
Notes on Galois Theory II

2 The isomorphism extension theorem

We begin by proving the converse to Lemma 1.7 in a special case. Suppose
that E = F (α) is a simple extension of F and let f = irr(α, F, x). If
ψ : F → K is a homomorphism, L is an extension field of K, and ϕ : E → L
is an extension of ψ, the ϕ(α) is a root of ψ(f). The following is the converse
to this statement.

Lemma 2.1. Let F be a field, let E = F (α) be a simple extension of F ,
where α is algebraic over F and f = irr(α, F, x), let ψ : F → K be a homo-
morphism from F to a field K, and let L be an extension of K. If β ∈ L
is a root of ψ(f), then there is a unique extension of ψ to a homomorphism
ϕ : E → L such that ϕ(α) = β.

Hence there is a bijection from the set of homomorphisms ϕ : E → L
such that ϕ(a) = ψ(a) for all a ∈ F to the set of roots of the polynomial
ψ(f) in L, where ψ(f) ∈ K[x] is the polynomial obtained by applying the
homomorphism ψ to coefficients of f .

Proof. Let β ∈ L be a root of ψ(f). We know by basic field theory that
there is an isomorphism σ : F (α) ∼= F [x]/(f) with the property that σ(a) =
a + (f) for a ∈ F and σ(α) = x + (f). Let evβ ◦ψ be the homomorphism
F [x]→ L defined as follows: given a polynomial g ∈ F [x], let (as above) ψ(g)
be the polynomial obtained by applying ψ to the coefficients of g, and let
evβ ◦ψ(g) = ψ(g)(β) = evβ(ψ(g) be the evaluation of ψ(g) at β. Then evβ ◦ψ
is a homomorphism from F [x] to K. For a ∈ F , evβ ◦ψ(a) = ψ(a), and
evβ ◦ψ(x) = β. Moreover f ∈ Ker evβ ◦ψ, since ψ(f)(β) = 0 by hypothesis.
Thus (f) ⊆ Ker evβ ◦ψ and hence (f) = Ker evβ ◦ψ since (f) is a maximal
ideal and evβ ◦ψ is not the trivial homomorphism. Then there is an induced
homomorphism e : F [x]/(f) → L. Let ϕ be the induced homomorphism
e ◦ σ : F (α) → L. It is easily checked to satisfy: ϕ(a) = ψ(a) for all a ∈ F
and ϕ(α) = β.
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Next we claim that ϕ is uniquely specified by the conditions ϕ(a) = ψ(a)
for all a ∈ F and ϕ(α) = β. In fact, every element of E = F (α) can be
written as

∑N
i=0 aiα

i for some ai ∈ N . Then

ϕ(
N∑
i=0

aiα
i) =

N∑
i=0

ϕ(ai)ϕ(α)i =
N∑
i=0

ψ(ai)β
i.

Thus ϕ is uniquely specified by the conditions above. In summary, then,
every extension ϕ of ψ satisfies: ϕ(α) is a root of ψ(f), ϕ is uniquely deter-
mined by the value ϕ(α) ∈ L, and all possible roots of ψ(f) in L arise as
ϕ(α) for some extension ϕ of ψ. Thus the function ϕ 7→ ϕ(α) is a function
from the set of extensions ϕ of ψ to the set of roots of ψ(f) in L. This
function is injective (by the uniqueness statement) and surjective (by the
existence statement), and thus defines the bijection in the second paragraph
of the statement of the lemma.

Corollary 2.2. Let E be a finite extension of a field F , and suppose that
E = F (α) for some α ∈ E, i.e. E is a simple extension of F . Let K be a
field and let ψ : F → K be a homomorphism. Then:

(i) For every extension L of K, there exist at most [E : F ] homomor-
phisms ϕ : E → L extending ψ, i.e. such that ϕ(α) = ψ(α) for all
α ∈ F .

(ii) There exists an extension field L of K and a homomorphism ϕ : E → L
extending ψ.

(iii) If F has characteristic zero (or F is finite or more generally perfect),
then there exists an extension field L of K such that there are exactly
[E : F ] homomorphisms ϕ : E → L extending ψ.

