Notes on Galois Theory III

5 The main theorem of Galois theory

Let E be a finite extension of F. Then we have defined the Galois group
Gal(E/F) (although it could be very small). If H is a subgroup of Gal(E/F),
we have defined the fixed field

Ef ={a € E:0(a)=aforal oc H}.

Clearly F' < Ef < E.

On the other hand, given an intermediate field K between F and F, i.e.
a subfield of F containing F', so that F' < K < E, we can define Gal(E/K)
and Gal(E/K) is clearly a subgroup of Gal(E/F), since if o(a) = a for all
a € K, then o(a) = a for all a € F. Thus we have two constructions: one
associates an intermediate field to a subgroup of Gal(E/F'), and the other
associates a subgroup of Gal(E/F’) to an intermediate field. In general, there
is not much that we can say about these two constructions. But if £ is a
Galois extension of F', they turn out to set up a one-to-one correspondence
between subgroups of Gal(E/F') and intermediate fields K between F' and
E, ie. fields K with FF < K < E.

Theorem 5.1 (Main Theorem of Galois Theory). Let E be a Galois ex-
tension of a field F. Then:

(i) There is a one-to-one correspondence between subgroups of Gal(E/F)
and intermediate fields K between F and E, given as follows: To
a subgroup H of Gal(E/F), we associate the fized field E¥, and to
an intermediate field K between F and E we associate the subgroup
Gal(E/K) of Gal(E/F). These constructions are inverses, in other
words

9

Gal(E/E¥)=H
EGal(E/K) - K
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In particular, the fized field of the full Galois group Gal(E/F) is F
and the fized field of the identity subgroup is E:

EGAE/F) _ @ and pld — g

Finally, since there are only finitely many subgroups of Gal(E/F),
there are only finitely many intermediate fields K between F' and E.

(ii) The above correspondence is order reversing with respect to inclusion.

(iii) For every subgroup H of Gal(E/F), [E : EH] = #(H), and hence
[EH . F] = (Gal(E/F) : H). Likewise, for every intermediate field K
between F and E, #(Gal(E/K)) = [E : K].

(iv) For every intermediate field K between F and E, the field is a nor-
mal extension of F if and only if Gal(E/K) is a normal subgroup of
Gal(E/F). In this case, K is a Galois extension of F, and

Qal(K/F) = Gal(E/F) / Gal(E/K).

Example 5.2. 1) Let F = Q and £ = Q(v/2,v3). We keep the notation
of 4) of Example 1.11. If G = Gal(Q(v/2,v3)/Q), then G = {1,071, 02,03}
The subgroups of G are the trivial subgroups {1} and G and the subgroups
(07) of order 2, hence of index 2. As always, E{'} = E and E¢ = F = Q.
Clearly o1(v/3) = v/3. Thus Q(v/3) < E{). But since [Q(v/3) : Q] =2 =
(G : {o1)), in fact Q(v/3) = E“V. Similarly Q(v/2) = E{2). As for E(3),
since 03(\/5) = —/2 and 03(\/5) = —/3, it follows that 03(\/6) = /6.
Thus Q(v/6) = E{73).

It is also interesting to look at this example from the viewpoint of Q(«),
where a = v/24 /3. Using the notation o = 81 = vV24+/3, f2 = —v/2++/3,
B3 = V2 —+/3, and B4 = —v2 — /3 identifies o with (12)(34), oo with
(13)(24), and o3 with (14)(23) € S4. It is then clear that 51 + (2 is fixed by
o1. (Of course, so is S5+ 4, but it is easy to check that f3+04 = —(81+52).)
Hence Q(f1 + f2) < E{70 . On the other hand, 3; + 82 = 2v/3, and degree

arguments as above show that
E) = QB+ B2) = Q(2V3) = Q(V3).

Likewise using the element 314 33 = 2v/2 which is fixed by o9, corresponding
to (13)(24) gives E{%2) = Q(v/2). If we try to do the same thing with
o3 = (14)(23), however, we find that 51 + f4 = 0, since o3(81) = —fu4,
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and hence we obtain the useless information that Q(0) < E3). To find
a nonzero, in fact a nonrational element of E fixed by o3, note that as
03(B1) = =B, o3(B) = (=B1)* = B. Now B} = (V2+/3)* =5+ 26,
and Q(5 + 2v/6) = Q(v/6). Thus as before Q(v/6) = E{73).

