. _

Actually, for every r>2 the group E,=@®, EP? may be equipped with a
homogeneous multiplication (i. e. there exists a mapping EP4® EF9—EP*P-ata)
consistent with the differentials:

da-b) =da -b+(—1y*%a-db

L for any ae EP9%, be EP*Y. Certainly, multiplication in E,,, 1s induced by the
multiplication given in E,.

Multiplication in the spectral sequence will be compatible with that defined in E,
S and E_, by virtue of the Leray theorem. Let this be formulated more exactly, and in
o more detail. Consider the group E, = & , ,E5% we have E5? = H¥(B; HY(F)). By the

G above, E, is a ring. On the other hand @, H?(B; H(F)) = ®,H"(B; ® H(F)) is a
SRR ring, too, for @ ,HYF) is a ring and so is ® ,H"(B; @ ,H*(F)). We assert that the ring
E, is isomorphic to @ ,H%B; @ ,HF)).

(The same is true for any ring of coefficients.)
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Consider now the subring @,E%° of E,. The theorem we have formulated implies
the following: the rings @,E%° and H*(B) are isomorphic. Similarly the rings
®,EY? and H*(F) are isomorphic, too.

Recall the formula of universal coefficients.

0> H?(B; ZY® HY(F; Z)—» H?(B; HY(F; Z))-»Tor(H**Y(B; Z); HYF, Z))—-0

The E, term obviously contains a subgroup isomorphic to H?(B; Z) ® HYF; Z).If
the cohomology groups of either the fibre or the base are torsion-free, then Tor=0
and H?(B; HYF)) = HB) @ HYF).

The same is obviously true if the coefficients are taken in a field. So we have E, =
= H*(B; K)® H*(F; K) whenever K is a field or K= Z and the base or the fibre is.
torsion-free. The multiplication in E, is then given by the formula

(a/ b/) ° (a// ® b/r) — (_ l)dimb'-dima”(a/au ® b’b”).

The E, term we shall deal with, will usually be given as a tensor product. (Even in the
cases when HP(B) H%F) does not coincide with E, it is a subgroup as well as a
subring of E, and multiplication is given by the same formula.) For instance, this was
the case for the unitary groups, in the example examined in §20.

Let us now consider the E  term. Whenever a ring A4 is equipped with a filtration
compatible with multiplication, i. e. A,* A,<A,,,, the adjoint group gets a ring
structure; indeed, if ae A,/A,,, and fe A,/A ., an element of A, /A, ,+1<GA
may be assigned to them in the following way. We take representatives ae a and b €
from A, and A,, respectively. The product ab lies in A4, ; its representative in
Ap+q/Ap+q+1 depends on o and f alone and it is denoted by o- B.

As it turns out, the filtration

... cPHYE)c VHME)= OHXE)<" VH*E) = HX(E)

is compatible with the multiplication in H*(E) and the multiplication given here in the
adjoint group E, coincides with that obtained in E_, by transition to E_ from the
multiplication in E,. ' *

Remark. The multiplication in the adjoint ring is always somewhat poorer than in
the original ring. Let a, be E ; by the construction of EF;? these are families (cosets) of
elements from H*(E). Suppose that a-b=c and ¢#0 in E,,. It follows then that the
family of elements of H*(E) corresponding to ¢ contains no null element, i. e. if
multiplication is not trivial in E , neither is it in H*(E), i. €. the amount of information
that can be obtained on H*(E) is significant in this case. If however a-b = 0 while a#0
and b #0, then the class a- b contains a representative belonging to a coset of higher
filtration than supposed (by at least one unit), i. €. the product in H*(E) may be different .
from zero. In other words, triviality of multiplication in E  does not imply the same in
H*(E). In consequence, the information obtained about H*(E) is not complete.
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Multiplication in the spectral sequence is constructed in the following way. Recall
that if X and Y are two spaces and

¢, e64(X), c,€€(Y);
the tensor product
¢y ® ¢y € XXV
is defined and the equality
3(c, ®cy)=0c; ®cy+(— D¥c; ® dc,
is valid. By transition to cohomology we get a multiplication
HYX)® HYY)->H*"" " (X x Y).

By using the diagonal mapping 4: X—»X XX a binary operation is introduced in
H*(X) (namely, a-f = A*(a® B)). Tensor product is defined by the formula

where f: (Ag,-- - Ags)=X XY is a singular simplex while 7y: XxY-X and
ny: XX Y- Y are projections. Here multiplication is taken in the sense of the ring

structure of the domain of coefficients.
The analogue of this operation is defined on relative chains. If ¢, € CKX, X,) and

c,e¥6(Y, Y;), we have ‘
e, ®c, €@ (XX Y, X; x YUX X T,).

Multiplication in spectral sequences of fibrations will be defined from the beginning
for products of two different fibrations, too.
Let(E, B, F,p)and (E", B", F " p") be fibrations and let (E'XE",B xB",FxpX
x p") be their product. Let {(E"),}, {(E")p} and {(E’' x E"),} denote the filtrations

given by the pre-images of the skeleta of the bases.
Denote by {EF4, 'd>1}, {"EP*, "dr4} and {EP?, dp* } the cohomology spectral

sequences of the fibrations (E', B', F', p'), (E",B",F",p") and (E' < E", B’ x B",

- |
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F'xF", p'xp"), respectively. Let o€ EP»9* = HPtHa((E')P', (E')"*"1) and
a,€” EPr9: = Hp2ta((E"yPz (E")P>~1), The tensor product is

oy ® ay € HPHH a1 P2t ay((E )P x (E")P2, (E'YP* x (E")P2 1 % (E")") =
(in view of the excision theorem)
=HP1+41+P2+42((E' xE”)Pl“’Pz, (El X(E”)pz_l U (E,)pl._l X E//)n(El xE”)p1+p2,

Here we have a cohomology group modulo a space larger than (E' x E")P1*p2=1
therefore it is mapped naturally to

HP? +qx+pz+qz((E' X E")m +p2, (E' xE")PH‘pz-l) = Ezln'*'m.lh taz

The image of a; Q) a, in this group will also be denoted by a; ® «,.
As it can be verified,

dp Pt (g, @ ay) = 'dP ey @ ay +H(— 1) Q) di ;.

By virtue of this formula, the multiplication'E%9* (X) " EE>» 92— EP1* P21+ 92 defines a
multiplication 'E}" R) " E5*92— EBt *P241 %42 which, in turn, defines another one in
E,, then one in E,, and so on.

Thus, multiplication is defined for every r, p,, q,, P2, 4,, assigning to each pair
o, €'EP*?, a, €"EP*?2 some a; Q) a,€ Ejt tPentaz

Finally, the diagonal mapping of fibrations

4
E—EXxE

pl l pxp

B ——A—vB x B

is applied to define multiplication in the spectral sequence of a single fibration
(E, B, F, p) by choosing for product of a, F EP.% and a,? E?>92 the element
o 0, =A*(o; ® a,) where A4* is the homomorphism of spectral sequences induced by
the diagonal mapping of fibrations.

~ The verification of all the properties of the multiplication, listed above in this
section, will be left to the reader with the warning that it will be a laborious, though .
rewarding, work.

Let us see a good example for the use of the multiplicative structure. |
We have not yet finished the study of the cohomology of the unitary group SU(n).
We already have the integral homology of SU(n) if n=2, 3, 4:

H,(SUM); Z) = Hy(S?x §3 % ... x §21; 2),
Hence, in view of U(n) = S x SU(n) we have |

| H (UM Z) = Hy(S'x$*x ... x§""1; Z)
where n = 1, 2, 3, 4. "
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It will be shown that similar equality holds for every n and for homology and
cohomology alike. In cohomology the equality means ring isomorphism, i. e.

H¥U(n), Z) = A(xq, X35 X55- -+, X24—1)

where on the right we have the exterior algebra generated by {x;} where degx; = i. It
will be clear when and how the difficulties, experienced with SU(5), will be overcome.
If n=2, the theorem is proved. Suppose that it is true for every k<n—1, i. e.

HYU(n—1); Z) = A%y, X3,- - - Xan_3)-
Un—1)

Consider the fibration U(n) — 8?71 In its cohomology spectral sequence
E, looks as follows.

X2n-3

zeros

X3

X4

The reason why we could not go on was that we met a differential that was not trivial
because of simple reasons of dimension. At the second attempt we realize that the
“dubious” differential is acting from a cell that contains, instead of one of the generators
of thealgebra A (x;, X3, ... ., X3a_3), an element composed of them. If we only consider
the generating elements, we see that all the differentials under consideration happily

pass below the dangerous cell E2"~+°, and so all are trivial. So are the differentials of
the products.

We obtained that all the dlfferentlals are tr1v1al ie. E2 = E,. Thus
E = H*(Sz” 1 H*(U(n-— 1); 2)) = -H*(SZ" LR H*(U(n 1); Z)
where equality means ring isomorphism, i. €. o
G(H*(U(n) Z) = HXS* 1, Z)@ H*(U(n—l), Z)

Every diagonal p+ g = ‘const contains no more than two non-zero (free) groups;
hence E"9~ " = H1(E; Z)/"H(E; Z), where n;>n,.




22 MULTIPLICATION IN COHOMOLOGY SPECTRAL SEQUENCES 165

As we have free groups we obtain H*(U(n); Z) by taking the direct sums over the
diagonals p+q = const, i. e.

HXU(n); Z) = A(xy, X350 - o X3q-1) = H¥S*" I x Uln—1); Z)

in the sense of additive isomorphism.

Actually this is also a ring isomorphism for on every diagonal we have factorization
by the group which is in the second column ") H4(E; Z). Now the whole second column
is obtained from the first one by tensor multiplying with the generatore=x,,_,, le.it
only consists of products. The ring isomorphism E_, = =H*(U(n)) follows from the
remark concerning adjoint rings in §22.