Proof. Let n = deg f = [E : F ]. Then degψ(f) = n as well. Lemma 2.1
implies that the extensions of ψ to a homomorphism ϕ : F (α) → L are in
one-to-one correspondence with the β ∈ K such that β is a root of ψ(f),
where f = irr(α, F, x). In this case, since ψ(f) has at most n = [E : F ] roots
in any extension field L, there are at most n extensions of ψ, proving (i). To
see (ii), choose an extension field L of K such that ψ(f) has a root β in L.
Thus there will be at least one homomorphism ϕ : F (α) → L extending ψ.
To see (iii), choose an extension field L of K such that ψ(f) factors into a
product of linear factors in L. Under the assumption that the characteristic
of F is zero, or F is finite or perfect, the irreducible polynomial f ∈ F [x]
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has no multiple roots in any extension field, and the same will be true of
the polynomial ψ(f) ∈ ψ(F )[x], where ψ(F ) is the image of F in K, since
ψ(f) is also irreducible. Thus there are n distinct roots of ψ(f) in L, and
hence n different extensions of ψ to a homomorphism ϕ : F (α)→ L.

The situation of fields in the second and third statements of the corollary
can be summarized by the following diagram:

E L

F
ψ // K

Let us give some examples to show how one can use Lemma 2.1, espe-
cially in case the homomorphism ψ is not the identity:

Example 2.3. (1) Consider the sequence of extensions Q ≤ Q(
√

2) ≤
Q(
√

2,
√

3). As we have seen, there are two different automorphisms of
Q(
√

2), Id and σ, where σ(a + b
√

2) = a − b
√

2. We have seen that
f = x2 − 3 is irreducible in Q(

√
2)[x]. Since in fact f ∈ Q[x], σ(f) = f ,

and clearly Id(f) = f . In particular, the roots of σ(f) = f are ±
√

3. Ap-
plying Lemma 2.1 to the case F = Q(

√
2), E = F (

√
3) = Q(

√
2,
√

3) = K,
and ψ = Id or ψ = σ, we see that there are two extensions of Id to a
homomorphism (necessarily an automorphism) ϕ : E → E. One of these
satisfies: ϕ(

√
3) =

√
3, hence ϕ = Id, and the other satisfies ϕ(

√
3) = −

√
3,

hence ϕ = σ2 in the notation of (4) of Example 1.11. Likewise, there are
two extensions of σ to an automorphism ϕ : E → E. One of these satis-
fies: ϕ(

√
3) =

√
3), hence ϕ = σ1, and the other satisfies ϕ(

√
3) = −

√
3),

hence ϕ = σ3 in the notation of (4) of Example 1.11. In particular, we
see that Gal(Q(

√
2,
√

3)/Q) has order 4, giving another argument for (4) of
Example ??.

(2) Taking F = Q, E = Q( 3
√

2), and K = Q( 3
√

2, ω), we see that there are
three injective homomorphisms from E to K since there are three roots in
K of the polynomial x3 − 2 = irr( 3

√
2,Q, x), namely 3

√
2, ω 3
√

2, and ω2 3
√

2.
On the other hand, consider also the sequence Q ≤ Q(ω) ≤ Q( 3

√
2, ω). As

we have seen, if the roots of x3− 2 in C are labeled as α1 = 3
√

2, α2 = ω 3
√

2,
and α3 = ω2 3

√
2 and σ is complex conjugation, then σ corresponds to the

permutation (23). We claim that f = x3 − 2 is irreducible in Q(ω). In fact,
since deg f = 3, f is reducible in Q(ω) ⇐⇒ there exists a root α of f
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in Q(ω). But then Q ≤ Q(α) ≤ Q(ω) and we would have 3 = [Q(α) : Q]
dividing 2 = [Q(ω) : Q], which is impossible. Hence x3 − 2 is irreducible
in Q(ω)[x]. (Alternatively, note that ω /∈ Q( 3

√
2) since ω is not real but

Q( 3
√

2) ≤ R, hence

[Q(
3
√

2, ω) : Q] = [Q(
3
√

2, ω) : Q(
3
√

2)][Q(
3
√

2) : Q] = 6

= [Q(
3
√

2, ω) : Q(ω)][Q(ω) : Q],

and so [Q( 3
√

2, ω) : Q(ω)] = 3.)
Considering the simple extension K = Q( 3

√
2, ω) of Q(ω), we see that

the homomorphisms of K into K (necessarily automorphisms) which are the
identity on Q(ω), i.e. the elements of Gal(K/Q(ω), correspond to the roots
of x3−2 in K. Thus for example, there is an automorphism ρ : Q( 3

√
2, ω)→

Q( 3
√

2, ω) such that ρ(ω) = ω and ρ( 3
√

2) = ω 3
√

2. This completely specifies
ρ. For example, the above says that ρ(α1) = α2. Also,

ρ(α2) = ρ(ω
3
√

2) = ρ(ω)ρ(
3
√

2) = ω · ω 3
√

2 = ω2 3
√

2 = α3.

Similarly ρ(α3) = α1. So ρ corresponds to the permutation (123). Then
Gal(Q( 3

√
2, ω)/Q) is isomorphic to a subgroup of S3 containing a 2-cycle

and a 3-cycle and hence is isomorphic to S3.

