Extension Fields III: Finite Fields

4 Finite fields

Our goal in this section is to classify finite fields up to isomorphism and,
given two finite fields, to describe when one of them is isomorphic to a
subfield of the other. We begin with some general remarks about finite
fields.

Let F be a finite field. As the additive group (F,+) is finite, charF =
p > 0 for some prime p. Thus F contains a subfield isomorphic to the prime
field F,, which we will identify with F,. Since [ is finite, it is clearly a
finite-dimensional vector space over F,. Let n = dimp, F = [F : F)]. Then
#(F) = p™. It is traditional to use the letter ¢ to demote a prime power p”
in this context.

We note that the multiplicative group (IF*,-) is cyclic. If ~y is a generator,
then every nonzero element of F is a power of . In particular, F = F,(v) is
a simple extension of F,,.

With #(F) = p™ = ¢ as above, by Lagrange’s theorem, since F* is a
finite group of order ¢ — 1, for every a € F*, a9~! = 1. Hence a? = « for
all a € I, since clearly 09 = 0. Thus every element of [ is a root of the
polynomial 27 — z. (Warning: although a? = « for every «a € F, it is not
true that 7 — x € F[z] is the zero polynomial.)

Define the function o,: F — F by: o,(a) = oF. Since charF = p, the
function o, is a homomorphism, the Frobenius homomorphism. Clearly
Ker o, = {0} since o? =0 <= «a = 0, and hence o, is injective. (In fact,
by a HW problem, this is always true for homomorphisms from a field to a
nonzero ring.) As F is finite, since o), is injective, it is also surjective and
hence an isomorphism (by the pigeonhole principle). Thus, every element of
F is a p'" power, so that F is perfect as previously defined. Note that every

k

power o is also an isomorphism. We have
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and so 0 = 0,2, where by definition 0,2 (ar) = o, An easy induction shows
that 0}’; = 0,%, where by definition o, (o) = aP": Clearly, the result holds

for £ = 1 since both sides are then 0,. Assuming the result inductively for
a positive integer k, we have

okt () = ap(of(@)) = (@) = o = gk ().

In particular, taking k = n, where #(F) = ¢ = p", we see that o,(a) =
a? = . Thus o4 = Id.

More generally, for every positive integer r, we can define o.: F — F
by: o,(a) = @”. Then the same induction argument shows that o¥ = o,+.
(However, o, is a ring homomorphism <= r is a power of p.)

With this said, we can now state the classification theorem for finite
fields:

Theorem 4.1 (Classification of finite fields). Let p be a prime number.

'

(i) For every n € N, there exists a field F, with ¢ = p" elements.

(ii) If F and ' are two finite fields, then F and F' are isomorphic <=
#(IF1) = #(Fa).

(i) LetF and ' be two finite fields, with #(F) = q = p" and #(F') = ¢’ =
p™. Then ' is isomorphic to a subfield of F <= m divides n <=
q = (¢ for some positive integer d.

Proof. First, we prove (i). Viewing the polynomial x¢—x as a polynomial in
[F,[x], we know that there exists an extension field E of F), such that 27 — z
is a product of linear factors in E[z], say

2l —zrx=(r—0o1) (v —ay)

where the o; € E. We claim that the a; are all distinct: o; = «; for some
i1 #j <= 29—z has a multiple root in £ <= 27—z and D(z? — z) are
not relatively prime in Fp[z]. But D(z9 — z) = gz9 ! —1 = —1, since g is a
power of p and hence divisible by p. Thus the ged of ¢ — z and D(z? — x)
divides —1 and hence is a unit, so that 29 — z and D(z? — z) are relatively
prime. It follows that 9 — x does not have any multiple roots in F.

Now define the subset F, of E by

Fo={a,...,0q} ={aecE: 0! —a=0} ={a € E:04(a)=a}.

By what we have seen above, #(F,) = ¢. Moreover, we claim that F,
is a subfield of F, and hence is a field with ¢ elements. Clearly 1 € I,
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and more generally F,, C F,. It suffices to show that F, is closed under
addition, subtraction, multiplication, and division. This follows since oy is a
homomorphism: If i, f € Fy, i.e. if a? = a and $? = §, then (a£3)? = af+
Bl =axp, (af)? =aip? = af, and, if 5 # 0, then (a/5)? = a4/p? = a/p.
In other words, then o+ 3, o3, and (for 3 # 0) o/ are all in F,. Hence F,
is a subfield of F, and in particular it is a field with ¢ elements. (Remark:
[F, is the fixed field of o4, i.e. F={a € E : 04(a)) = a}.)