Exercise. Determine the cohomology ring of the complex and the quaternion Stiefel
manifold.

The cohomology rings of projective spaces

(1) H*(CP"; Z).

Consider the fibration n: $2"* 1 »CP" the fibre of which is a circle (the projection ©
assigns to each point (zo, . . ., z,)€ $2"* ! the point (zo:. . .: z,)€ CP"). As CP"is simply
connected the term E, of the spectral sequence of the fibration is of the following form:

Zeros

1 | cohomology of CP" | 0 O 0

0 | cohomology of CP” [0 | 0 | O
0 1.... ...2n

By consideration of dimension we have
Ey=E,=...=E, = H*(S**Y),
hence E%1=0 for all (p,q) except (0, 0) and (2n, 1), and E3™'=Z; in consequence

-~ EL°=0, E3%'=Z and the dlfferentlal dt: E%'EY*20 is an isomorphism if

k=0, 1, ..., 2n—1. Now E5°=E%", therefore EKC=F%1=Z for k=0, 2, ..., 2n
and the remammg E%© are trivial. Hence H*(CP"; Z)=Z for k=0, 2, 2n and
H*(CP"; Z) =0, otherwise as we already know. Then the E, term is as follows

0O 1 2 3 4 5 2n—1 2n
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where e, € H2(CP"; Z),ee H'(S*; Z)are the generators. They may be chosen so that
d31(e,€)=e,,((d3¥! is an isomorphism!). Then e, =d¥*(ee)=edY e=
=e,e,, hence e, =eff fork=1,2, ..., n.

We have obtained that H*(CP"; Z) = Z[e,]/{e]" '} and dime, = 2.

Similarly the same holds for every ring 4, H*(CP"; A)=A[e,]1/{e}*'}. For the
infinite dimensional projective space we have H*(CP*®; A)=A[e,], in particular,
H*(CP>; Z)=2[¢,].

(2 H*(RP"; Z).

The additive structure is already known: if n is even,
Z for q=0,
HYRP"; 2)= {2, for q=2,4,..., 1,
0 for all other g.

if n is odd,
Z for q=0,n,
HYRP"; 2)= {2, for ¢g=2,4,..., n—1,
0 for all other q.

If n is odd (n=2k+ 1) multiplication in RP” is defined from the mapping
n,: RP2+1_,CP*. (The mapping n: S** 1_, CP* considered above, sends diametri-

cally opposing points to the same point, and so it can be written as the composition

re_¢iphisms

nf:Z=HY(CP%; Zp— HYRP**1; 2) =12,

(as easily verified in view of the cell construction of CP* and RP%*+1),
One has therefore the following relations between generators €; € H*'(R p2kt+i. 2):.
é¥ =é,., if k'<k. Hence
H*(RP**1; Z)=12Z,[¢,]/{e1}® A [f]

where feHZ**!(RP%*1;Z) is the canonical generator. The inclusion
RP2* c RP2*+! obviously induces isomorphism of the cohomology groups in all
dimensions up to 2k, therefore :

H*(RP*; 2)=2,[¢,]/{ei""}.
For the infinite-dimensional projective space we have
- H*(RP®; 2)=2,[é,].

(3) H*(RP"; Z,).
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Again the additive structure is known:

HYRP"; Z,) = Z, ff q=n,

0 ifg>n.
As for the multiplicative structure, examine the mapping n,: RP**! —» CP* which is
obviously a fibration with the circle as its fibre. The E, term of its spectral sequence

mod 2 is of the following form:

zeros
€ 0 |e | O |2 | O |...]...| 0 |ef]| O
1 0 | & | 0 et ] O ]...f...]0 ek 10
0 1 2 3 4 ... 2k—1 2%k

Hence we conclude, taking into account the groups H?(RP"; Z,), that all the
differentials of the sequence are trivial, E, = E,, and, in consequence, there are the
following relations between the generators a; of H'(RP"; Z,): oy = oy, and a0, =
= g, 4. There remains one question we cannot answer yet: what is o? equal to?
There are two possibilities: either a? = a, which implies o, = &}, or a} = 0. The spectral
sequence alone will not give us the answer.

Actually we have a? = a, but that has to be proved by some ad hoc considerations. If
we knew the necessary preliminaries we could apply notions of differential topology
(Poincaré duality, intersection of cycles) and have a simple proof; now as we are, we
rather go back to the original definition of multiplication in cohomology.

Let K be a finite simplicial co;nplex with enumerated vertices a,, a,, ..., ayand let
¢, €¥°(K; A) and ¢, e 6*(K; A) be cochains, i. e. functions-defined on the p resp. ¢
dimensional simplexes of K vgth values in the ring 4. Their product c¢;c, e 47 *4(K; A)
is defined by the equality

CICZ(aiO, o s ,a‘-p”) = Cl(a,-o, .« e ,aip)CZ(a,‘p+l, .. ,a,-p+q),

where (a;,, a;,, - .., 4;,) is the simplex with the vertices a;,, ..., a;.

If ¢, and c, are cocycles in the cohomology classes y, and y, then ¢, ¢, is a cocycle in
the cohomology class y,7,. Indeed, by definition y,y,=4*(y, ® y,) where 4: K- KX
x K is the diagonal imbedding, and y, ® 7, is the class of the cocycle ¢; @ c,, taking
on ¢ X 7 the value ¢,(6)c,(7) if dim ¢ =p and dim t=¢ and 0 otherwise. Let us now
construct a cellular approximation of the mapping 4.(we notice that K x K is a CW
complex but not a simplicial one). Take the product K x[0, 1] and divide it to
simplexes in the usual way (product (a;,, . . ., a;,) x [0, 1] is divided to m+1 (m+1)-
dimensional simplexes with vertices {(a;, X0, ...,a, %0, @, X 1,...,4; X 1), k=0, 1,
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.. .,m). In each simplex two opposite faces are chosen: (a;, X 0,...,a;, x0)and(a; x 1,
...,a; * 1). The line segments connecting the points of one segment with those of the
other will not cross each other and will fill the whole simplex. Let us consider these
segments in all simplexes of K x I; they cover the whole complex.

i X Kx0
- N N ON o Kx/2)
o X Kx1

Let x € K. Consider the segment passing through the point (x, 1/2). Let its endpoints
be denoted by (po(x),0) and (¢,(x),1). The mapping 4: K-»KxK defined by the
formula A(x) =(@o(x),0,(x)) is an approximation of the diagonal imbedding
(homotopy follows from the fact that if x € o then A(x) € o x o and so it can be connected
with 4(x) by a segment) and is cellular; moreover 4 maps a simplex (a;,,4;,, - - .,aim)c
— K onto the union of the products

(alo) x (aio’ ai]’ aiz’ ey alm
(aio’ al]) X (ail’ aiz’ v aim
(@ig> Giys a;,) * (@, -« 5 i,

homeomorphically and with the orientation preserved.
The product y,7, is the cohomology class of the cocycle 4*(c; ® ¢,). We have

[Z*(Cl ® c3)1(a;,, aip5 - - 54 )= ® CZ)(Z(aios Qi ooy ai,w)) =

lp+q

= .:‘;Z (c; ® c)((@igy - - > a,) %X (@is -+ s aiwq)) =

= ¢, (@, Aiys - - .,a,-p)cz(a,-p, A P c1(@igs Giys- - -5 1,)C(Giys - - s a;, . )

Hence A*(¢; ® ¢;)=c, ¢, i. €. the cocycle ¢, ¢, belongs to the class 7,7, and that
was to be shown.

Let us now consider H*(RP™; Z).1t is sufficient to examine the case n=2 (as there is-

an imbedding RP2< RP" for every n, which induces isomorphism of the cohomology
groups in dimensions 1 and 2). The projective plane may be divided into 24 simplexes
with 13 vertices. The one-dimensional cochain which assigns 1 € Z, to the simplexss 12,
14,15, 19, 23,25,26,27,and O€ Z,totherest,isa cocycle (verify it!) not cohomological
to zero (its scalar product with the cycle 12+23+ 34+ 41, which is not cohomological
to zero, is equal to 1). We have ,

BRIRERR
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2

2 S=a(l Da(2 5=1
2 9=a(l 2a(2 9=0
4 SY=a(l Ha(4 5=0
4 9=a(l 4a(4 9=0
3 N=a 3a(3 7)=0
31)=a(2 3)a(31)=0
5 6=a2 Sa(5 6=
6 H=a(2 6a(6 7)=0
910)=a(2 9a(910)=0

a>(21011) =a(210)a (10 11) = 0
@3 4 H=a@ Ha(4 )=

a® (3

(Here (mn) and (mnp) denote the simplexes w1th vertices with indexes m, n,and m, n, p

411)=a(3

respectively.

. Thus the value of a? taken on the generator of the group H 2,(RP%; 2) is equal to
"~ 1eZ, (this generator is represented by the sum of all simplexes), therefore a®~ 0.

So it has been shown that in the cohomology of RP" mod 2, the square of the
‘generator is the two-dimensional generator and

H*RP™ Z,) =

4a(411)=0

2(4 512)=a(4 5a(512
2(4 7 8)=a(4 Na(7 8
2(
2(

48 9=a(4 8)a(8 9
4111 =a(41)a(1112) =

]

0
0
0
0

(5 613)=a(5 6a(613)=0

(51213 =a(512)a(1213) =

a>(6 T13)=a(6 TNa(713)=0
a*(7 813)=a(7 8)a(813)=0
a>(8 913)=a(8 9a(913)=0

a*(91013)=a(910)a(1013) =
a> (1011 13) = a (10 11) a (11 13) =
@ (111213)=a(1112)a (12 13) =

zz[al]/{“'iﬂ}

for every n. For the infinite-dimensional projective space we have .