(3) Consider the case of Gal(Q( 4
√

2, i)/Q), with β1 = 4
√

2, β2 = i 4
√

2,
β3 = − 4

√
2, and β4 = −i 4

√
2. Then if ϕ ∈ Gal(Q( 4

√
2, i)/Q), it follows

that ϕ(β1) = βk for some k, 1 ≤ k ≤ 4 and ϕ(i) = ±i. In particular
#(Gal(Q( 4

√
2, i)/Q)) ≤ 8. As in (2), complex conjugation σ is an element of

Gal(Q( 4
√

2, i)/Q) corresponding to (24) ∈ S4. Next we claim that x4 − 2 is
irreducible in Q(i). In fact, there is no root of x4 − 2 in Q(i) by inspection
(the βi are not elements of Q(i)) or because x4 − 2 is irreducible in Q[x]
and 4 = deg(x4 − 2 does not divide 2 = [Q(i) : Q]. If x4 − 2 factors into a
product of quadratic polynomials in Q(i)[x], then a homework problem says
that ±2 is a square in Q(i). But 2 = (a+ bi)2 implies either a or b is 0 and
2 = a2 or 2 = −b2 where a or b are rational, both impossible. Hence x4 − 2
is irreducible in Q(i). (Here is another argument that x4 − 2 is irreducible
in Q(i): As in (2), we could note that i /∈ Q( 4

√
2) since i is not real but

Q( 4
√

2) ≤ R, hence

[Q(
4
√

2, i) : Q] = [Q(
4
√

2, i) : Q(
4
√

2)][Q(
4
√

2) : Q] = 8

= [Q(
4
√

2, i) : Q(i)][Q(i) : Q],

and so [Q( 4
√

2, i) : Q(i)] = 4.)
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As Q( 4
√

2, i) is then a simple extension of Q(i) corresponding to the poly-
nomial x4−2 which is irreducible in Q(i)[x], a homomorphism from Q( 4

√
2, i)

to Q( 4
√

2, i) which is the identity on Q(i) corresponds to the choice of a root
of x4 − 2 in Q( 4

√
2, i). In particular, there exists ρ ∈ Gal(Q( 4

√
2, i)/Q(i)) ≤

Gal(Q( 4
√

2, i)/Q) such that ρ(i) = i and ρ(β1) = β2. Then ρ(β2) = ρ(iβ1) =
iβ2 = β3 and likewise ρ(β3) = ρ(−β1) = −ρ(β1) = −β2 = β4 and ρ(β4) = β1.
It follows that ρ corresponds to (1234) ∈ S4. From this it is easy to see that
the image of the Galois group in S4 is the dihedral group D4.

Another way to see that, unlike in the previous example, the Galois group
is not all of S4 is as follows: the roots β1, β2, β3, β4 satisfy: β3 = −β1 and
β4 = −β2. Thus, if σ ∈ Gal(Q( 4

√
2, i)/Q), then σ(β3) = −σ(β1) and σ(β4) =

−σ(β2). This says that not all permutations of the set {β1, β2, β3, β4} can
arise; for example, (1243) is not possible.

The following is one of many versions of the isomorphism extension the-
orem for finite extensions of fields. It eliminates the hypothesis that E is a
simple extension of F .

Theorem 2.4 (Isomorphism Extension Theorem). Let E be a finite exten-
sion of a field F . Let K be a field and let ψ : F → K be a homomorphism.
Then:

(i) There exist at most [E : F ] homomorphisms ϕ : E → K extending ψ,
i.e. such that ϕ(α) = ψ(α) for all α ∈ F .

(ii) There exists an extension field L of K and a homomorphism ϕ : E → L
extending ψ.

(iii) If F has characteristic zero (or F is finite or more generally perfect),
then there exists an extension field L of K such that there are exactly
[E : F ] homomorphisms ϕ : E → L extending ψ.

Proof. Since E is a finite extension of F , E = F (α1, . . . , αn) for some αi ∈ E.
The proof is by induction on n. The case n = 1, i.e. the case of a simple
extension, is true by Corollary 2.2.

In the general case, with E = F (α1, . . . , αn) for some αi ∈ E, let F1 =
F (α1, . . . , αn−1) and let α = αn, so that E = F1(α). We thus have a
sequence of extensions F ≤ F1 ≤ E. Notice that, given an extension of ψ to
a homomorphism ϕ : F1 → K and an extension τ of ϕ to a homomorphism
E → K, the homomorphism τ is also an extension of ψ to a homomorphism
E → K. Conversely, a homomorphism τ : E → K extending ψ defines an
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extension ϕ of ψ to F1, by taking ϕ(α) = τ(α) for α ∈ F1 (i.e. ϕ is the
restriction of τ to F1), and clearly τ is an extension of ϕ to F1.

