
Notes on Galois Theory III

5 The main theorem of Galois theory

Let E be a finite extension of F . Then we have defined the Galois group
Gal(E/F ) (although it could be very small). IfH is a subgroup of Gal(E/F ),
we have defined the fixed field

EH = {α ∈ E : σ(α) = α for all σ ∈ H}.

Clearly F ≤ EH ≤ E.
On the other hand, given an intermediate field K between F and E, i.e.

a subfield of E containing F , so that F ≤ K ≤ E, we can define Gal(E/K)
and Gal(E/K) is clearly a subgroup of Gal(E/F ), since if σ(a) = a for all
a ∈ K, then σ(a) = a for all a ∈ F . Thus we have two constructions: one
associates an intermediate field to a subgroup of Gal(E/F ), and the other
associates a subgroup of Gal(E/F ) to an intermediate field. In general, there
is not much that we can say about these two constructions. But if E is a
Galois extension of F , they turn out to set up a one-to-one correspondence
between subgroups of Gal(E/F ) and intermediate fields K between F and
E, i.e. fields K with F ≤ K ≤ E.

Theorem 5.1 (Main Theorem of Galois Theory). Let E be a Galois ex-
tension of a field F . Then:

(i) There is a one-to-one correspondence between subgroups of Gal(E/F )
and intermediate fields K between F and E, given as follows: To
a subgroup H of Gal(E/F ), we associate the fixed field EH , and to
an intermediate field K between F and E we associate the subgroup
Gal(E/K) of Gal(E/F ). These constructions are inverses, in other
words

Gal(E/EH) = H;

EGal(E/K) = K.
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In particular, the fixed field of the full Galois group Gal(E/F ) is F
and the fixed field of the identity subgroup is E:

EGal(E/F ) = F and E{Id} = E.

Finally, since there are only finitely many subgroups of Gal(E/F ),
there are only finitely many intermediate fields K between F and E.

(ii) The above correspondence is order reversing with respect to inclusion.

(iii) For every subgroup H of Gal(E/F ), [E : EH ] = #(H), and hence
[EH : F ] = (Gal(E/F ) : H). Likewise, for every intermediate field K
between F and E, #(Gal(E/K)) = [E : K].

(iv) For every intermediate field K between F and E, the field is a nor-
mal extension of F if and only if Gal(E/K) is a normal subgroup of
Gal(E/F ). In this case, K is a Galois extension of F , and

Gal(K/F ) ∼= Gal(E/F )
/

Gal(E/K).

Example 5.2. 1) Let F = Q and E = Q(
√

2,
√

3). We keep the notation
of 4) of Example 1.11. If G = Gal(Q(

√
2,
√

3)/Q), then G = {1, σ1, σ2, σ3}.
The subgroups of G are the trivial subgroups {1} and G and the subgroups
〈σi〉 of order 2, hence of index 2. As always, E{1} = E and EG = F = Q.
Clearly σ1(

√
3) =

√
3. Thus Q(

√
3) ≤ E〈σ1〉. But since [Q(

√
3) : Q] = 2 =

(G : 〈σ1〉), in fact Q(
√

3) = E〈σ1〉. Similarly Q(
√

2) = E〈σ2〉. As for E〈σ3〉,
since σ3(

√
2) = −

√
2 and σ3(

√
3) = −

√
3, it follows that σ3(

√
6) =

√
6.

Thus Q(
√

6) = E〈σ3〉.
It is also interesting to look at this example from the viewpoint of Q(α),

where α =
√

2+
√

3. Using the notation α = β1 =
√

2+
√

3, β2 = −
√

2+
√

3,
β3 =

√
2 −
√

3, and β4 = −
√

2 −
√

3 identifies σ1 with (12)(34), σ2 with
(13)(24), and σ3 with (14)(23) ∈ S4. It is then clear that β1 + β2 is fixed by
σ1. (Of course, so is β3+β4, but it is easy to check that β3+β4 = −(β1+β2).)
Hence Q(β1 + β2) ≤ E〈σ1〉. On the other hand, β1 + β2 = 2

√
3, and degree

arguments as above show that

E〈σ1〉 = Q(β1 + β2) = Q(2
√

3) = Q(
√

3).