H*(RP=, Z,) = Zl]
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§23. KILLING SPACES
Let us see now how to calculate homotopy groups of topological spaces.

Let us be given a topological space X and suppose that our task is to find the
homotopy groups 7 (X) while H*(X) is assumed to be known. In the main we are
interested in the case 7,(X) = 0. If n,(X) = O for i <n, then by the Hurewicz theorem
n,(X)=H,(X; Z). To determine the other homotopy groups we shall use a clever
geometric method. Once the integer cohomology groups of X are known, so is its co-
homology with coefficients in an arbitrary Abelian group 7. Let n=7,(X)=H,(X; Z)
We are going to construct a mapping

f: X-K(n, n) = K(n,(X), n).

One procedure is that homotopy groups are “glued” together, beginning from
7+ (X). By the addition theorem in §10, the group =,(X) will not change while X is
becoming a subspace of a space of type K(=, n).

There is an alternative procedure. We take the fundamental class e in H*(X, ,(X)).
Since H*(X; n) = (X; K(n, n)), the class e gives rise to a well-defined mapping
f: X—=K(=n, n).

Both methods give some mapping of X to K(m, n) that induces isomorphism
between 7,(X) and 7,(K(zn, n)) = n,(X).

We know that every continuous mapping X —»K(v,,(x) n) can be replaced by a
homotopy equivalent fibration. The fibre will be denoted by X|, and called a killing
space for X.

We can show still another procedure, though it is actually only a variant of the first.

Consider the following Serre fibration:

*x~E —mK(n n).
Obviously QK(n,n)=K(n,n—1). We construct over X the fibration induced by
f: X—>K(n, n).

X1, L E~s
K(nn(X)9 n— 1) l l K(TC,,(X), n—1
S

X — K(n,(X), n)

The space X |, of the induced fibration turns out to have the same homotopy type as
~ X|,.. Indeed, if f'is a fibration (as it can be assumed) then so if f, even having the same
fibre. Now E~ *, so the fibre of this last fibration must have homotopy type of X,

Then X|,~Xl,.
. Calculate the homotopy groups of X],. Consider the fibration:

£ xX, k0, n).
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(In the sequel we shall often use the notation K, rather than K(=, n) whenever it causes
no confusion.) The homotopy sequence is

---“’“i(Kn)_’ni—1(X|n)_’7ti—1(X)"*7‘i—1(Kn)“" .-

Let i#n vand i#n+1. Then
ni(Kn) = ni—l(Kn) = 0’
and hence

T (X)) =m; -1 (X).
Thus 7, (X],) = n(X) for k#n, n—1.

0o 1,(X1,) (X)) —— (K= -1 (X]) > - (X) =0.

Consider the homomorphism o. Let it be recalled that f: X—K, induces an
isomorphism of the n-th homotopy groups, i. e. a = f, is an isomorphism. Then
M- 1(X1n) = m(X1,) = 0. Thus

0 for i<n,
(X, = {n'i(X) for izn+1.

The first nontrivial homotopy group of the space X is killed. Suppose that the
cohomology of K(n, n) is known. Then, using the spectral sequence of any of the above
fibrations, we can try to find the cohomology H*(X|,), then H (X|,), and then in view
of the Hurewicz theorem we have 7, ;. ((X) = T+ 1(X|,) = H,+(X1,). Further the same
procedure is repeated, that time with X], instead of X, and so a new killing space
X],+, will have been obtained, and so on.

This means that once the cohomology of K(r, n) is known we are able to compute
the homotopy groups of an arbitrary topological space X. (How far this procedure is
from its actual realization will be clear soon.)

Let us illustrate the method of killing spaces on the following elementary problem
we shall compute n,(S3).

X=8n,(X)=n,(X) =0, m3(X) =Z;n =3

X|3_KLZ_£‘2_4 X; K(n,,(X); n—1)=K(Z; 2),

and, as we already know, K(Z,2)=CP®, i. e. we have X|3——————» S3. The
cohomology of CP® is well known: H*(CP~, Z)= Z[x) where deg x =2 (Z[x] is the
ring of polynomials of the generator x).

Let us examine the spectral sequence. The E, term is
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We have d, =0, i. e. E,=FE;; dy=0 for all k<3,i. e E,=Es=...=E_;
d;(x) e H3(S?, Z). What is the value d;(x) equal to? Clearly d;(x) = + e. Indeed, sup-
pose d3(x) =ke (where k € Z and is not necessarily different from zero). Then for every
k# x1in E there will remain some nontrivial groups on at least one of the diagonals
p+g=2and p+q=3. Therefore at least one of the groups will be different from zero.
This implies that H2(X];; Z) or H3(X];; Z) is different from zero which@ontradicts
that n;(X];) =0 for i<3.

Thus we have ds(x)=ze, hence dy(x*)=kx*"1dy(x)=xkx*"le (degx is
even, thus d; acts with the same rules as the ordinary differential) i. e. E3;?**= Z, , ,
and, in particular, E3?>~2Z,. Because E3;%* are on the odd diagonals 2k+3=p+gq
while E%? are on the even ones, there is in E® at most one nontrivial group on every
diagonal; therefore no nontrivial adjointness arises, and H*(X];; Z)=E_. In par-
ticular, H>(X|5; Z)=E3?>=2,,i.e. H,(X]5; Z)=2Z,. Hence n,(S3|;)=n,(S%)=2Z,.

This and the Freudenthal theorem imply that =, ,(S") =2, for n>3.

§24. THE RANKS OF THE HOMOTOPY GROUPS

As we have seen in the last section, in order to compute homotopy groups, in the first

place we must know the cohomology of the spaces K(=, n).
. This task will prove far from easy.

It is relatively easy to compute the cohomology of these spaces with coefficients in
the rational number field Q. Obviously this information cannot satisfy our needs but at
least gives something. It helps us to find the ranks of the homotopy groups of a space X,
i. e. to find the groups 7,(X)Q Q.

And so, let = be a group with finitely many generators We shall compute
H*(K(n, n); Q).

Because K(n, @ n,,n)=K(n,, n) x K(r,, n), it is sufficient.to compute H*(K(=w, n); Q)
in the case when = is a finite periodical group, or n=2.
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Theorem. (1) If = is a fmijtaly-geferated group then H'(K(n, n); Q) =0 for every
i>0and n>0.

(2) If nis odd then H'(K(Z, n); Q)=Q for i=0, i=nand HY(K(Z, n); Q)=0 for
all other 7, and the square of the generator e, € H"(K(Z, n); Q)in the cohomology ring
is zero (i.e. H*(K(Z, n); Q) = Aq(e,)is the exterior algebra with the single generator
€,)- ‘[(IZ

(3) If n is even then H'(Z,n); Q)=Q for i=kn, k=0, 1, 2,... and H(K(Z,n); Q)=
=0 for all other i, and the k-th power & of the generator e,c H(K(Z,n); Q)
is a generator in H*(K(Z, n); Q) (i. e. H*(K(Z,n); Q) = Q[e,] is the polynomial ring
over Q with a single generator e,).

Proof. First of all we prove a lemma.

Lemma. Any two spaces of type K(m, n) are weakly homotopy equivalent.

Indeed, let X and Y be two K(=, n) spaces; Y is arbitrary while X is supposed to be
that particular one we have constructed in §10. (We recall that X is a CW complex
having a single vertex and no cells in dimensions from 1 ton—1, whose n-dimensional
and (n+ 1)-dimensional cells are in one-to-one correspondence with the generators of
7 and the relations of the generators of 7, respectively.)

Let us fiow construct f: X— Y, a mapping that induces an isomorphism of the
homotopy groups. this is exactly what we need because it will imply that X and Y are
weakly homotopy equivalent and so are any two spaces of type K(x, n).

A mapping f on the n-skeleton of X will be defined as follows. Each n-dimensional
cell of X is a generator of © = =,(Y). The closure of such a cell is an n-dimensional
sphere. Let the vertex of X be mapped to the base point of Y and let each sphere 67 = X
be mapped by means of the mapping S"— Y representing the class ojen = m,(Y).

We now have a mapping on the n-skeleton of X. The obstruction to its extension to
the (n+ 1)-skeleton is in ¥"*1(X; x,(Y)). It assigns to a cell 6" ! < X the element of
n,(Y) given as the restriction pf f to ¢"**. Now the boundary of ¢"** in Xis Z;a;07 and
the element X,a,6" is zero in  (as the very relation that made the cell ¢"** attached to
the complex). Therefore the restriction of fto 6" *! defines the null element in n,,(Y) =
and the mapping may be extended to the (n+ 1)-skeleton.

Further extension meets obtruction only in zero groups (%;(Y)=0 for i>n) and is
therefore possible. ~

Thus we have obtained a mapping f : X — Y that induces an isomorphism between
n,(X)and n,(Y) (by construction) and between 7;(X) and =;(Y) for i # n (because these
are trivial groups). The lemma is proved.

It follows from the lemma that for given = and n, the cohomology rings of any K(z, n)
spaces are the same. We may therefore construct K(z,n), in the course of the proof
of the theorem, in any particular way. (We may assumie, for instance, that K(x, n) =
=QK(n, n+1).)

Let us now return to the theorem. For n= 1 the statement is true. Indeed, as we may
choose the circle for K(Z, 1) we get - ‘ :
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; Q fori=0,1
. H(K(Z, 1); Q) = >
K 1 Q) {0 for i>1.

For K(Z,,, 1) we may take the infinite-dimensional lense space which we get as the
orbit (quotient) space by the action of the group Z, on the infinite-dimensional
sphere. (Here the generatdss of the group assigns to a point (zy, z,,...)€S® the point

or

2ni 2ni

(em z,,em z,,...),

where |z,|24|z,]%+ ... =1 and z, = 0 beginning from some k.)