Next we prove (iii) in the special case that F = [F,. More generally, let F
and F’ be two finite fields with #(F) = ¢ = p" and #(F') = ¢’ = p™. Clearly,
if I/ is isomorphic to a subfield of I, which we can identify with F’, then F is
an F’-vector space. Since F is finite, it is finite-dimensional as an F’-vector
space. Let d = dimp F = [F : F']. Then p" = ¢ = #(F) = (¢')* = p™,
proving that m divides n and that ¢ is a power of ¢’. Conversely, suppose
that I, is the finite field with ¢ = p" elements constructed in the proof of
(i), so that 29 — x factors into linear factors in F[x]. Let F’ be a finite field
with #(F') = ¢ = p™ and suppose that ¢ = p” = (¢')¢, or equivalently
n = md. We shall show first that F, contains a subfield isomorphic to F’
and then that every field with ¢ elements is isomorphic to I, proving the
converse part of (iii) as well as (ii).

As we saw in the remarks before the statement of Theorem 4.1, there

exists a B € ' such that F' = F,(53). Since § € F/, oy(8) = B4 = S, and
hence
B =B = (0)"(8) = B.
Thus § is aroot of 2?—x. Hence irr(5,F)p) divides 27—z in Fp,[z], say 29—z =
irr(8,Fp) - h, with degh < ¢ = deg(2? — x) = ¢ since degirr(3,F,) > 1. On
the other hand, 27 — x factors into linear factors in F,[z], so that there is an
equality in Fy[x]

irr(B,Fp) -h=(x—oa1) - (x — ).

Thus, for all ¢, ; is a root of either irr(3,F,) or of h. But since the «; are
all distinct and the number of roots of h is at most degh < ¢, at least one
of the a; must be a root of irr(3,Fy). Hence irr(oy,Fp) divides irr(3,Fp).
But both irr(ey,F,) and irr(8,F),) are monic irreducible polynomials, so we
must have irr(a;, Fp) = irr(8,Fp). Let f = irr(a;,Fp) = irr(B8,Fp). Then
since I/ = F,,(f3), evg induces an isomorphism evg: Fplz]/(f) = F'. On the
other hand, we have ev,, : Fp[z] = F,, with Kerev,, = (f) as well, so there
is an induced injective homomorphism €v,, : Fy[z]/(f) — F,. The situation
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is summarized in the following diagram:

F,l]/(f) == W,
s |
]F/

The homomorphism 6V, o (6vg)~! is then an injective homomorphism from
F’ to IF, and thus identifies F” with a subfield of IF,. This proves the converse
direction of (iii), for the specific field F, constructed in (i), and hence for
any field which is isomorphic to F,.

To prove (ii), note that, if F and F" are isomorphic, then clearly #(F) =
#(F’). Conversely, suppose that Fy is the specific field with ¢ elements con-
structed in the proof of (i) and that F is another finite field with g elements.
By what we have proved so far above, since ¢ = (q)!, F is isomorphic to
a subfield of Fy, i.e. there is an injective homomorphism p: F — F,. But
since F and F, have the same number of elements, p is necessarily an iso-
morphism, i.e. F = F,. Hence, if F' is yet another field with ¢ elements, then
also F' = F, and hence F = [/, proving (ii). Finally, the converse direction
of (iii) now holds for every field with ¢ elements, since every such field is
isomorphic to F,. O

If ¢ = p™, we often write I, to denote any field with ¢ elements. Since any
two such fields are isomorphic, we often speak of the field with ¢ elements.

Remark 4.2. Let ¢ = p". The polynomial 2 — z is reducible in F,[z]. For
example, for every a € IF,,, x — a is a factor of ¢ — z. Using Theorem 4.1,
one can show that the irreducible monic factors of ¢ — x are exactly the
irreducible monic polynomials in [y, [z] of degree d, where d divides n. From
this, one can show the following beautiful formula: let N,(m) be the number
of irreducible monic polynomials in Fy[z] of degree m. Then

Z dNp(d) = p".
din
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