Likewise using the element β1+β3 = 2
√

2 which is fixed by σ2, corresponding
to (13)(24) gives E〈σ2〉 = Q(

√
2). If we try to do the same thing with

σ3 = (14)(23), however, we find that β1 + β4 = 0, since σ3(β1) = −β4,
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and hence we obtain the useless information that Q(0) ≤ E〈σ3〉. To find
a nonzero, in fact a nonrational element of E fixed by σ3, note that as
σ3(β1) = −β1, σ3(β21) = (−β1)2 = β21 . Now β21 = (

√
2 +
√

3)2 = 5 + 2
√

6,
and Q(5 + 2

√
6) = Q(

√
6). Thus as before Q(

√
6) = E〈σ3〉.

2) Take F = Q and E = Q( 3
√

2, ω). List the roots of x3 − 2 as α1 = 3
√

2,
α2 = ω 3

√
2, α3 = ω2 3

√
2. Let G = Gal(E/F ) ∼= S3. Now S3 has the trivial

subgroups S3 and {1}, as well as A3 = 〈(123)〉 and three subgroups of order
2, 〈(12)〉, 〈(13)〉, and 〈(23)〉. Clearly α3 ∈ Q( 3

√
2, ω)〈(12)〉. Since

[Q(α3) : Q] = 3 = (S3 : 〈(12)〉),

Q( 3
√

2, ω)〈(12)〉 = Q(α3). Similarly Q( 3
√

2, ω)〈(13)〉 = Q(α2) and Q( 3
√

2, ω)〈(23)〉 =
Q(α1). The remaining fixed field is Q( 3

√
2, ω)A3 , which is a degree 2 exten-

sion of Q. Since we already know a subfield of Q( 3
√

2, ω) which is a degree
2 extension of Q, namely Q(ω) it must be equal to Q( 3

√
2, ω)A3 by the Main

Theorem. However, let us check directly that ω ∈ Q( 3
√

2, ω)A3 . It suffices to
check that the element ϕ of the Galois group corresponding to (123) satisfies
ϕ(ω) = ω. Note that ω = α2/α1 = α3/α2. Thus

ϕ(ω) = ϕ(α2/α1) = ϕ(α2)/ϕ(α1) = α3/α2 = ω,

as claimed.
One can also try to describe Q( 3

√
2, ω)〈(12)〉 as follows: Clearly α1 +α2 ∈

Q( 3
√

2, ω)〈(12)〉. But

α1 + α2 =
3
√

2 + ω
3
√

2 = (1 + ω)
3
√

2 = −ω2 3
√

2,

since ω is a root of x3 − 1 = (x− 1)(x2 + x+ 1), and hence ω2 + ω + 1 = 0.
Thus ω2 3

√
2 ∈ Q( 3

√
2, ω)〈(12)〉, and both fields have degree 3 over Q, hence

they are equal.

Finally, we describe the more complicated example of Gal( 4
√

2, i)/Q):

Elements of D4: 1, (1234), (1234)2 = (13)(24), (1234)3 = (1432); (13),
(24), (12)(34), (14)(23).

Subgroups of D4: {1} (order 1), D4 (order 8). The three subgroups of
order 4, all automatically normal:

H1 = 〈(1234)〉
H2 = {1, (13)(24), (12)(34), (14)(23)}
H3 = {1, (13)(24), (13), (24)}.
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The five subgroups of order 2: 〈(13)(24)〉, 〈(13)〉, 〈(24)〉, 〈(12)(34)〉, 〈(14)(23)〉.
Of these, only 〈(13)(24)〉 is normal (it is the center of D4).

The fixed fields: Label the roots of x4 − 2 as

α1 =
4
√

2; α2 = i
4
√

2; α3 = − 4
√

2; α4 = −i 4
√

2,

corresponding to the labeling of elements of D4 above. Then the fixed field
of {1} is E = Q( 4

√
2, i) and the fixed field of D4 is Q. As for the subgroups

of order 2, they correspond to subfields K of E such that [K : Q] = 4. For
example, it is clear that 4

√
2 ∈ E〈(24)〉 and hence by counting degrees that

E〈(24)〉 = Q(
4
√

2).

Likewise E〈(13)〉 = Q(i 4
√

2). As for E〈(13)(24)〉, note that
√

2 = ( 4
√

2)2 =
(− 4
√

2)2 is fixed by (13)(24), and also i is fixed by (13)(24) since if σ( 4
√

2) =
− 4
√

2 and σ(i 4
√

2) = −i 4
√

2, then

σ(i) = σ(i
4
√

2/
4
√

2) = σ(i
4
√

2)/σ(
4
√

2) = (−i 4
√

2)/(− 4
√

2) = i.