Indeed, there exists a natural covering p: S* — L,, with fibre Z,,, therefore n,(L,,) =
=2, and n,(L,)=0 for i>1.

Let us compute the integral homology of L,,. First of all we shali look for a cellular
decomposition of L,,.

The sphere S has a special cellular decomposition with m cells in each dimension.
In fact, denote by ¢7*(j=0,1,...,m—1) the set of all points (z,,z,,...) such that

. 2nj
Zur2=Zk43=--. =0, 2., =pe’® where p>0, q):?J; by o?**' the set of all
. . 27j
points (z;,z,, - ..) such that z,,,=z,,3= ... =0 where z,,,=pe*, p>0, <

2n(j+1
<p< —n—(rlnL)— . (The geometric interpretation is the following. The cell ¢ 3* is simply

the upper half-sphere of the standardly imbedded sphere $?* = $=. Transformations
from Z,, are rotations of this half-sphere, taking its base $2*~ ' into itself. As a result we
get m 2k-dimensional half-spheres with a common base, which divide the sphere S$2**1

to m parts. These are the cells S?* and S#*!, respectively.)
Clearly (provided the orientation of the cells is properly chosen) we have oo =

=¢2*" 14 ... 4+ 02k} (the boundary of each cell ¢7* is their common base, which
itself is divided to m cells) and do?** ' =074, — o 7*.

The transformations from Z,, map the cells homeomorphically to each other. After
the factorization process all cells a?(j = 0, ...,m—1)and 6}**'( = 0,1, ...,m—1)
are attached together. So the space L, is divided into the cells 6%, 6,62, . . ., one cell in
each dimension, and

06%* = mg?* 1 k=1,2...),
o1 = 0 k=12 ...).
It follows then that
Z, for i = 2k+1
H{L,;Z)=40 fori=2k
Z fori=0

o

Ry
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Z fori=0
HY(L,;2) =< Z, for i=2k
.0 for i=2k+1
i.e. H¥(K(Z,,,1); Q) =0. |

Now we shall prove that H*(K(7, n);Q) = 0(i>0,n>0) for any finite periodic group
7. For n=1 the statement is proved; assume that it is valid for every n<s—1.

K(m,s—1
Consider the Serre fibration * ~ E —-(7[—3——)—>K(n, s).

Here s— 1> 1, that is s> 2, therefore the base K(m, s) is simply connected, and we
may apply the Leray theorem. The fibre is cohomologically trivial by the assumption of
induction (we are considering a spectral sequence over Q) therefore all differentials are
trivial, i. . E, = E,. On the other hand, E, = G(H*(E; Q)) = Oie. E, = 0.

zeros

Thus H{(K(r, s); Q)) = 0fori>0,s>1, what was to be proved. The first part of the
theorem concerning cohomology of K(z, n) with finite periodic groups, is proved.

\ zeros
N

: 2% —
" Consider the Serre fibration * ~E RGN K(Z, 2k).

Let us now examine the second case of the theorem. The statement is proved for
K(Z,1). Assume that it is valid for all s<2k—1 and, in particular:

Q for i=0,i=2k-1,

H(K(Z,2k—1); Q) =
(K( ); Q) {0 for all other i.

Write out the spectral sequence over Q. The E, term looks as follows

zeros

We have E,=E;=... =Ey; Eps1=FEss2=-.. =En. Then dy alone is
different from zero.
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0
T €2k €2k
t ez _1 2k1
I K €2k ‘e%k
0 dok dok dyy
2 .
0 0 ey 0] eoy 0
2k

As Ejpyy = 0,dy: E¥* 1 Ez"0 is an isomorphism. Therefore E2¢° = Q and
dyles—1) = ey where e, € E3° is the generator. We get H*(K(Z, 2k); Q) = Q

We already know the groups E%? for p<2k: E0=E}% 1= E20_ fZb2k-1_
= Q, the others are trivial. The generator of the group E3%2~1 is the product e,, _ e,,.
From E;.,,=0 it follows that E{?=0 for 2k<q<4k and E%+°=Q while the
generator of the latter is dy, (e, €) = 3;. Hence H**(K(Z, 2k); Q)= Q. Going on
in the same line we get

Q fori=0, 2k, 4k, 6k, 8k, ...,

HY(K(Z, 2k); Q) = {0 for all other i

and the generator of the group H*"%(K(Z, 2k); Q) is the element e7,.

Finally consider the Serre fibration + ~ E—~2"%)_, k(2 2k+1).

The cohomology of K(Z 2k) is already known. Let us look at E,. (In the case of
cohomology spectral sequences in the table for E, we sometimes write in the generators
instead of the groups.)

Since £, = 0, we have £4° = O for p<2k+1, 3 +1 o = E3:11:° = Qand so the
differential d‘z’,ﬁl‘l E3»E31 10 is an isomorphism. Therefore among the groups
E%® = E5¢ , with <2k + 1 the only ones different from zero are E9'>™ and E2+1,2mk
(m=0, 1, 2,...). Their generators are e}, € ES™ and ey, e, € E2X*1.2mk where
ex+1 = d3¥1(ez). We have

d9Art(e) = meZy - (d32 en) =mey teysy
i.e.dy2m™ mk s an isomorphism. (It has been used here that the coefficients are from Qand
so division by m is possxble )
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5 Now in the bottom line we do not have a single nontrivial element to the right from

' 5 the generator f. Indeed, suppose that there exists one and choose one having minimal

dimension. Then between it and f there is a chain of zeros.

i B’ RN
p BN

i P\- —
I A —

The element fmust be in the image of one of the differentials. Now all elements to the
left from it either are in the image of dyy +, o are mapped by d, 4 to some element
certainly different from f. Then there is no nontrivial group to the right from esx 4.
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Thus
; Q fori=0,2k+1,
H(K(Z,2k+1); Q) = {O for the other i
Q.ed.
Let us show how to apply this result to find the ranks of the homotopy groups of
spheres.

Consider the sphere S?**!. We have 7,,.,(S%**!)=2Z. Examine the first
killing space X =S5%*1|,, ., of S**1 (Thus n,(X)=n,(S?**!) for i>2k+2 and
1(X)=0 if i< 2k +2).

Let us compute the rational cohomology of X. Consider the fibration

K(Z, 2k
X=S2k+1|2k+1 ( ) S2k+1.

Because the rational cohomology of S%**! and K(Z,2k) are known we at once
write the term E,:

Aok
bk e%k e%kf
d2k 1
2k eZk ezkf
d2k+1
1 f
2k +1
d2‘= d3 = ... = d2k~='d2k+2 = ... = 0, i. e.
Ey=Ey=...=Ep.1; Enyr=Epis=... =E,.

Because n,(X) = 0 for i <2k +2, we have H(X; Q) = 0 for i <2k+2. This implies
EG?* = EZ+10 = 0, that is, d;2*, : EZ2, »E2+1.0 g an isomorphism. Denote by f

the generator d3;% (e,)eEX*1% The generators of the groups E%2™ and

ESi1?™(m=0,1,...) are e7, and eff (m=0,1,...). We have d3Z¥(eq,)=
=m-e3; ' f, i. e. every differential d32™ is an isomorphism, and E_=0. Thus
H*(S**Y| 34415 @)=0, i. e. all integer cohomologies of X = S2k+t  +1 have finite

order. ’
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Now we give a lemma which will be important infour further investigations.

Lemma. Suppose that the killing space Y|, of a space Y has trivial rational
cohomology. Then all subsequent space Y., >4 have trivial rational cohomology,
too.

Indeed, consider the fibration

K(z, 9)
Y\q+1____£1t_.i—-) Y‘q

where =17, (Y1) =H 1Y lgs Z) is a finite group by assumption. We have proved
that K(r, g) is cohomologically trivial over the rational.numbers whenever 7 is finite.
Then the spectral sequence of the fibration is trivial, too. As Q is a field, we have
H*(Y],+1; @)=0. Similarly H*(Y]; Q) =0 for t>q. Q. e. d.

We note a consequence of the lemma. Assume that H*Y|,; Q) = 0; then ;(Y) is

~ finite for all i>4.

This implies the following. -
Theorem. All homotopy groups (S 2k+ 1Y of the odd-dimensional sphere S2*** are
finite for i>2k+1.

This theorem made no use of the structure of the spheres 1. €. We also have the
following statement. Let X be a CW complex such that '

Q for i =0,2k+1,

Hi X: —
(X; Q) {0 for all other i

and 7,(X) = 0. Then all homotopy groups n(X) with ¢ # 2k +1 are finite, and
Tipp+1(X) 18 @ sumM of Z and a finite group. )

Indeed, H( X4 Q) = HY(X ; Q), for X2 has been obtained from X through a
chain of fibrations whose cohomology over Q was trivial. Further, 75,4 1(X l26) =
= Hyper1 (Xl2ws £) = Z @ finite group-

Finally, H*(K(7 2 + (X); 2k+1); Q) = H*(K(Z, 2k + 1); Q), and we can follow the
same argument as above.

Let us now examine the case of _even-dimensional spheres. Consider the fibration

K(Z,2k—1 ’
Sz"lz,‘-——(——-————)*SZ". For E, we have

wale| ef

m |t H*(sZ9)

et T T
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Since m(S%|,,) = 0 for i <2k, we have E$? ™1 = EZ° = 0, and the differential
d9;?*~* is an isomorphism. Hence

Q fori=0,4k—1,

H 2k - Q) =
(5712 @) {O for all other i.

