
Extension Fields III: Finite Fields

4 Finite fields

Our goal in this section is to classify finite fields up to isomorphism and,
given two finite fields, to describe when one of them is isomorphic to a
subfield of the other. We begin with some general remarks about finite
fields.

Let F be a finite field. As the additive group (F,+) is finite, charF =
p > 0 for some prime p. Thus F contains a subfield isomorphic to the prime
field Fp, which we will identify with Fp. Since F is finite, it is clearly a
finite-dimensional vector space over Fp. Let n = dimFp F = [F : Fp]. Then
#(F) = pn. It is traditional to use the letter q to demote a prime power pn

in this context.
We note that the multiplicative group (F∗, ·) is cyclic. If γ is a generator,

then every nonzero element of F is a power of γ. In particular, F = Fp(γ) is
a simple extension of Fp.

With #(F) = pn = q as above, by Lagrange’s theorem, since F∗ is a
finite group of order q − 1, for every α ∈ F∗, αq−1 = 1. Hence αq = α for
all α ∈ F, since clearly 0q = 0. Thus every element of F is a root of the
polynomial xq − x. (Warning: although αq = α for every α ∈ F, it is not
true that xq − x ∈ F[x] is the zero polynomial.)

Define the function σp : F → F by: σp(α) = αp. Since charF = p, the
function σp is a homomorphism, the Frobenius homomorphism. Clearly
Kerσp = {0} since αp = 0 ⇐⇒ α = 0, and hence σp is injective. (In fact,
by a HW problem, this is always true for homomorphisms from a field to a
nonzero ring.) As F is finite, since σp is injective, it is also surjective and
hence an isomorphism (by the pigeonhole principle). Thus, every element of
F is a pth power, so that F is perfect as previously defined. Note that every
power σkp is also an isomorphism. We have

σ2p(α) = σp(σp(α)) = σp(α
p) = (αp)p = αp

2
,
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and so σ2p = σp2 , where by definition σp2(α) = αp
2
. An easy induction shows

that σkp = σpk , where by definition σpk(α) = αp
k
: Clearly, the result holds

for k = 1 since both sides are then σp. Assuming the result inductively for
a positive integer k, we have

σk+1
p (α) = σp(σ

k
p(α)) = (αp

k
)p = αp

k+1
= σpk+1(α).

In particular, taking k = n, where #(F) = q = pn, we see that σq(α) =
αq = α. Thus σq = Id.

More generally, for every positive integer r, we can define σr : F → F
by: σr(α) = αr. Then the same induction argument shows that σkr = σrk .
(However, σr is a ring homomorphism ⇐⇒ r is a power of p.)

With this said, we can now state the classification theorem for finite
fields:

Theorem 4.1 (Classification of finite fields). Let p be a prime number.

(i) For every n ∈ N, there exists a field Fq with q = pn elements.

(ii) If F and F′ are two finite fields, then F and F′ are isomorphic ⇐⇒
#(F1) = #(F2).

(iii) Let F and F′ be two finite fields, with #(F) = q = pn and #(F′) = q′ =
pm. Then F′ is isomorphic to a subfield of F ⇐⇒ m divides n ⇐⇒
q = (q′)d for some positive integer d.

Proof. First, we prove (i). Viewing the polynomial xq−x as a polynomial in
Fp[x], we know that there exists an extension field E of Fp such that xq − x
is a product of linear factors in E[x], say

xq − x = (x− α1) · · · (x− αq)

where the αi ∈ E. We claim that the αi are all distinct: αi = αj for some
i 6= j ⇐⇒ xq − x has a multiple root in E ⇐⇒ xq − x and D(xq − x) are
not relatively prime in Fp[x]. But D(xq − x) = qxq−1 − 1 = −1, since q is a
power of p and hence divisible by p. Thus the gcd of xq − x and D(xq − x)
divides −1 and hence is a unit, so that xq − x and D(xq − x) are relatively
prime. It follows that xq − x does not have any multiple roots in E.

Now define the subset Fq of E by

Fq = {α1, . . . , αq} = {α ∈ E : αq − α = 0} = {α ∈ E : σq(α) = α}.