By assumption, E = F1(α) and the inductive hypothesis applies to the
extension F1 of F . Given a homomorphism ψ : F → K, where K is a field, by
induction, there exist at most [F1 : F ] extensions of ψ to a homomorphism
F1 → K. Suppose that the set of all such homomorphisms is {ϕ1, . . . , ϕd},
with d ≤ [F1 : F ]. Fix one such homomorphism ϕi. Applying Corollary 2.2
to the simple extension F1(α) = E and the homomorphism ϕi : F1 → K,
there are at most e extensions of ϕi to a homomorphism τ : F1(α) → K,
where e = [F1(α) : F1] = [E : F1]. In all, since each of the d extensions
ϕi has at most e extensions to a homomorphism from E to K, there are
at most de extensions of ψ to a homomorphism E → K. As d ≤ [F1 : F ]
and e = [E : F1], we see that there are at most [F1 : F ][E : F1] = [E : F ]
extensions of ψ to a homomorphism E → K. This completes the inductive
step for the proof of (i).

The proofs of (ii) and (iii) are similar. To see (ii), use the inductive
hypothesis to find a field L1 containing K and an extension of ψ to a homo-
morphism ψ1 : F1 → L1. Let f1 = irr(α, F1, x). Adjoining a root of ψ1(f1)
to L1 if necessary, to obtain an extension field L of L1 containing a root
of ψ1(f1), it follows from Corollary 2.2 that there exists a homomorphism
ϕ : F1(α) = E → L extending ψ1, and hence extending ψ. This completes
the inductive step for the proof of (ii).

Finally, to see (iii), we examine the proof of the inductive step for (i)
more carefully. Let F be a field of characteristic zero (or more generally a
field such that every irreducible polynomial in F [x] does not have a multiple
root in any extension field of F ). Given the homomorphism ψ : F → K,
where K is a field, by the inductive hypothesis, after enlarging the field
K to some extension field L1 if need be, there exist exactly [F1 : F ] ex-
tensions of ψ to a homomorphism F1 → L1. Suppose that the set of all
such homomorphisms is {ϕ1, . . . , ϕd}, with d = [F1 : F ]. As before, we
let f1 = irr(α, F1, x). There exists a finite extension L of the field L1

such that every one of the (not necessarily distinct) irreducible polynomials
ϕi(f1) ∈ ϕi(F1)[x] splits into linear factors in L, and hence has e distinct
roots in L, where e = deg f1 = [F1(α) : F1] = [E : F1]. Fix one such
homomorphism ϕi. Again applying Corollary 2.2 to the simple extension
F1(α) = E and the homomorphism ϕi : F1 → L, there are exactly e exten-
sions of ϕi to a homomorphism τij : F1(α) → L. In all, since each of the d
extensions ϕi has e extensions to a homomorphism from E to L, there are
exactly de extensions of ψ to a homomorphism E → L. As d = [F1 : F ] and
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e = [E : F1], we see that there are exactly

[F1 : F ][E : F1] = [E : F ]

extensions of ψ to a homomorphism E → L. This completes the inductive
step for the proof of (iii), and hence the proof of the theorem.

Clearly, the first statement of the Isomorphism Extension Theorem im-
plies the following (take K = E in the statement):

Corollary 2.5. Let E be a finite extension of F . Then

#(Gal(E/F )) ≤ [E : F ].

Definition 2.6. Let E be a finite extension of F . Then E is a separable
extension of F if, for every extension field K of F , there exists an extension
field L of K such that there are exactly [E : F ] homomorphisms ϕ : E → L
with ϕ(a) = a for all a ∈ F .

For example, if F has characteristic zero or is finite or more generally is
perfect, then every finite extension of F is separable. It is not hard to show
that, if E is a finite extension of F , then E is a separable extension of F
⇐⇒ for all α ∈ E, the polynomial irr(α, F, x) does not have multiple roots.

One basic fact about separable extensions, which we shall prove later, is:

Theorem 2.7 (Primitive Element Theorem). Let E be a finite separable
extension of a field F . Then there exists an element α ∈ E such that E =
F (α). In other words, every finite separable extension is a simple extension.

There are two reasons why, in the situation of Corollary 2.5, we might
have strict inequality, i.e. #(Gal(E/F )) < [E : F ]. The first is that the
extension might not be separable. As we have seen, this situation does not
occur if F has characteristic zero, and is in general somewhat anomalous.
More importantly, though, we might, in the situation of the Isomorphism
Extension Theorem, be able to construct [E : F ] homomorphisms ϕ : E → L,
where L is some extension field of E, without being able to guarantee that
ϕ(E) = E. For example, let F = Q and E = Q( 3

√
2), with [E : F ] = 3.