"Then S?¥|,, is a space whose cohomology satisfies the above assumptions, i. e.
n,(S?*|,,) is finite for i#4k—1 and 7y, (§%*],) =2 @fmte group.
Finally we conclude that

ZQ® finite group for i=4k —1
n($*) =12 for i =2k
finite group for i#2k, 4k —1

We recall that in 74, _ { (S%%) we found an element of infinite order. Now we see that
the elements of this form (and the elements [id] € 7, (S")) are, up to proportionality,
the only elements of infinite order in homotopy groups of spheres.

The theorem of H. Cartan and J. P. Serre

Assume that X'is a simply—connected topological space such that H*(X; Q) is a free
skew-commutative algebra (i. e. an algebra generated by a finite set of homogeneous
elements e, € H"(X; Q), i=1,2, .. .,s with the relations of skew commutativity: e;e;=
=(—1)""ie,e, for all i, j and with no other relations). The rank of the group n,(X) is

equal to the number of the generators of degree k (i. €. the number of the ry, ry, ..., 75
equal to k).

H*(X; Q) decomposes to a tensor product A(xy, X,, - . -, X)X QLYir1s - -5 Vsl
where Q[,+4, - - -, is the ring of polynomials of commuting generators of even

degreesand A is the exterior algebra of generators of odd degrees. Let it be noted that if
the Cartan-Serre theorem is applicable to a space X then either H *(X Q) is an
exterior algebra or X is infinite dimensional. :

In quite a few particular cases we already know the theorem For instance, .if
H*(X; Q)=0 then the ranks of the.groups 7,(X) are equal to zero. The conditions of
the theorem are also satisfied by the cohomology algebras of K(n, n) forany nand n: it
is a free skew-commutative algebra with rank = and generators of dimension n. For
n>2we get rank 7; (K(n n))=0fori ;én and = rank n fori=n(as we already know).

The spaces X = s+ satlsfy the condltlons too. Thus the theorem implies the
formula we proved above in this section:
1" for i = 2k+1,

rank m,(S%** 1) = {0 for i # 2k+1.
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On the other hand the theorem is not applicable to even-dimensional spheres §2%*
because the square of the even-dimensional generator e € H**(S%; Q) is zero.

According to a theorem .of Hopf (see Milnor J. W., Moore J.; On the Structure of
Hopf algebra. Ann. of Math, 1965, v. 81, pp. 211-264) the cohomology algebra of any
H-space (including any topological group) is a free skew-commutative algebra. We
have shown, for instance, that H*(SU(n); Q)= A (e, e, . .. €3n-1)-

The Cartan—Serre theorem implies only that

Z® finite group for i=3,5, ..., 2n—1,
Jinite group for all other i.

n(SU(n)) = {

Proof the Cartan-Serre theorem

Suppose that H*(X; Q) = Aey, ez, ..., e)® Qle,sy, ..., e ]

For the sake of definiteness we shall assume that the smallest among the degrees r 1s
F25 - - ., Isis an odd number 2k + 1. This means that in dimension 2k + 1, H*(X; Q) has
some exterior multiplicative generators; let €1,€3, - . . , €, denote them. Thus dege, =
=2k+1for 1<i<m and m<:.

By assumption, 7, (X) =0. Since H 2(X; Q) =0, Hy(X: 2)= 7,(X) is finite. Consider
the fibration X|, ——K(E—Z(X)—’—LX . Its fibre has trivial cohomology over Q. Then the
E, term of its cohomology spectral sequence with coefficients in Q is of the form

zeros

zZeros

Hence H*(X|,; Q) = H%X; Q). Similarly we get H¥(X|,,; Q) = H¥(X; Q). The
-pace X|,, is 2k-connected by definition, and T X|2) = m(X) for i>2k+1. '

In other words, the ranks of the homotopy groups of X and X | 2x coincide in all
dimensions. Let us calculate Tak+1(X). We have n,,,,(X) = Tou+1( X)) =
=H+1(X|2sZ). On the other hand, H* (X, Q)= H*1(X],,; Q)=a7aQ.

- Then H***1(X|,; )=@7 Z (it is torsion-free, for 7,,(X| 2)=0), and Hy o (X] 205
Z)=(@7 2) @ finite group (the finite group may come from H**2(X|,,; Z)). By.the

Hurewicz theorem, Tak+1 (X [26)=( ®12) @ﬁmte gr oup, i. e. ramk Mo+ 1 (X)=n

-(equal to the number of multiplicative generators of degree 2k +1 in H*(X; Q)).

Now we are going to get rid of the frée generators of dimension 2k + 1. We shall
construct a chain of killing spaces X|3,.,, X |_§_,““,~ -+ X|3k+1 wiping out one

_generator in each: step.
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As we know 7, (X)) = @7 Z @ finite group. To each generator ey, e,,...,e,
of H?**1(X|,,; Q) there corresponds a generator &,,&,,. . .,&, of Ty, 1 (X|,). Take
¢, and construct an imbedding of X|,, in K(Z, 2k + 1) with respect to it. We shall not
only glue up all homotopy groups of X|,, beginning from the dimension 2k + 2 but also
all the generators in 7, , ;(X],,;) except &,. Then the homomorphism of homotopy
groups induced by the imbedding i: X|,, — K(Z, 2k + 1) maps all generators except €,
into zero, while &, will be mapped on the generator of the group n,, ., (K(Z,2k+1)).

Let us examine the induced fibration:

X|5k+1 E~x
K(Z, 2k) 1 lK(Z, 2%k)
Xl k@, 2k+1)

We show that n(X |3+, = m(X|y) for i22k+2 and 7n, ., (X|iyy) =
T+ 1(X | 24)/(€,) where (€,) is th¢ subgroup generated by é,; 1. €. 7y (X |3 41) =
@" ' Z @ finite group.

Indeed, consider the segment

00—y 4 1(X| %k#— Do (X 2) —a”?zk+ 1(K(Z, 2k + 1) my (X | 2xk+1)—0

X[t
of the exact homotopy sequence of the fibration X| Zk—lﬂ‘fl—ﬁK(Z, 2k+1).

By construction, (€,) = e (the generator of n,, , ,(K(Z, 2k +1))) and a(é;,) = O for
2<i<m. Then n,(X |3 +;) = 0and ny, , (X |14+ ;) = Kera where Ker a is the group
spanned on all generators of n,,, (X|,,) except one, namely é,.

So the group 7y, 4 (X |34 + 1) has the free generators é,, . . ., &,,. Again we construct a
similar space X|3,,; such that n(X|%,.,) = n(X|%+,) for i # 2k+1 and
Tae+1(X13+1) =T20+1(X13k+1)/(€;). Thereafter we go on constructing the spaces
e X|gk+i,X§k+1,etC. ) ‘

At some step of this processing we shall find that some term X175, . ; of the chain
i X1, X341, - ., hasfinite n,, , ;. We kill this finite group too. The resulting space
: X| 1+, has the same rational cohomology as X |75, +,. Its homotopy groups are

"

).
- : n(X) for i>2k+1
’ 7[.- X =
. (Klzers {0 for i<2k+1.
1n 3 . . ! . -
(This space is homotopy equivalent to X}, , ; defined in the previous Section. We
il i do not prove this as we are not going to.use it. However, we use the same notation for
ne the new space, The reason why we prefer the latter construction is the following. We

are trying to find the rational cohomology of X/, ., and to reveal that we are again
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within the conditions of the Cartan-Serre theorem. The familiar fibration
X2k +1— X s inconvenient for this purpose as it has a fibre too huge, which makes
the computations difficult to manage. The alternative way we choose allows us to
exhaust this hugeness by small portions.) '

Let us compute the rational cohomology of X l2k+1 1. €. of X|%, .. Consider the

fibration

K(Z, 2k)
Xl;k+l—*——"Xl2k'

For E, we have

Lk | f % f2ey,...flem
~N
&
X7
2k | f ) fer....fem Z
7:\0 Q,
2 %
4-1/ 4‘,
L
1 // e],...,em //

In column zero we have H*(K(Z, 2k); Q)=Q[f] where deg ' = 2k. Obviously

E2= P =E2k+l'
The transgression 7 sends f into e,. To prove this, consider the homomorphism of

spectral sequences induced by the mapping
X|pki—E
K(Z, 2k) 1 Y 1 K(Z, 2k)
X|y ——— K&, 2k+1)

-'We obtain




w

f
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The generator e H** Y(K(Z, 2k + 1); Q) is mapped into e; € H** }(X|,,; Q) and f
into f. Therefore ©(f) = e, in the spectral sequence.

We conclude that neither column zero nor the part of column (2k + 1) above e, will
pass into the E,, ,, term (and even less into E,), for we have dy . (f)=¢f* le,,
e fle =d(qi1 £,

Consider the ideal J(e,) in H*(X|,x; Q) generated by the element e,, and the
subalgebra H which consists of all elements not containing e,. Since the algebra

H*(X|%; Q)

is free, it is the direct sum of the modules H @ J(e,). As e, 1s an exterior generator, we
have J(e,)=e, H. Multiplication in J(e,) 1s trivial.

The intersection of Im d,, , ; with the bottom row of E,, ., coincides with the ideal
J(e,). Indeed, let xe J(e,), i. e. x=e, P. Then x=(df)P=d(f P) (as dP=0).

Let he H¥(X | ,; Q) and helmdy, . o, 1. €. h = dyi 4 4(w). On the other hand, w =
= fp where pe H*(X|y; Q), i. €. h=(df)p=e;peJ(e). In other words when we
pass from E,..,; to E,,, we obtain in the first row the algebra H
= H*(X| 5 Q)/J(ey).