Thus Q(
√

2, i) ⊆ E〈(13)(24)〉, so again by counting degrees they are equal. As
for E〈(12)(34)〉, note that 4

√
2 + i 4

√
2 = α1 + α2 ∈ E〈(12)(34)〉. In particular,

this forces Q( 4
√

2 + i 4
√

2) 6= F . While it may not be obvious how to compute
the degree [Q( 4

√
2 + i 4

√
2) : Q], note that

(
4
√

2 + i
4
√

2)2 = (1 + i)2(
4
√

2)2 = 2i
√

2.

Thus [Q( 4
√

2 + i 4
√

2) : Q(i
√

2)] = 2 since 4
√

2 + i 4
√

2 /∈ Q(i
√

2), and since
[Q(i
√

2) : Q] = 2 since i
√

2 =
√
−2, it follows that

[Q(
4
√

2 + i
4
√

2) : Q] = [Q(
4
√

2 + i
4
√

2) : Q(i
√

2)][Q(i
√

2) : Q] = 4.

Hence, again by counting degrees, E〈(12)(34)〉 = Q( 4
√

2 + i 4
√

2). Similarly,
E〈(14)(23)〉 = Q( 4

√
2− i 4

√
2).

Finally, there are the 3 fields EH1 , EH2 , EH3 . A computation shows that
i ∈ EH1 , hence EH1 = Q(i). As for the others, clearly EH2 = E〈(13)(24)〉 ∩
E〈(12)(34)〉. Since E〈(13)(24)〉 = Q(

√
2, i) and i

√
2 ∈ E〈(12)(34)〉, i

√
2 ∈ EH2

and hence EH2 = Q(i
√

2). The other equality EH3 = Q(
√

2) is similar.

Picture of the subgroups of D4:
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D4

H2 H1 H3

〈(14)(23)〉 〈(12)(34)〉 〈(13)(24)〉 〈(13)〉 〈(24)〉

{1}

Picture of the intermediate subfields between E and Q:

E

Q( 4
√

2− i 4
√

2) Q( 4
√

2 + i 4
√

2) Q(
√

2, i) Q(i 4
√

2) Q( 4
√

2)

Q(i
√

2) Q(i) Q(
√

2)

Q

6 Proofs

For simplicity, we shall always assume that F has characteristic zero, or more
generally is perfect. In particular, every irreducible polynomial f ∈ F [x] has
only simple zeroes in any extension field of F , and every finite extension of
F is automatically separable.

We begin with a proof of the primitive element theorem:

Theorem 6.1. Let F be a perfect field and let E be a finite extension of F .
Then there exists α ∈ E such that E = F (α).

Proof. If F is finite we have already proved this. So we may assume that F
is infinite. We begin with the following:
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Claim 6.2. Let L be an extension field of the field K, and suppose that
p, q ∈ K[x]. If the gcd of p and q in L[x] is of the form x− ξ, then ξ ∈ K.

Proof of the claim. We have seen that the gcd of p, q in K[x] is a gcd of p, q
in L[x], and hence they are the same if they are both monic. It follows that
x− ξ is the gcd of p, q in K[x] and in particular that ξ ∈ K.

Returning to the proof of the theorem, it is clearly enough by induction
to prove that F (α, β) = F (γ) for some γ ∈ F (α, β). Let f = irr(α, F )
and let g = irr(β, F ). There is an extension field L of F (α, β) such that
f factors into distinct linear factors in L, say f = (x − α1) · · · (x − αn),
with α = α1, and likewise g factors into distinct linear factors in L, say
g = (x− β1) · · · (x− βm), with β = β1. Since F is infinite, we can choose a
c ∈ F such that, for all i, j with j 6= 1,

c 6= α− αi
β − βj

.

(Notice that we need to take j 6= 1 so that the denominator is not zero.) In
other words, for all i and j with j 6= 1, α− αi 6= c(β − βj). Set γ = α− cβ.
Then

γ = α− cβ 6= αi − cβj
for all i and j with j 6= 1. Thus γ + cβ = α = α1, but for all j 6= 1,
γ + cβj 6= αi for any i.