Let L be an extension field of Q which contains the three cube roots of 2,
namely 3

√
2, ω 3
√

2, and ω2 3
√

2, where ω = 1
2(−1 +

√
−3). For example, we

could take L = Q( 3
√

2, ω). Then there are three homomorphisms ϕ : E → L,
but only one of these has image equal to E. We will fix this problem in the
next section.
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3 Splitting fields

Definition 3.1. Let F be a field and let f ∈ F [x] be a polynomial of degree
at least 1. Then an extension field E of F is a splitting field for f over F if
the following two conditions hold:

(i) In E[x], there is a factorization f = c
∏n
i=1(x−αi). In other words, f

factors in E[x] into a product of linear factors.

(ii) With the notation of (i), E = F (α1, . . . , αn). In other words, E is
generated as an extension field of F by the roots of f .

Here the name “splitting field” means that, in E[x], the polynomial f
splits into linear factors.

Remark 3.2. (i) Clearly, E is a splitting field of f over F if (i) holds (f
factors in E[x] into a product of linear factors) and there exist some subset
{α1, . . . , αk} of the roots of f such that E = F (α1, . . . , αk) (because, if
αk+1, . . . , αn are the remaining roots, then they are in E by (i) and thus
E = E(αk+1, . . . , αn) = F (α1, . . . , αk)(αk+1, . . . , αn) = F (α1, . . . , αn)).

(ii) If E is a splitting field of f over F and K is an intermediate field, i.e.
F ≤ K ≤ E, then E is also a splitting field of f over K.

One can show that any two splitting fields of f over F are isomorphic,
via an isomorphism which is the identity on F , and we sometimes refer
incorrectly to the splitting field of f over F .

Example 3.3. 1. The splitting field of x2 − 2 over Q is Q(
√

2,−
√

2) =
Q(
√

2). More generally, if F is any field, f ∈ F [x] is an irreducible
polynomial of degree 2, and E = F (α), where α is a root of f , then E
is a splitting field of f , since in E[x], f = (x−α)g, where g has degree
one, hence is linear, and E is clearly generated over F by the roots of
f .

2. The splitting field of x3− 2 over Q is Q( 3
√

2, ω 3
√

2, ω2 3
√

2) = Q( 3
√

2, ω).
However, Q( 3

√
2) is not a splitting field of x3 − 2 over Q, since x3 − 2

is not a product of linear factors in Q( 3
√

2)[x].

3. The splitting field of x4 − 2 over Q is Q(± 4
√

2,±i 4
√

2) = Q( 4
√

2, i).

4. The splitting field of (x2−2)(x2−3) over Q is Q(
√

2,−
√

2,
√

3,−
√

3) =
Q(
√

2,
√

3). Note in particular that, in the definition of a splitting
field, we do not assume that f is irreducible. Also, Q(

√
2,
√

3) is not
a splitting field of x2 − 2 over Q, since Q(

√
2,
√

3) 6= Q(±
√

2).
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5. The splitting field of x4−10x2+1 over Q is Q(
√

2+
√

3) = Q(
√

2,
√

3),
because all of the roots ±

√
2±
√

3 lie in Q(
√

2+
√

3) = Q(
√

2,
√

3), and
Q(
√

2 +
√

3) = Q(
√

2,
√

3) is generated by the roots of x4 − 10x2 + 1.

6. The splitting field of x5− 1 over Q is the same as the splitting field of
x4 +x3 +x2 +x+1 = Φ5 over Q, namely Q(ζ), where ζ = e2πi/5. This
follows since every root of x5−1 is a 5th root of unity and hence equal
to ζi for some i. Note that, as Φ5 is irreducible in Q[x], [Q(ζ) : Q] = 4.
More generally, if ζ is any generator of µn, the group of nth roots of
unity, for example if ζ = e2πi/n, then µn = 〈ζ〉 and

xn − 1 =

n−1∏
i=0

(x− ζi).

Hence Q(ζ) is a splitting field for xn − 1 over Q.