What stands in the upper rows of E; , ,? Each element of E5, , for ¢>0is of the
form f(x+y) where xe J(e;) and y € H, i. e. x=e,x". Now f*x=dy s (3" %)
and d, 4 (f*y)=sf*"*xy+#0. Thus there remains nothing in E%{, , with ¢>0, 1. e
the only nontrivial groups contained in E,, ., , are in the bottom row, and ®,E50 .=
= H=H*(X|,; Q)/J(e,). By consideration of dimensions we obtain Ej,,=E,
= H*(X|ix+1; Q). Hence

H¥X |34+ 15 Q) = H¥X; Q)/J(ey) = Ner e, ..., ¢)Q Qlerry, - &]

We see that by constructing the space X|3,,; we have killed together with a
generator 7, ,(X), a multiplicative generator of H*(X; Q). By repeating this
construction we get a space X |5, for which H¥(X[%+1; Q) = H¥X|34+1; Q) =
=Aps1r---,¢)RQlesy,...;€]), 1. e. we remain within the condition of the
Cartan—Serre theorem. This time however there are no generators in dimension 2k + 1.

Let H?**2 contain the even-dimensional generators e,., €,42,...,€4, where
t+ p<s. We get rid of them step-by-step by constructing the killing spaces X]| L PP
X |3, ,- By literally repeating the above construction we obtain a spectral sequence
such that '

E,=H*(X| 3415 Q)@ H*(K(Z, 2k +1); Q) = H*(X| 344 1; Q) ® A (f) .

where degf =2k +1. Again it turns out that d,, . ,(f)=e,, (assuming that X|3, .,
kills the generator =,, , ,(X) which corresponds to e, ,)
Once again we have the direct sum (of modules) H*(X|,.4,; Q)=H @ J(e,+,)

‘where H consists of the elements not containing e, , , . Let it be noted that, unlike in the
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,
Zk+1| ¢ / fewt, .., fetp

1 / €41, et,p

2k+2

previous case, multiplication in J(e, , ;) is not trivial and J(e, . ;) # e, ; H. As before, the
bottom row alone remains in E_ . It consists of

H*(XITIZk+2; Q) = H¥X|+1; Q)/J(e,4 1) =
= /\(em+laem+2s --"et)® Q[et+29 el+3a ""et+p’ '--7es],

1. . a further multiplicative generator has disappeéred.
By carrying out this argument successively we show that

H*(X|2k+2; Q) = /\(em+1, ...,'8,)@ Q[et+p+1a et es]'

Further we consider X|,, .3, X|2¢+4, - - -, €tc. and obtain the theorem. Q.e.d.

Some remarks concerning the Cartan-Serre theorem

(1) The theorem does not apply to every space. As we observed on the example of
even-dimensional sphere the method of proving the theorem may be universally
applied for computing the ranks of homotopy groups. To get the exact answer for any
simply-connected space, i. e. to express the ranks of the homotopy groups in termSof
the cohomology algebra, is however far from easy.* Nevertheless we have for every
simply-connected space the formula

7,(X) ®Q=H'(X; Q)

fori<2n—1ifny(X) = ... = m,_,(X) = 0(and also if 7,(X), . 7, 41(X) are finite).
The proof is similar to, and even easier than, the Cartan—Serre theorem, as one has to
examine such dimensions where the multiplicative structure of H*(X; Q) has no effect.

We mc.tion an important consequence of this theorem. By the generalized
Freudenthal theorem (see §20) the group my , ;(ZV X) with N> i+ 1 does not depend on

* An adequate theory of rational homotopy types (whlch may be regarded as proper generalization of
the Cartan-Serre theorem) was developed in the late 70°% by D. Sullivan.
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N. Let it be denoted by 7¥(X) and called the i-th stable homotopy group of X. By the
above,

H(X)® Q= H(X; Q)

for every i. Indeed, n¥(X)® Q=ny;(Z¥X)®@ Q=H'(X; Q) if N>i+1, i e
N+i<2N-—1, since n,(Z¥X) =0, for i<N.

(2) In the statement of the Cartan—Serre theorem we assumed that 7, (X)=0. In
the course of the proof we noted the point where this assumption was exploited.
Actually the theorem is valid in much more general circumstances, namely, it is
sufficient to require (beside the condition on the structure of the cohomology)
simplicity of X, i. e. that m,(X) has trivial action on the groups 7 (X), r>1.

Such are, for example, all H-spaces, including all Lie groups.

The condition that X is simple is essential, as there are many examples of spaces with
“good” rational cohomology for which the Cartan—Serre theorem is not valid. Indeed,
let X = RP2.Then n,(X) = Z, and X is not simple. (The generator a € 7,(X) acts on
7,(X) as multiplication by —1.) The rational cohomology groups are trivial in the
positive dimensions, and so, had it been applied, the theorem would say that all
homotopy groups of X are finite. Actually n,(RP?) = na(Sx) = Z. Interestingly the
effect on the rational cohomology is made by a finite fundamental group.

Let us sketch the proof of the Cartan—Serre theorem under the assumption that X is
simple, without going into details.

Assume that X is simple and =#,(X)=G. Simplicity of X implies that G is
commutative (commutativity of the fundamental group is equivalent to 1-simplicity).
Now H,(X;Z) is the abelianization of the fundamental group, H,(X; Z)=G and
rank n,=rank H,=rank H' which is equal to the number of one-dimensional
generators of H*(X; Q); in other words, the theorem is valid for x,(X). Let the gen-
erators of H'(X; Q) be denoted by e,, e,,...; ¢. Consider the universal covering

G
p: T—— X. We shall prove the following
Lemma. :

HX(T; Q) = H*(X; Q)/(ey, €2, - > &)

where (e, e,, . . . , &) is the ideal generated by the one-dimensional generators. (If we
had only “unfolded” a single generator e, rather than constructed the universal
covering, we should have H*(T,,; Q) = H*(X; Q)/(e,).)

The theorem immediately follows from the lemma, as 7,(T) = 0, n(T) = m(X) for
k>2, H¥(T; Q) is free skew-symmetric and so the “simply-connected” Cartan—Serre -
theorem can be applied. : '
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Consider the imbedding X < K(G, 1) induced by the isomorphism of fundamental
groups. Consider the homotopy equivalent fibration X — K(G,1). The fibre is
homotopy equivalent to T . (This is the analogue of the equivalence of the two variants
of killing spaces: as spaces of fibration with fibres K(n,(X), n—1) or as fibres of

fibrations with bases K(z,(X), n).) Now we have the fibration X —T—+K(G, 1). We
cannot however immediately claim that E, is H¥(K(G, 1); H*(T)) since this statement
has only been proved when the base space was simply connected. Let it be recalled,
though, that the important role was played not by the base but by the following
property of the fibre: any paths connecting a pair of points X, y in the base induce
homotopic mappings F,—F,. Or alternatively: Any closed path in the base with
the beginning and the end in the point x induces a mapping F, - F, Homotopic to the
identity. In this case it is ensured by the simplicity of X: the action of the fundamen-
tal group K(G, 1) on the fibre T of the fibration coincides (up to homotopy) with that
of 7, (X)=G on T as of monodromy group; the latter defines on =,(T) the same
automorphisms as =, (X) does on 7,(X)=n,(T), i. e. the identity automorphisms.
Thus E, = H¥K(G, 1); H¥(T)). We have '

Q for ¢g=0

Qd ... Q for g=1
HYK(G, 1); Q) =
rank G
0 . for g>1-

The term E, has the form

//////// zeros
% ’ zeros
% /// zeros
//// zeros
%///// zeros
N e e zeros
4 5 *

Obviously E, = E_, (by dimensional conmderatxon) and H *(X) HY(T)® A (e,
ey, ..., ¢) Qed.

(3) The condition of simplicity of X may still be weakened. Actually it is sufficient to
demand that for-any a e, (X) and f e n,(X) the difference «(f)~f is an elenient of
finite order in x,(X). This already ensures that any transformation from the
monodromy group.induces the identity mapping of H*(T; Q).
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§25. THE RING H*(K(, n); Z,)

Thus far we only made use of the information about the rational cohomology of
K(r, n). Now we shall need H*(K(n, n); Z,).
As we have seen the sequence of killing spaces

X‘_—Xln(_Xln+1(_' v

combined with our informations about H*(K(z, n); Q) enable us to determine the
free components of the homotopy groups of X. The cohomology of K(x, n) mod p will
be needed to find the torsion of the homotopy groups. (The integral cohomology of
K(m, n) is known, too, but we are not going to study them.)

Computing H*K(Z,, n); Z,)

We already have. the topological description of the complex K(Z,; 1), namely
K(Z,,1)=L,. We know the cell structure of it and without difficulty can describe the
cohomology structure.

Theorem. For arbitrary prime numbers p and p’

; 0 if p#p' and i>0,
H'(K(Z,,1): 2,) = {Zp if p=p' and for all i>0.
If p=p’, multiplication in H*(K(Z,,1); Z,) is the following. There exist in
HI(K(Z,,1);Z,) (i=1,2,...) generators ¢; (i=1,2,...) such that =0 11,
(1) for p#2, e;=eye,, e,=e3, es=ee3, eg=€3,. ..,et=0 ie
HYKZ,; 1); Z,) = Z,[e]® Aley).

(2) for p=2, e;=¢’ foralli, i e.

H*(K(Z;, 1); Z,) = Z,[e].

It will be recalled that K(Z,, 1) may be decomposed into the cells 6°, ¢!, . .., one
cell in each dimension, such that
) . 0 ifiiseven
i+1. i — ’
[ 0] {p if i is odd.