We are going to construct a polynomial h ∈ F (γ)[x] such that h(β) = 0
but, for j 6= 1, h(βj) 6= 0. Once we have done so, consider the gcd of g
and h in L (which contains all of the roots β = β1, . . . , βm of g). The only
irreducible factor of g which divides h is x− β, which divides g only to the
first power. Thus the gcd of g and h in L[x] is x− β. Since h ∈ F (γ)[x] by
construction and g ∈ F [x] ≤ F (γ)[x], both g and h are elements of F (γ)[x].
Then Claim 6.2 implies that β ∈ F (γ). But then α = γ + cβ ∈ F (γ) also
(recall c ∈ F by construction). So α, β ∈ F (γ), but clearly γ ∈ F (α, β).
Hence F (α, β) = F (γ).

Finally we construct h ∈ F (γ)[x]. Take h = f(γ + cx), where f =
irr(α, F ). Clearly the coefficients of h lie in F (γ). Note that h(β) = f(γ +
cβ) = f(α) = 0, but for j 6= 1, h(βj) = f(γ + cβj). By construction, for
j 6= 1, γ+cβj 6= αi for any i, hence γ+cβj is not a root of f and so h(βj) 6= 0.
This completes the construction of h and the proof of the theorem.

Remark 6.3. For fields F which are not perfect, there can exist simple
extensions of F which are not separable as well as finite extensions which
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are not simple. One can show that a finite extension E of a field F is a simple
extension ⇐⇒ there are only finitely many fields K with F ≤ K ≤ E.

Next we turn to a proof of the Main Theorem of Galois Theory. Let E be
a Galois extension of F . Recall that the correspondence given in the Main
Theorem between intermediate fields K (i.e. F ≤ K ≤ E and subgroups
H of Gal(E/F ) is as follows: given K, we associate to it the subgroup
Gal(E/K) of Gal(E/F ), and given H ≤ Gal(E/F ), we associate to it the
fixed field EH ≤ E. Both of these constructions are clearly order-reversing
with respect to inclusion, in other words

H1 ≤ H2 =⇒ EH2 ≤ EH1

and
F ≤ K1 ≤ K2 ≤ E =⇒ Gal(E/K2) ≤ Gal(E/K1).

This is (ii) of the Main Theorem.
Next we prove (i) and (iii). First, suppose that K is an intermediate field.

We will show that EGal(E/K) = K. Clearly, K ≤ EGal(E/K). It thus suffices
to show that, if α ∈ E but α /∈ K, then there exists a σ ∈ Gal(E/K) such
that σ(α) 6= α, i.e. α /∈ EGal(E/K). (This says that EGal(E/K) ≤ K and hence
EGal(E/K) = K.) If α /∈ K, then f = irr(α,K) is an irreducible polynomial
in K[x] of degree k > 1. Since E is a normal extension of F and hence of
K and the root α of the irreducible polynomial f ∈ K[x] lies in E, all roots
α = α1, . . . , αk of f lie in E. Choose some i > 1. Then there is an injective
homomorphism ψ : K(α) → E such that ψ|K = Id but ψ(α) = αi 6= α. By
the isomorphism extension theorem, there exists an extension L of E such
that the homomorphism ψ extends to a homomorphism σ : E → L. Since E
is a normal extension of F and σ|F = Id, σ(E) = E and thus σ ∈ Gal(E/F ).
Since σ|K = ψ|K = Id, in fact σ ∈ Gal(E/K). We have thus found the
desired σ. Note further that, as E is a Galois extension of K, we must have
#(Gal(E/K)) = [E : K].

Now suppose that H is a subgroup of Gal(E/F ). We claim that

Gal(E/EH) = H.

Clearly, H ≤ Gal(E/EH) by definition. Thus, #(H) ≤ #(Gal(E/EH)). To
prove that Gal(E/EH) = H, it thus suffices to show that #(Gal(E/EH)) ≤
#(H). This will follow from:

Claim 6.4. For all α ∈ E, degEH α ≤ #(H).
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First let us see that Claim 6.4 implies that #(Gal(E/EH)) ≤ #(H).
By the Primitive Element Theorem, there exists an α ∈ E such that E =
EH(α), and hence degEH α = [E : EH ]. For this α, Claim 6.4 implies that

#(Gal(E/EH)) = [E : EH ] = degEH α ≤ #(H).

Thus #(H) ≥ #(Gal(E/EH)). But H ≤ Gal(E/EH) and hence #(H) ≤
#(Gal(E/EH)). Clearly we must have Gal(E/EH) = H and #(H) =
#(Gal(E/EH)), proving the rest of (i) and (iii).