2) Take FF = Q and E = Q(v/2,w). List the roots of 3 — 2 as a; = V/2,
ar = w2, a3 = w?¥Y2. Let G = Gal(E/F) = S3. Now S3 has the trivial
subgroups S3 and {1}, as well as A3 = ((123)) and three subgroups of order
2, ((12)), ((13)), and ((23)). Clearly a3 € Q(/2,w){(1?). Since

[Q(az) : Q] = 3 = (S5 : ((12))),

Q(V2,w){12) = Q(as). Similarly Q(¥/2,w)! 1) = Q(az) and Q(V/2, w){23))
Q(av). The remaining fixed field is Q(¥/2,w)?3, which is a degree 2 exten-
sion of Q. Since we already know a subfield of Q(3/2,w) which is a degree
2 extension of Q, namely Q(w) it must be equal to Q(+/2,w)3 by the Main
Theorem. However, let us check directly that w € Q(@/ﬁ7 w)AB. It suffices to
check that the element ¢ of the Galois group corresponding to (123) satisfies
¢(w) = w. Note that w = ay/a; = ag/ay. Thus

p(w) = plag/a1) = p(az)/p(a1) = ag/az = w,

as claimed.
One can also try to describe Q(+V/2, w)<(12)> as follows: Clearly a1 4+ as €
Q(v/2,w) 120, But

o)+ ag = %—i—w%z(l—i—w)%:—wQ%,
since w is a root of 3 — 1 = (x — 1)(2? + z + 1), and hence w? + w +1 = 0.

Thus w?V/2 € Q(¥/2,w) 120 and both fields have degree 3 over Q, hence
they are equal.

Finally, we describe the more complicated example of Gal(v/2,7)/Q):
Elements of Dy: 1, (1234), (1234)2 = (13)(24), (1234)3 = (1432); (13),
(24), (12)(34), (14)(23).

Subgroups of D4: {1} (order 1), Dy (order 8). The three subgroups of
order 4, all automatically normal:

Hy = ((1234))

Hy = {1,(13)(24), (12)(34), (14)(23) }
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The five subgroups of order 2: ((13)(24)), ((13)), ((24)), ((12)(34)), ((14)(23)).
Of these, only ((13)(24)) is normal (it is the center of Dy).

The fixed fields: Label the roots of z* — 2 as
a=vV2 aw=iv2 ag=-V2 = —iv2,

corresponding to the labeling of elements of Dy above. Then the fixed field
of {1} is E = Q(v/2,1) and the fixed field of D, is Q. As for the subgroups
of order 2, they correspond to subfields K of E such that [K : Q] = 4. For
example, it is clear that v/2 € E{2%) and hence by counting degrees that

) — g(¥2).

Likewise E(13) = Q(iv/2). As for B3O note that 2 = (v/2)2
(—+/2)?% is fixed by (13)(24), and also i is fixed by (13)(24) since if o(v/2) =
—/2 and 0(2\4/5) = —iv/2, then

o(i) = a(iV2/V2) = a(iv2) o (V2) = (—iv2)/(—V2) = i.

Thus Q(v/2,1) C EA{13)24) 56 again by counting degrees they are equal. As
for E<(12)(34)>, note that v2 +iv2 = ay + ay € E2)BY) 1y particular,
this forces Q(v/2+iv/2) # F. While it may not be obvious how to compute
the degree [Q(v/2 +iv/2) : Q], note that

(V2 +iv2)? = (14)}(V2)% = 20V2.

Thus [Q(V2 +iv/2) : Q(iv2)] = 2 since v2 + iv2 ¢ Q(iv/2), and since
[Q(iv2) : Q] = 2 since iv/2 = /=2, it follows that

[Q(V2 +iv2) : Q] = [Q(V2 +iv2) : Q(iv2)][Q(iV2) : Q] = 4.

Hence, again by counting degrees, E{(12)(4) — Q(V2 + iv/2). Similarly,
FO9E3) — Q(v/2 —iv/2).

Finally, there are the 3 fields Ef1, EH2 EHs A computation shows that
i € B hence Eft = Q(i). As for the others, clearly EF2 = EA13)(24) A
E2)39) - Since B = Q(v/2,4) and iv/2 € E(126Y) /2 ¢ EH2
and hence Ef2 = Q(iv/2). The other equality E* = Q(y/2) is similar.

Picture of the subgroups of Dy:
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6 Proofs

For simplicity, we shall always assume that F' has characteristic zero, or more
generally is perfect. In particular, every irreducible polynomial f € F[x] has
only simple zeroes in any extension field of F, and every finite extension of
F' is automatically separable.

We begin with a proof of the primitive element theorem:

Theorem 6.1. Let F' be a perfect field and let E be a finite extension of F.
Then there exists o € E such that E = F(«).