The “additive” part of the theorem immediately follows from this. The “multipli-
cative” part is proved thus far for p=2 (K(Z,, 1) = RP).
Let p> 2. Consider the fibration n: L,— CP® (the mapping = assigns to the point

2xi C 2w 2xi 2xi

= = _ ®-1)
(Zo» 21 ---)=(z0€ P ,z1€ P ,...)=...=(20€? ,ze P P00

the point (zo: z; : »- . .) € CP®) with the fibre S'. The E, term in the sbectral sequence
is :
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S 10 |fex] 0 ]fe3| 0 [fe3]| O
1{0]e;[0]e2|0]e3]o0

In view of our knowledge the groups H%(L,; Z,) we conclude that E,=E,=
=...=FE_.and in HY(L,; Z,)=Z, generators e, can be selected such that €y =
=e5 and e e, =e,,,,. Moreover e1=0, since e?= —e¢2 (because of the skew
symmetry of multiplication in the cohomology). Q. e. d.

Now we compute the ring H*(K(Z,,, n); Z,) where p and p’ are prime numbers.
Assume thatp#p’. The cohomology groups of K(Z »» 1) mod p’ are trivial. Suppose the
same is true for K(Z,,n—1). Consider the fibration
K(Z,,n—1
N R RN

The total space is cor)lt/raéible, hence K(Z,, n) is cohomology trivial mod p,
too. Then HYK(Z,,, n); Z,)J = Ofor ¢>0 provided p#p'. Consider H¥K(Z,, n); Z »)- At
first we study the spectral sequence of cohomology mod p of the fibration

K(Z,,1
e B X&) gz o)
For E, we have

2p| bP| O [bPe |bPd

A\

b | 0 | b3 |b3d \
cb2 ’ 0 obzc obzd abzc2
62| 0 |t |b%d [b%?|t2ed
ab | O |abe|abdjabc?labed
b |0 | be{bd|be2|bed bf |bce | bef
0\\0\ C . cxd\{c2 acd of\gce acf
110 ¢ d\k cz\kcd ‘ f\‘c:e\"cf
2p+1 2p+2
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Since n,(K(Z,,2)) =0, we have E 1.4 — () for every ¢. In the column zero there is

Z,[b1® Af(a) if p#2
Z [d] if p=2;

here deg a=1, deg b=2. As the total space of the fibration is contractible, E, = 0, and
so d,(a) #0. Let d,a be denoted by c¢. Then ¢ is obviously the only generator of E 2.0,
Thus the second column in E, is obtained by multiplying the column zero by c. Whatis
the image of b?

As d,(b) belongs to the group E3'* which has the generator ac, we have d,(b) = k- ac
where ke Z,. We prove that k=0. Consider again d,: 0 = d2b = kdyac = ke,

If k#0 in Z, then ¢=0 in H “(K(Z,,2); Z,). This will immediately lead to
contradiction. The element c e H*(K(Z,,2); Z,) is known to have the property that
for any space X and any « € H*(X; Z,) there exists a mapping f: X—K(Z,,2) such
that f*(c)=a (see §17, p. 117; we used the notation e instead of ¢ there). Then
f*(c*)=a? and we obtain for any X and ae H 2(X; Z,) the relation o>=0 which
cannot be true, as seen on the example of CP®. Thus we have proved that ¢*#0in E,.
Literally the same argument may be used to show ¢" #0 for any integer m. (This will be
important in the sequel.)

We have obtained that d,(b) = 0, i. e. b is mapped into Ej. :

Now E_ =0, therefore by consideration of dimension d;b # 0. Let d3b be denoted
by d. There are no generators in E3° and E 3.9 but ¢ and d; by the same reason E, =0.

The differential di'!: E3'—E3 is trivial (E3'' = 0) hence E3° = E3}%, i. e the
generator d comes into E3'°, from the isomorphic group E3°,i.e. we have shown that
Ha(K(Zp’ 2)3 ZP) = ZP'

As we see two generators ¢ and d appear in the zero row of E,. They stand next to
each other and have degrees 2 and 3. Assume that p#2, then d 2=0 (d is of odd
dimension).

We already know that ¢™#0 for any m. We prove that ¢™d # 0 for m<pin E,.
Indeed, let ¢™d =0 for some m < p, while c'd#0 for /<m. The group @  Ebis

0sps2m+2

H*(K(Z,,1); Z,) = {

0gq<w

additively generated by the elements of type s°*b°c'd®> where ¢, = Qor10<p<2m+2,
g,=0or 1 sis arbitrary, r<m+ 1 fore,=0and t<m—1fore, =1, and we have also
d,(ab*c'd®?) = b°c'* 1d*, dy(b°) = sb°~ 14. (If there were, in addition to c and d, a further
multiplicative generator in the bottom row in a dimension <2m+2, it would also
remain in E_, since no element standing to the left could be carried into it.) The
element ac™~'d cannot be therefore the image of any differential. (Those elements
which might be sent into ac™~ 'd, as dimensional considerations permit, according to
the formulas above, either go into some other elements or themselves are images of
differentials.) The only possibility that is left for ac™~ 14 not remaining in E, is that
dy(ac™~'dy # 0. Now dy(ac™™'d) = c"d, hence c"d # 0.

In the first 2p column thus almost all elements are killed by the second and third
differentials. What remains in E,? ‘

b
3

& o8
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Clearly the only elements that remain are b*? (for all k) and b*”~'d (as d;b*p =
= kpb*?~1d=0). They may not be sent by the differentials into the first 2p columns since
all elements are “occupied” there: those of the form ab’c’'d" are not cycles with respect to
the second differential; those of the form b°c'd" for ¢t >0 are in the image of the second
differential; the elements b° and b°d, with the exception of b*? and b*?~ ! d are killed by

the third differential. Here is the diagram of E,:

4p | b2pP

b2l

bPe |bPf

- d\%%

1 N e 'f%/ h

0 1 2 3 2psl 2p+2 2p? 2p241

P
2p b\

Here b” (b” is written conditionally: E, contains no element b anymore and b” is not

the p-th power of anything) can only be killed by the differential d3,,,: ES;?7,—

= E2P11°°. Further, b” may not be sent to any polynomial of ¢ and d (which are all
“occupied”). Its image d,,, , b originates from an element

ec B3P 10 = H?P*1(K(Z,,2); Z,)

which represents a new multiplicative generator.
~ The last difficulty we must overcome in calculating the cohomology of K(Z, 2)
up to dimension 2p?, is to show that d,,_, sends b”~'d to zero. (This is not trivial.
It might be sent either to c?~'da or to ea, what would imply either d,(c” ™ 'da)=
=c?d=0 or d,(ea)=ce=0; none of these does contradict to anything so far.)
Actually d,, ,(b""'d) =0 as it will be shown later. Now we examine the
consequences. .
Once d,,_,(b”"'d) =0, then d,,_,(b*~*d) is not zero but represents an element
which originates from a further multiplicative generator

feEFT20=H*»"%(K(Z,,2); Z,).

The element ae e E37* 11 is carried by d, into ce (hence ce # 0,asce = 0 impiies that
aeremainsin E ). Similarly d;(be) = de # 0. The column above e contains ab’e and b%e.
We have d,(ab’e) = b’ce # 0and d;(b%e) = sb*~ 'de # 0if s does not divide p. Therefore
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this column in E, contains the elements of type 5*Pe and only them. Similarly in the
column over f there remain the elements b*” f. Obviously d, p+1(B7) = kb%~VPe and
dap— (b7 1) = dy,_(bP~1-d-b%*VP) = p*~ VP £ Therefore all elements in the first
2p+2 columns of E, are killed by the differentials, up to 7> and 5~ V¢ which
remain. They go into new generators (of dimensions 2p? and 2p? + 1 (in row zero which
contains no generators or relations under these dimensions (1. e. there are all possible
polynomials of ¢, d, e and f while e? and d? are equal to zero).

By using the same argument we can show that the multiplicative generators of
H*(K(Z,, 2); Z,) are in the dimensions 2, 3; 2p+1, 2p+2; 2p*+1, 2p>+2; . .. while
H*(K(Z,,2);Z,)is tensor product of a polynomial ring of even-dimensional generators
and an exterior algebra of odd-dimensional generators.

The proofis not wholly trivial; even the part we have done contains a gap which will
now be filled in. )

We have to prove that d,, ,(b”~*d)=0.

K(Z,2)
—_—_—

Consider the fibration * ~ E K(Z,3). The E, term of the cohomology

spectral sequence is as follows:

2p | bP

—+5°'3
N

//

Al

0o 1 2 3 ~
Zeros

We already know the cohomology of the fibre ( CP>) As it can easily be seen
H*(K(Z, 3); Z,) has a single additive generator d under the dimension 2p+1 and
d(bP~'d)=0foranyi<2p—3 (by consideration of dimensions). There exists a map-
ping ¢: K(Z,,2)-K(Z,3) such that o*(d)=de H3(K(Zp, 2); Z,). Indeed, such a
mapping may be constructed by using an element of H 3(K(Zp, 2); Z) (as it can be
shown, for instance, by considering the integral spectral sequence of the fibration

K(Z,,1 , .
*(——)—» K(Z,,2)). Wehave H*(K(Z,,2); Z) = Z, hencede H*(K(Z,,2); Z)is
an integral element, i. e. it iS_conta_ined in the image of the homomorphism

pp: H¥(K(Z,,2); 2) - H3(K(2Z,,2); Z,).
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We construct a mapping K(Z,,2) - K(Z, 3) according to any pre-image of d in
H*(K(Z,,2); Z) of d. It has the required properties.
The mapping ¢: K(Z,,2) - K(Z, 3) induces a mapping of the loop spaces and also

of the Serre fibrations
* —> ¥

K(Z, 1) l l K(Z,,2)

KZ,, 2)—K(Z,3)

The homomorphism induced in the spectral sequences send d into d (by con—
struction of ¢) and & into b (b is sent to such an element b’ that d,b’ =d; hence b’ =b);
b?~1d is sent into b~ 'd and, finally, d,,_,(b?'d) =0 is sent into d,,_ 2(b “14),

hence d,,_,(b*"'d)=0.
"~ Remark. We emphasize that in the case considered, we have p#2. It will be
recommended to the reader to examine H*(K(Z,, 2); Z,) and see the situation become
rather complicated, as compared to the case p 2, because d” #0 and even the desirable
relation d?=c? is not valid.