7. With F = Fp and q = pn (p a prime number), the splitting field of the
polynomial xq − x over Fp is Fq.

Remark 3.4. In a sense, examples 3, 5 and 6 are misleading, because for
a “random” irreducible polynomial f ∈ Q[x] of degree n, the expectation
is that the degree of a splitting field of f will be n!. In other words, if
f ∈ Q[x] is a “random” irreducible polynomial and α1 is some root of f in
an extension field of Q, then we know that, in Q(α1)[x], f = (x − α1)f1
with deg f1 = n − 1. But there is no reason in general to expect that
Q(α1) contains any other root of f , or equivalently a root of f1, or even
to expect that f1 is reducible in Q(α1). Thus we would expect in general
that, if α2 is a root of f1 in some extension field of Q(α1), then [Q(α1)(α2) :
Q(α1)] = [Q(α1, α2) : Q(α1)] = n− 1 and hence [Q(α1, α2) : Q] = n(n− 1).
Then f = (x − α1)(x − α2)f2 ∈ Q(α1, α2). Continuing in this way, our
expectation is that a splitting field for f over Q is of the form Q(α1, . . . , αn)
with [Q(α1, . . . , αn) : Q] = n(n− 1) · · · 2 · 1 = n!.

The following relates the concept of a splitting field to the problem of
constructing automorphisms:

Theorem 3.5. Let E be a finite extension of a field F . Then the following
are equivalent:

(i) There exists a polynomial f ∈ F [x] of degree at least one such that E
is a splitting field of f .
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(ii) For every extension field L of E, if ϕ : E → L is a homomorphism
such that ϕ(a) = a for all a ∈ F , then ϕ(E) = E, and hence ϕ is an
automorphism of E.

(iii) For every irreducible polynomial p ∈ F [x], if there is a root of p in
E, then p factors into a product of linear factors in E[x].

Proof. (i) =⇒ (ii): We begin with a lemma:

Lemma 3.6. Let L be an extension field of a field F and let α1, . . . , αn ∈
L. If ϕ : E = F (α1, . . . , αn) → L is a homomorphism, then ϕ(E) =
ϕ(F )(ϕ(α1), . . . , ϕ(αn)).

Proof. The proof is by induction on n. If n = 1 and α = α1, then every
element of F (α) is of the form

∑
i aiα

i. Then ϕ(
∑

i aiα
i) =

∑
i ϕ(ai)(ϕ(α))i

and hence

ϕ(F (α)) = {
∑
i

ϕ(ai)(ϕ(α))i : ai ∈ F} = ϕ(F )(ϕ(α)).

For the inductive step, applying the case n = 1 to the field F (α1, . . . , αn−1),
we see that

ϕ(F (α1, . . . , αn)) = ϕ(F (α1, . . . , αn−1)(αn)) = ϕ(F (α1, . . . , αn−1))(ϕ(αn))

= ϕ(F )(ϕ(α1), . . . , ϕ(αn−1))(ϕ(αn)) = ϕ(F )(ϕ(α1), . . . , ϕ(αn)),

completing the proof of the inductive step.

Returning to the proof of the theorem, by assumption, E = F (α1, . . . , αn),
where f = c

∏n
i=1(x − αi). In particular, every root of f in L already lies

in E. If ϕ : E → L is a homomorphism such that ϕ(a) = a for all a ∈ F ,
then ϕ(αi) = αj for some j, hence ϕ({α1, . . . , αn}) ⊆ {α1, . . . , αn}. Since
{α1, . . . , αn} is finite set and ϕ is injective, it induces a surjective map
from {α1, . . . , αn} to itself, i.e. ϕ permutes the roots of f in E ≤ L. By
Lemma 3.6, ϕ(E)) = ϕ(F )(ϕ(α1), . . . , ϕ(αn)) = F (α1, . . . , αn) = E. Thus
ϕ is an automorphism of E.

(ii) =⇒ (iii): Let p ∈ F [x] be irreducible, and suppose that there exists a
β ∈ E such that p(β) = 0. There exists an extension field K of E such that
p is a product c

∏
j(x− βj) of linear factors in K[x], where β = β1, say. For

any j, since β = β1 and βj are both roots of the irreducible polynomial p,
there exists an isomorphism ψ : F (β1) → F (βj) ≤ K. Applying (ii) of the
Isomorphism Extension Theorem to the homomorphism ψ : F (β1)→ K and
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the extension field E of F (β1), there exists an extension field L of K (hence
L is an extension of E and of F , since E and F are subfields of K), and
a homomorphism ϕ : E → L such that ϕ(a) = ψ(a) for all a ∈ F (β1). In
particular, ϕ(a) = a for all a ∈ F . By the hypothesis of (ii), it follows that
ϕ(E) = E. But by construction ϕ(β1) = ψ(β1) = βj , so βj ∈ E for every
root βj of p. It follows that p is a product c

∏
j(x− βj) of linear factors in

E[x].