Proof. If F is finite we have already proved this. So we may assume that F'
is infinite. We begin with the following:



Claim 6.2. Let L be an extension field of the field K, and suppose that
p,q € K|x|. If the gcd of p and q in L{x] is of the form x — &, then § € K.

Proof of the claim. We have seen that the ged of p, ¢ in K|z| is a ged of p, ¢
in L[z], and hence they are the same if they are both monic. It follows that
x — & is the ged of p, ¢ in K[z]| and in particular that £ € K. O

Returning to the proof of the theorem, it is clearly enough by induction
to prove that F(«,f) = F(v) for some v € F(a, ). Let f = irr(a, F)
and let g = irr(5, F). There is an extension field L of F(«, ) such that
f factors into distinct linear factors in L, say f = (z — aq) - (x — ),
with a = a1, and likewise ¢ factors into distinct linear factors in L, say
g=(x—p1) - (x— Bm), with 5 = B;. Since F is infinite, we can choose a
¢ € F such that, for all ¢, j with j # 1,

o — Oy
B—pB;

(Notice that we need to take j # 1 so that the denominator is not zero.) In
other words, for all ¢ and j with j # 1, a — a; # ¢(8 — ;). Set v = o — ¢f5.
Then

¢ #

y=a—cB#ai—ch
for all ¢ and j with 7 # 1. Thus v+ ¢ = a = aj, but for all j # 1,
v + ¢ # «; for any i.

We are going to construct a polynomial h € F(v)[z] such that h(5) =0
but, for j # 1, h(5;) # 0. Once we have done so, consider the ged of g
and h in L (which contains all of the roots 5 = fi,..., By of g). The only
irreducible factor of g which divides h is x — 3, which divides g only to the
first power. Thus the ged of g and h in L[z] is  — 8. Since h € F(v)[z] by
construction and g € Flz| < F(v)[z], both g and h are elements of F(v)[z].
Then Claim 6.2 implies that 8 € F'(y). But then a = v+ ¢S € F(y) also
(recall ¢ € F by construction). So a, € F(v), but clearly v € F(«, ).
Hence F(a, B) = F(7).

Finally we construct h € F(vy)[z]. Take h = f(y + cx), where f =
irr(a, F). Clearly the coefficients of h lie in F'(). Note that h(8) = f(v +
cfB) = f(a) = 0, but for j # 1, h(B;) = f(v + ¢f;). By construction, for
J # 1,v+cB; # «; for any i, hence y+c¢f; is not aroot of f and so h(f;) # 0.
This completes the construction of A and the proof of the theorem. O

Remark 6.3. For fields F' which are not perfect, there can exist simple
extensions of F' which are not separable as well as finite extensions which
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are not simple. One can show that a finite extension F of a field F' is a simple
extension <= there are only finitely many fields K with F' < K < FE.

Next we turn to a proof of the Main Theorem of Galois Theory. Let E be
a Galois extension of F'. Recall that the correspondence given in the Main
Theorem between intermediate fields K (i.e. F' < K < E and subgroups
H of Gal(E/F) is as follows: given K, we associate to it the subgroup
Gal(E/K) of Gal(E/F), and given H < Gal(E/F), we associate to it the
fixed field E¥ < E. Both of these constructions are clearly order-reversing
with respect to inclusion, in other words

H1 SHQ — EH2 SEHI

and

This is (ii) of the Main Theorem.

Next we prove (i) and (iii). First, suppose that K is an intermediate field.
We will show that EGaE/K) — K Clearly, K < EG2(E/K) Tt thus suffices
to show that, if @ € E but a ¢ K, then there exists a o € Gal(E/K) such
that o(a) # a, i.e. o ¢ EGUE/K) - (This says that EG(EF/K) < K and hence
EGaE/K) — K ) If a ¢ K, then f = irr(a, K) is an irreducible polynomial
in K[z] of degree k > 1. Since E is a normal extension of F' and hence of
K and the root « of the irreducible polynomial f € K[z] lies in E, all roots
a=ai,...,a of fliein E. Choose some ¢ > 1. Then there is an injective
homomorphism v¢: K(a) — E such that ¢|K = Id but (o) = o # . By
the isomorphism extension theorem, there exists an extension L of F such
that the homomorphism ¢ extends to a homomorphism o: E — L. Since E
is a normal extension of F' and o|F =1d, ¢(F) = E and thus o € Gal(E/F).
Since o|K = ¢|K = 1d, in fact 0 € Gal(E/K). We have thus found the
desired o. Note further that, as F is a Galois extension of K, we must have
#(Gal(F/K)) = [F : K].

Now suppose that H is a subgroup of Gal(E/F). We claim that

Gal(E/E™) = H.