To prove Claim 6.4, given α ∈ E consider the polynomial

f =
∏
σ∈H

(x− σ(α)).

The number of linear factors of f is #(H), so that f ∈ E[x] is a polynomial
of degree #(H). We claim that in fact f ∈ EH [x], in other words that all
coefficients of f lie in the fixed field EH . It suffices to show that, for all
ψ ∈ H, ψ(f) = f . Now, using the fact that ψ is an automorphism, it is easy
to see that

ψ(f) =
∏
σ∈H

(x− ψσ(α)).

As ψ ∈ H, the function σ ∈ H 7→ ψσ is a permutation of the group H (cf.
the proof of Cayley’s theorem!) and so the product

∏
σ∈H(x − ψσ(α)) is

the same as the product
∏
σ∈H(x− σ(α)) (but with the order of the factors

changed, if ψ 6= Id). Hence ψ(f) = f for all ψ ∈ H, so that f ∈ EH [x]. It
follows that irr(α,EH) divides f , and hence that degEH α ≤ deg f = #(H).

Finally we must prove (iv) of the Main Theorem. Let F ≤ K ≤ E. The
first statement of (iv) is the statement that K is a normal (hence Galois)
extension of F ⇐⇒ Gal(E/K) is a normal subgroup of Gal(E/F ). A slight
variation of the proof of Theorem 3.5 shows that K is a normal extension
of F ⇐⇒ for all σ ∈ Gal(E/F ), σ(K) = K. More generally, for K an
arbitrary intermediate field, given σ ∈ Gal(E/F ), we can ask for a descrip-
tion of the image subfield σ(K) of E. By Part (i) of the Main Theorem
(already proved), it is equivalent to describe the corresponding subgroup
Gal(E/σ(K)) of Gal(E/F ).

Claim 6.5. In the above notation, Gal(E/σ(K)) = σ · Gal(E/K) · σ−1 =
iσ(Gal(E/K)), where iσ is the inner automorphism of Gal(E/F ) given by
conjugation by the element σ.

Proof. If ϕ ∈ Gal(E/F ), then ϕ ∈ Gal(E/σ(K)) ⇐⇒ for all α ∈ K,
ϕ(σ(α)) = σ(α) ⇐⇒ for all α ∈ K, σ−1ϕσ(α) = α ⇐⇒ σ−1ϕσ ∈
Gal(E/K) ⇐⇒ ϕ ∈ σ ·Gal(E/K) · σ−1.
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Now apply the remarks above: K is a normal extension of F ⇐⇒ for
all σ ∈ Gal(E/F ), σ(K) = K ⇐⇒ for all σ ∈ Gal(E/F ), Gal(E/σ(K)) =
Gal(E/K) (by (i) of the Main Theorem) ⇐⇒ for all σ ∈ Gal(E/F ),
Gal(E/K) = σ · Gal(E/K) · σ−1 ⇐⇒ Gal(E/K) is a normal subgroup of
Gal(E/F ). This proves the first statement of (iv). We must then show that

Gal(K/F ) ∼= Gal(E/F )
/

Gal(E/K). To see this, given σ ∈ Gal(E/F ), we

have seen that σ(K) = K, and hence that σ 7→ σ|K defines a function from
Gal(E/F ) to Gal(K/F ). Clearly, this is a homomorphism, and by definition
its kernel is just the subgroup of σ ∈ Gal(E/F ) such that σ|K = Id, which by

definition is Gal(E/K). To see that Gal(K/F ) ∼= Gal(E/F )
/

Gal(E/K),

by the fundamental homomorphism theorem, it suffices to show that the
homomorphism σ 7→ σ|K is a surjective homomorphism from Gal(E/F )
to Gal(K/F ). This says that, given a ψ : K → K such that ψ|F = Id,
there exists an extension of ψ to a σ ∈ Gal(E/F ). But it follows from the
Isomorphism Extension Theorem that, given ψ, there exists an extension
field L of E and an extension of ψ to a homomorphism σ : E → L. Since
E is a normal extension of F , σ(E) = E, and hence σ ∈ Gal(E/F ) is such
that σ 7→ ψ ∈ Gal(K/F ). It follows that restriction defines a surjective
homomorphism Gal(E/F ) → Gal(K/F ) with kernel Gal(E/K), so that

Gal(K/F ) ∼= Gal(E/F )
/

Gal(E/K). This concludes the proof of the Main

Theorem.
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