(iii) =⇒ (i): Since E is in any case a finite extension of F , there ex-
ist α1, . . . , αn ∈ E such that E = F (α1, . . . , αn). For each i, let pi =
irr(αi, F, x). Then pi is an irreducible polynomial with a root in E. By the
hypothesis of (iii), pi is a product of linear factors in E[x]. Let f be the
product p1 · · · pn. Then f is a product of linear factors in E[x], since each
of its factors pi is a product of linear factors, and E is generated over F by
some subset of the roots of f and hence by all of the roots (see the comment
after the definition of a splitting field). Thus E is a splitting field of f .

Definition 3.7. Let E be a finite extension of F . If any one of the equivalent
conditions of the preceding theorem is fulfilled, we say that E is a normal
extension of F .

Corollary 3.8. Let E be a finite extension of a field F . Then the following
are equivalent:

(i) E is a separable extension of F (this is automatic if the characteristic
of F is 0 or F is finite or perfect) and E is a normal extension of F .

(ii) #(Gal(E/F )) = [E : F ].

Proof. We shall just prove that (i) =⇒ (ii). Applying the definition that
E is a separable extension of F to the case where K = E, we see that there
exists an extension field L of E and [E : F ] homomorphisms ϕ : E → L
such that ϕ(a) = a for all a ∈ F . By the (easy) implication (i) =⇒
(ii) of Theorem 3.5, ϕ(E) = E, i.e. ϕ is an automorphism of E and hence
ϕ ∈ Gal(E/F ). Conversely, every element of Gal(E/F ) is a homomorphism
from E to L which is the identity on F . Hence #(Gal(E/F )) = [E : F ].

Definition 3.9. A finite extension E of a field F is a Galois extension of
F if and only if #(Gal(E/F )) = [E : F ]. Thus, the preceding corollary can
be rephrased as saying that E is a Galois extension of F if and only if E is
a normal and separable extension of F .
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Example 3.10. We can now redo the determination of the Galois groups
Gal(Q( 3

√
2, ω)/Q) and Gal(Q( 4

√
2, i)/Q) much more efficiently. For example,

since [Q( 3
√

2, ω) : Q] = 6 and Q( 3
√

2, ω) is a splitting field for the polynomial
x3 − 2, we know that the order of Gal(Q( 3

√
2, ω)/Q) is 6. Since there is

an injective homomorphism from Gal(Q( 3
√

2, ω)/Q) to S3, this implies that
Gal(Q( 3

√
2, ω)/Q) ∼= S3 and that every permutation of the roots {α1, α2, α3}

(notation as in Example 2.3(2)) arises via an element of the Galois group.
In addition, for every i, 1 ≤ i ≤ 3, there exists a unique element σ1 of
Gal(Q( 3

√
2, ω)/Q) such that σ1(α1) = αi and σ1(ω) = ω, and a unique

element σ2 of Gal(Q( 3
√

2, ω)/Q) such that σ2(α1) = αi and σ2(ω) = ω̄.
A very similar argument handles the case of Gal(Q( 4

√
2, i)/Q): Setting

β1 =
4
√

2; β2 = i
4
√

2; β3 = − 4
√

2; β4 = −i 4
√

2,

every σ ∈ Gal(Q( 4
√

2, i)/Q) takes β1 = 4
√

2 to some βi and takes i to ±i, and
every possibility has to occur since the order of Gal(Q( 4

√
2, i)/Q) is 8. Thus

for example there exists a ρ ∈ Gal(Q( 4
√

2, i)/Q) such that ρ( 4
√

2) = i 4
√

2 and
ρ(i) = i. It follows that

ρ(β2) = ρ(i
4
√

2) = ρ(i)ρ(
4
√

2) = i2
4
√

2 = − 4
√

2 = ρ(β3),

and similarly that ρ(β3) = β4 and that ρ(β4) = β1. Hence ρ corresponds
to the permutation (1234), and as before it is easy to check from this that
Gal(Q( 4

√
2, i)/Q) ∼= D4.

Example 3.11. If p is a prime number and q = pn, then Fq is a separable
extension of Fp since Fp is perfect and it is normal since it is a splitting
field of xq − x over Fp. Thus Fq is a Galois extension of Fp. The order of
the Galois group Gal(Fq/Fp) is thus [Fq : Fp] = n. On the other hand, we
claim that, if σp is the Frobenius automorphism, then the order of σp in
Gal(Fq/Fp) is exactly n: Clearly, σkp = Id ⇐⇒ σpk(α) = α for all α ∈ Fq.
Moreover, by our computations on finite fields, (σp)

k = σpk , and σpk(α) = α

⇐⇒ α is a root of the polynomial xp
k−x, which has at most pk roots. But,

if k < n, then pk < pn = q, so that σkp 6= Id for k < n. Finally, as we have
seen, (σp)

n = σpn = σq = Id, so that the order of σp in Gal(Fq/Fp) is n.
Hence Gal(Fq/Fp) is cyclic and σp is a generator, i.e. Gal(Fq/Fp) ∼= 〈σp〉.