2p+2 | £...] O] O {fg...|fh...
2p+1 | e} O | O |eg.|en..
\
2p CT\O\‘ 0 cpg ch
P2 N
2p-1|d d\b\\o\ &gl an
R p-1 p-L|.P
2p-2 |¢ O\\O\‘c\\i;c h
NN
\‘
\
\\\\
S{cd| O O jcdg|cdh
tLt1c2| 0| O0]c?g|cth
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Let us now consider the ring H *(K(Z,,3); Z,). Consider the fibration

K(Z,,2

«nE-2D gz 3)

In the first four columns d, is trivial by consideration of dimensions. Obviously
d3(c)#0; set d3(c)=g. Then dy(c*)=kc*~'g, and as far as k <g, all elements of type
c*~!g in the third column are “covered” by the differential d; and will not go into E,.
Since d3(d) =0, we have d,(d) #0; set d,(d) =h.

By the same consideration as above the elements of the first 2p columns below c?
are killed by the third and fourth differentials, and the bottom row contains no
generators but g and /4 and no relations but g2 =0.

Again the first anomaly appears when da(c?) = pc?~'g = c and the element c?~ g is
not killed. The generator c? is taken by d,,,, into a new generator

IX= H2p+ 1(K(zpa 3)3 zp):

and ¢?”!g is taken into a new generator j of H?? *2(K(Z,,3); Z,). ,

The elements e and f are also transgressive and so we obtain in H *K(Z,, 3); Z,) six
multiplicative generators of dimensions 3,4; 2p+1,2p+2,2p+2, 2p+ 3. As above, we
can show that there are no more generators under the dimension 2p2+1 and no
relations except those of skew-commutativity (i. e.

H*(K(Z,,3); Z,) and Z,[h,j,e¢1® A (g, i, )
are isomorphic algebras up to the dimension 2p? included).
Further we consider the spectral sequences of the fibrations

_K(ZP_’3)_, K(Z,, 4),

ML ANTR)

etc. The generators we find are transgressive; they go over into H *(K(Z,, 4); Z,) and
then to H¥(K(Z,, 5); Z,), etc. In H¥(K(Z »»1); Z,) they become generators of dimensions
n,n+1,n+2p—-2,n+2p—1, n+2p—1, n+ 2p. No other generators exist under the
dimension n+4p —4. (As a rule, new generators come under transgression from the p-
th power of even-dimensional generators in the fibre. Like H "K(Z,,1);Z,), H HK(Z,,
2); Z,) had two-dimensional generators. Their p-th powers had dimension 2p. That led
to the arising of generators in the dimensions near to 2p. Now the first even-

~ dimensional generator in H *(K(Z,, 3); Z,) has dimension 4, so its p-th power has

dimension 4p. Still larger are the dimensions of the generatorsin H *(K(Z,,n); Z,). Thus
there are no new generators of dimension <n+ 4p—4.

It should be noted that if n is large enough (n>4p —4) then the products of these
generators have dimension >n+4p—4, therefore the cbhomology ring of K(Z,, n)
mod p not only have nofurther generators but even there are no further elements, up to
the dimension n+4p—4.
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Thus we have the following theorem (with some gaps which the reader will bridge).
Theorem. If n>3, the algebra H*(K(Z,, n); Z,) up to the dimension n+4p—4 is
isomorphic to an algebra with generators in the dimensions n,n+1,n+2p—2,n+
+2p—1,n+2p—1, n+2p and without relations except those of skew-commutativity.
If n>4p—4 then

Z, for g=0, n,n+1, n+2p—2,n+2p,
_ z2,®2Z, forg=n+2p—1,
HYK(Z,,n); Z,) = | o for all other g<n+4p—4.

The further calculation of H *(.K(Zp, n); Z,) may be found, for example, in the
article: Postnikov M. M. On the H. Cartan Theorem. Uspechi Mat. Nauk 1966. V. 21.
No. 4. pp. 35-46. ‘

Computing H*(K(Z, n); Zp)

The computations are similar to those above. As we know, K(Z, 2) = CP* thus
H*(K(Z,2);Z,) = Z,[a] where deg a=2. Consider the cohomology spectral sequence

. K(Z,2 ] )
mod p of the fibration = ——(——)—>K(Z, 3) (already examined in some extent). The

E, term and the action of the differentials is shown on the following diagram.

T A\ L~~~

|

\
=
\§
.

i

4p |a?P

_

.

7

_

.
_

2
_

.
.

/
7

N
2p |o® oxBaPocgaP

p-t P - P-13qP- p-1
P \_0(_0_ ____EL?E\__TM oda’]
~
4 a2 SNad N\ (e o {odet o
~d -2 ™
21a \"o«z < Npa \\:.hﬁo oga
. *‘ ) \
1 o N Tt o By g% €
’ 2 3 2p+1 2p+2 2p+3 2p+b 2p+5 2p2+1




198 Il SPECTRAL SEQUENCES

We obtain that H¥(K(Z, 3); Z p)1sin the dimensions <2p? isomorphic to the algebra
Z.[v1® A(x, ) where dega = 3,degp = 2p+1 and degy = 2p+2.
We note that the lack of any generator in the dimension 2 will make the work easier

as there will be no further generators arising in the dimensions near to 2p. Itisleft to the

. K(Z,3
reader to examine the spectral sequences of the fibrations *—i—)—> K(Z, 4),

K2 | k2, 9), ete.

The final result is the next.

Theorem. For n>3 the algebra H *(K(Z,n); Z,) in the dimensions <n+4p—4is
isomorphic to the algebra with generators in the dimensions n, n+2p—2,n + 2p—1and
without any relations except those of skew-commutativity.

For n>4p—4

‘ ) iz, forq=0,n,n+2p—2,n+2p—51,
HYK(Z,n); 2,) = {0 for all other g<n+4p—4.

Now we apply the results to the homotopy groups of spheres. Let p be small as
. . K@, n-1 |
compared to n and not equal to 2. Consider the fibration $7|, . , -—(l—)» .

The spectral sequence is considered over Z,. Since 1=d, is known to be an
isomorphism of E®"~! to E»°, we have

. 0 for 0<i<n+2p—3 and n+2p—2<i<n+4p_4,
H(S",11; Z,)=<2, for i=0, i=n+2p—3 and i=n+2p-2,
something for i>n+4p—4.

In particular, H,, (8", ,: Z,)=0,i. e =, (S contain no summands whose
order is divisible by p (i. e. the p-component of =, , ,(S") is zero).
Consider the following killing space Sne2t

" K(m,m) .
Sz 8"y

where = = Ty 1S ps 1) As we have just shown the group = contains no elements of
orders divisible by p, i. e. H*(K(n, n); Z,) =0 for i> 0. Hence H*(S8",42;2,) =
H*(S"pey; zp)'
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We obtain that 7, ,(S") has no element whose order is divisible by p. Indeed, the
vanishing of the cohomology groups mod p implies that the homology groups mod p
are zero, too, because H*(X; Z2,) = H*(X)® Z,® Tor (H**'(X); Z,).

We may go on in the same way as long as dimension n+ 2p — 3 will not have been
reached. Thus we obtain the following resuit.

Theorem. 7, (S")® Z, =0 for any prime p and any 0<i< 2p—3 1. e. the p-
components of these horﬁotopy groups are zero; here p is assumed to be small
compared to n (more exactly, n—1>2p—3).

Assume now that n>2p—3. In this case 7,,,,-3(S"® Z, = Z,. Indeed,
H"*2273(8"], 15,3 Z,) = Z, where this lonely Z, came from H" 2?7 2(S"|,, ,,_3; Z),
i e Hyypp-3(S"ws2p-33 Z,) = Z,. Thus the theorem may be completed by the
following statement: 7, ,,-3(S"® Z, = Z,, for any prime number p#2 which is

small as compared to n (namely, n—1>2p—3).
Then we have m,,,,-3(S") =Z,»® ... where the last summand is a group whose

order is not divisible by p. It will be proved in the sequel that A=1, 1. e.

7z:n4—2p—3(Sn) = zp@ e

Though it was only proved for p#2, actually it is true for p=2, too, because
Tpsg.2-3(8") = M4 (8" = Z, (n=>3). Thus the relation holds for n,, ,,; for every
prime p. '

Compare this result with the table of homotopy groups at the end of the book. We
read that 7, , ,(S") = Z,, for n>5. Let p=3 and assume n to be large (actually n>4 is
enough). Then, by the theorem, =, , (S") and =, »(S") have no 3-component, as also
seen on the table, since 7, (S") = 7, (8™ = Z, for n>3. Now 2p—3 = 3, hence
7, +3(S™) must have a direct summand Z,. And really we have =, ,3(S") = Z,, =
Z,.P Z,;.

Let us still consider a further example, for instance p=5. Then 2p—3 = 7 i.e. for
those n sufficiently large as compared to 5 we have the equality 7, ;(S") ® Z5 =0 for
i<7. On the table we read that the groups

71:n+1(S") = ZZ’ n23’ nn+2(Sn) = ZZ, n—>—3,
7tn-i»fi(S") = z3® ZZ3a nZS, 7"'n+4(Sn) = 03 n26’
7'[”+5(S") = 0, n?_ 7; 7tn+6(S") = Zz, nZ 5.

have no 5-components, while 7, , ,(S") = Z,40 = Zs@ Z45 for n=9.