By what we have seen above, #(Fq) = q. Moreover, we claim that Fq
is a subfield of E, and hence is a field with q elements. Clearly 1 ∈ Fq,
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and more generally Fp ⊆ Fq. It suffices to show that Fq is closed under
addition, subtraction, multiplication, and division. This follows since σq is a
homomorphism: If α, β ∈ Fq, i.e. if αq = α and βq = β, then (α±β)q = αq±
βq = α±β, (αβ)q = αqβq = αβ, and, if β 6= 0, then (α/β)q = αq/βq = α/β.
In other words, then α±β, αβ, and (for β 6= 0) α/β are all in Fq. Hence Fq
is a subfield of E, and in particular it is a field with q elements. (Remark:
Fq is the fixed field of σq, i.e. F = {α ∈ E : σq(α) = α}.)

Next we prove (iii) in the special case that F = Fq. More generally, let F
and F′ be two finite fields with #(F) = q = pn and #(F′) = q′ = pm. Clearly,
if F′ is isomorphic to a subfield of F, which we can identify with F′, then F is
an F′-vector space. Since F is finite, it is finite-dimensional as an F′-vector
space. Let d = dimF′ F = [F : F′]. Then pn = q = #(F) = (q′)d = pmd,
proving that m divides n and that q is a power of q′. Conversely, suppose
that Fq is the finite field with q = pn elements constructed in the proof of
(i), so that xq − x factors into linear factors in F[x]. Let F′ be a finite field
with #(F′) = q′ = pm and suppose that q = pn = (q′)d, or equivalently
n = md. We shall show first that Fq contains a subfield isomorphic to F′
and then that every field with q elements is isomorphic to Fq, proving the
converse part of (iii) as well as (ii).

As we saw in the remarks before the statement of Theorem 4.1, there
exists a β ∈ F′ such that F′ = Fp(β). Since β ∈ F′, σq′(β) = βq

′
= β, and

hence
βq = β(q

′)d = (σq′)
d(β) = β.

Thus β is a root of xq−x. Hence irr(β,Fp) divides xq−x in Fp[x], say xq−x =
irr(β,Fp) · h, with deg h < q = deg(xq − x) = q since deg irr(β,Fp) ≥ 1. On
the other hand, xq−x factors into linear factors in Fq[x], so that there is an
equality in Fq[x]

irr(β,Fp) · h = (x− α1) · · · (x− αq).

Thus, for all i, αi is a root of either irr(β,Fp) or of h. But since the αi are
all distinct and the number of roots of h is at most deg h < q, at least one
of the αi must be a root of irr(β,Fp). Hence irr(αi,Fp) divides irr(β,Fp).
But both irr(αi,Fp) and irr(β,Fp) are monic irreducible polynomials, so we
must have irr(αi,Fp) = irr(β,Fp). Let f = irr(αi,Fp) = irr(β,Fp). Then
since F′ = Fp(β), evβ induces an isomorphism êvβ : Fp[x]/(f) ∼= F′. On the
other hand, we have evαi : Fp[x]→ Fq, with Ker evαi = (f) as well, so there
is an induced injective homomorphism êvαi : Fp[x]/(f)→ Fq. The situation
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is summarized in the following diagram:

Fp[x]/(f)
êvαi−−−−→ Fq

êvβ

y∼=
F′

The homomorphism êvαi ◦ (êvβ)−1 is then an injective homomorphism from
F′ to Fq and thus identifies F′ with a subfield of Fq. This proves the converse
direction of (iii), for the specific field Fq constructed in (i), and hence for
any field which is isomorphic to Fq.

To prove (ii), note that, if F and F′ are isomorphic, then clearly #(F) =
#(F′). Conversely, suppose that Fq is the specific field with q elements con-
structed in the proof of (i) and that F is another finite field with q elements.
By what we have proved so far above, since q = (q)1, F is isomorphic to
a subfield of Fq, i.e. there is an injective homomorphism ρ : F → Fq. But
since F and Fq have the same number of elements, ρ is necessarily an iso-
morphism, i.e. F ∼= Fq. Hence, if F′ is yet another field with q elements, then
also F′ ∼= Fq and hence F ∼= F′, proving (ii). Finally, the converse direction
of (iii) now holds for every field with q elements, since every such field is
isomorphic to Fq.

If q = pn, we often write Fq to denote any field with q elements. Since any
two such fields are isomorphic, we often speak of the field with q elements.

Remark 4.2. Let q = pn. The polynomial xq − x is reducible in Fp[x]. For
example, for every a ∈ Fp, x − a is a factor of xq − x. Using Theorem 4.1,
one can show that the irreducible monic factors of xq − x are exactly the
irreducible monic polynomials in Fp[x] of degree d, where d divides n. From
this, one can show the following beautiful formula: let Np(m) be the number
of irreducible monic polynomials in Fp[x] of degree m. Then∑

d|n

dNp(d) = pn.
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