Clearly, H < Gal(E/E™) by definition. Thus, #(H) < #(Gal(E/EM)). To
prove that Gal(E/Ef) = H, it thus suffices to show that #(Gal(E/EH)) <
#(H). This will follow from:

Claim 6.4. For all a € E, degpr o < #(H).
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First let us see that Claim 6.4 implies that #(Gal(E/E™)) < #(H).
By the Primitive Element Theorem, there exists an a € E such that E =
Ef(a), and hence degpr o = [E : Ef]. For this o, Claim 6.4 implies that

#(Gal(E/E®)) = [E : Ef] = degpn o < #(H).

Thus #(H) > #(Gal(E/E™)). But H < Gal(E/E™) and hence #(H)
#(Gal(E/EH)). Clearly we must have Gal(E/EH) = H and #(H)
#(Gal(E/E™M)), proving the rest of (i) and (iii).

To prove Claim 6.4, given a € F consider the polynomial

=TI @ - ota).

ceH

A

The number of linear factors of f is #(H ), so that f € E[z] is a polynomial
of degree #(H). We claim that in fact f € E¥[z], in other words that all
coefficients of f lie in the fixed field F¥. It suffices to show that, for all
Y€ H,¥(f) = f. Now, using the fact that 1 is an automorphism, it is easy
to see that
() =] (@ —¢o(a)).
occH

As ¢ € H, the function o0 € H +— 1o is a permutation of the group H (cf.
the proof of Cayley’s theorem!) and so the product [[ cp(z — Yo(a)) is
the same as the product [[ ¢z (2 —o(a)) (but with the order of the factors
changed, if ¢ # Id). Hence ¢(f) = f for all 1 € H, so that f € Ef[z]. Tt
follows that irr(a, E) divides f, and hence that degpn a < deg f = #(H).

Finally we must prove (iv) of the Main Theorem. Let F' < K < E. The
first statement of (iv) is the statement that K is a normal (hence Galois)
extension of F' <= Gal(E/K) is a normal subgroup of Gal(E/F'). A slight
variation of the proof of Theorem 3.5 shows that K is a normal extension
of F < for all 0 € Gal(E/F), o(K) = K. More generally, for K an
arbitrary intermediate field, given o € Gal(E/F'), we can ask for a descrip-
tion of the image subfield o(K) of E. By Part (i) of the Main Theorem
(already proved), it is equivalent to describe the corresponding subgroup
Gal(E/o(K)) of Gal(E/F).

Claim 6.5. In the above notation, Gal(E/o(K)) = o - Gal(E/K) -0~} =
io(Gal(E/K)), where i, is the inner automorphism of Gal(E/F') given by
conjugation by the element o.

Proof. If ¢ € Gal(E/F), then ¢ € Gal(E/o(K)) <= for all a € K,
¢o(o(a)) = o(a) <= foral a € K, o lpo(a) = a < o lpo €
Gal(E/K) < pco-Gal(E/K)-o7L. O]
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Now apply the remarks above: K is a normal extension of F' <= for
all 0 € Gal(E/F), 0(K) = K <= forall 0 € Gal(E/F), Gal(E/o(K)) =
Gal(E/K) (by (i) of the Main Theorem) <= for all 0 € Gal(E/F),
Gal(E/K) =0 -Gal(E/K)-0~! <= Gal(E/K) is a normal subgroup of
Gal(E/F'). This proves the first statement of (iv). We must then show that
Gal(K/F) = Gal(E/F)/Gal(E/K). To see this, given o € Gal(E/F), we
have seen that o(K) = K, and hence that o — o|K defines a function from
Gal(E/F) to Gal(K/F). Clearly, this is a homomorphism, and by definition
its kernel is just the subgroup of ¢ € Gal(E/F') such that o| K = Id, which by
definition is Gal(E/K). To see that Gal(K/F) = G‘ral(E/F)/Graul(E/K)7
by the fundamental homomorphism theorem, it suffices to show that the
homomorphism o +— o|K is a surjective homomorphism from Gal(E/F)
to Gal(K/F). This says that, given a ¢: K — K such that ¢|F = Id,
there exists an extension of 1) to a 0 € Gal(E/F'). But it follows from the
Isomorphism Extension Theorem that, given 1, there exists an extension
field L of F and an extension of ¢ to a homomorphism o: E — L. Since
E is a normal extension of F', 0(E) = E, and hence o € Gal(E/F) is such
that ¢ — ¢ € Gal(K/F). It follows that restriction defines a surjective
homomorphism Gal(E/F) — Gal(K/F) with kernel Gal(E/K), so that
Gal(K/F) = Gal(E/F)/ Gal(E/K). This concludes the proof of the Main
Theorem. O
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