More generally, if Fq′ is a subfield of Fq, so that q = (q′)d and [Fq : Fq′ ] = d,
similar arguments show that Gal(Fq/Fq′) is cyclic and σq′ is a generator, i.e.
Gal(Fq/Fq′) ∼= 〈σq′〉.

Remark 3.12. One important point about normal extensions is the follow-
ing: unlike the case of finite or algebraic extensions, there exist sequences
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of extensions F ≤ K ≤ E where K is a normal extension of F and E is a
normal extension of K, but E is not a normal extension of F . For exam-
ple, consider the sequence Q ≤ Q(

√
2) ≤ Q( 4

√
2). Then we have seen that

Q(
√

2) is a normal extension of Q, and likewise Q( 4
√

2) is a normal extension
of Q(

√
2) (it is the splitting field of x2−

√
2 over Q(

√
2)). But Q( 4

√
2) is not

a normal extension of Q, since it does not satisfy the condition (iii) of the
theorem: x4 − 2 is an irreducible polynomial with coefficients in Q, there is
one root of x4 − 2 in Q( 4

√
2), but Q( 4

√
2) does not contain the root i 4

√
2 of

x4 − 2.
Likewise, there exist sequences of extensions F ≤ K ≤ E where E is

a normal extension of F , but K is not a normal extension of F . (It is
automatic that E is a normal extension of K, since if E is a splitting field of
f ∈ K[x], then it is still a splitting field of f when we view f as an element of
K[x].) For example, consider the sequence Q ≤ Q( 3

√
2) ≤ Q( 3

√
2, ω), where

as usual ω = 1
2(−1 +

√
−3). Then we have seen that Q( 3

√
2, ω) is a normal

extension of Q (it is the splitting field of x3−2), but Q( 3
√

2) is not a normal
extension of Q (the irreducible polynomial x3 − 2 has one root in Q( 3

√
2),

but it does not factor into linear factors in Q( 3
√

2)[x]).

A useful consequence of the characterization of splitting fields and the
isomorphism extension theorem is the following:

Proposition 3.13. Suppose that E is a splitting field of the polynomial
f ∈ F [x], where f is irreducible in F [x]. Then Gal(E/F ) acts transitively
on the roots of f .

Proof. Suppose that the roots of f in E are α1, . . . , αn. Fixing one root α =
α1 of f , it suffices to prove that, for all j, there exists a ϕ ∈ Gal(E/F ) such
that ϕ(α1) = αj . By Lemma 2.1, there exists an isomorphism ψ : F (α1)→
F (αj) such that ψ(α1) = αj . By the Isomorphism Extension Theorem,
there exists an extension field L of E and a homomorphism ϕ : E → L of
ψ; in particular, ϕ(α1) = αj . Finally, by the implication (i) =⇒ (ii) of
Theorem 3.5, the image of ϕ is E, i.e. in fact an element of Gal(E/F ).

Example 3.14. Considering the example of Gal(Q( 3
√

2, ω)/Q) again, the
proposition says that, since x3 − 2 is irreducible in Q[x], Gal(Q( 3

√
2, ω)/Q)

is isomorphic to a subgroup of S3 which acts transitively on the set {1, 2, 3}.
There are only two subgroups of S3 with this property: S3 itself and A3 =
〈(123)〉. Since every nontrivial element of A3 has order 3 and complex conju-
gation is an element of Gal(Q( 3

√
2, ω)/Q) of order 2, Gal(Q( 3

√
2, ω)/Q) ∼= S3.
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Corollary 3.15. Suppose that E is a splitting field of the polynomial f ∈
F [x], where f is an irreducible polynomial in F [x] of degree n with n distinct
roots (automatic if F is perfect). Then n divides the order of Gal(E/F ) and
the order of Gal(E/F ) divides n!.

Proof. Let α1, . . . , αn be the n distinct roots of f in E. We have sent that
there is an injective homomorphism from Gal(E/F ) to Sn, and hence that
Gal(E/F ) is isomorphic to a subgroup of Sn. By Lagrange’s theorem, the
order of Gal(E/F ) divides the order of Sn, which is n!. To get the other
divisibility, note that {α1, . . . , αn} is a single orbit for the action of Gal(E/F )
on the set {α1, . . . , αn}. By our work on group actions from last semester,
the order of an orbit of a finite group acting on a set divides the order of the
group (this is another application of Lagrange’s theorem). Hence n divides
the order of Gal(E/F ).
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