
Ideals

The symbol R always denotes a commutative ring with unity, and F
always denotes a field.

1 Definitions and examples

We begin by discussing the following question: let R be a ring and let H
be an additive subgroup of (R,+). We can then form the group of cosets
R/H = {r + H : r ∈ R} of H. By analogy with the case of R = Z
and H = 〈n〉 = nZ, where we know that it is possible both to add and to
multiply cosets, we want to find conditions on H so that coset multiplication
is well-defined, i.e. independent of the choice of representative. Here, as in
the case of Z/nZ, we attempt to define coset multiplication by the rule:
(r + H)(s + H) = rs + H. In particular, this is well defined ⇐⇒ for all
r, s ∈ R, replacing r by a different representative r + h1 of r + H and s by
a different representative s+ h2 of s+H, the product (r + h1)(s+ h2) lies
in rs + H. In other words, for all r, s ∈ R and h1, h2 ∈ H, there exists an
h3 ∈ H such that (r + h1)(s + h2) = rs + h3. Since (r + h1)(s + h2) =
rs + rh2 + sh1 + h1h2, another way to say this is: for all r, s ∈ R and
h1, h2 ∈ H,

rh2 + sh1 + h1h2 ∈ H.

In particular, taking h2 = h an arbitrary element of H and s = h1 = 0,

rh2 + sh1 + h1h2 = rh+ 0 + 0.

Thus we see that a necessary condition that coset multiplication is well-
defined is that, for all r ∈ R and h ∈ H, the product rh ∈ H. Conversely,
if this condition is satisfied, then, for all r, s ∈ R and h1, h2 ∈ H, rh2 ∈ H,
sh1 ∈ H, and h1h2 ∈ H (take r = h1 and h = h2). Hence, as H is closed
under addition, coset multiplication is well-defined.

Definition 1.1. A subset I of R is an ideal if
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1. I is an additive subgroup of (R,+);

2. (The “absorbing property”) For all r ∈ R and s ∈ I, rs ∈ I; symboli-
cally, we write this as RI ⊆ I.

For example, for all d ∈ Z, the cyclic subgroup 〈d〉 generated by d is an
ideal in Z. A similar statement holds for the cyclic subgroup 〈d〉 generated
by d in Z/nZ. However, for a general ring R and an element r ∈ R, the
cyclic subgroup 〈r〉 = {n · r : n ∈ Z} is almost never an ideal. We shall
describe the correct generalization of 〈r〉 to an arbitrary ring shortly.

Remark 1.2. It is easy to see that I is an ideal of R ⇐⇒ I is nonempty,
closed under addition, and the absorbing property RI ⊆ I holds. The =⇒
direction is clear since an additive subgroup of R is nonempty and closed
under addition. To show the ⇐= direction, it is enough to show that I is
an additive subgroup, and hence it suffices to show that 0 ∈ I and that, for
all s ∈ I, −s ∈ I. To see that 0 ∈ I, note that I 6= ∅ by assumption, hence
there exists some s ∈ I. Then 0 = 0s ∈ I. Also, if s ∈ I, −s = (−1)s ∈ I.
Thus I is an additive subgroup.

Summarizing the discussion before the definition of an ideal, we have:

Proposition 1.3. Suppose that I is an ideal. Then coset multiplication
is well-defined on R/I. Moreover, (R/I,+, ·) is a ring, called the quotient
ring, and the function π : R→ R/I defined by π(r) = r + I is a ring homo-
morphism, called the quotient homomorphism.

Proof. We have seen that coset multiplication is well-defined. It is then easy
to check that it is associative and commutative, and that coset multiplication
distributes over coset addition: all of these properties follow from properties
of multiplication in the ring R. The multiplicative identity in R/I is the
coset 1 + I. Finally, from the definition of coset multiplication, we see that

π(r)π(s) = (r + I)(s+ I) = rs+ I = π(rs).

Moreover π(1) = 1 + I is the multiplicative identity in R/I. Thus π (which
we know from last semester to be a group homomorphism) is a ring homo-
morphism.

Remark 1.4. If I is an ideal, we have defined coset multiplication by the
formula (r+ I)(s+ I) = rs+ I. However, unlike the case of groups, it is not
necessarily literally true that, if we define

(r + I)(s+ I) = {(r + t1)(s+ t2) : t1, t2 ∈ I},

2



then we necessarily have (r + I)(s + I) = rs + I as sets. For example, if
I = 〈n〉 = nZ in Z, then taking r = s = 0, we see that every element t of I
is of the form n2k for some integer k, hence is not the most general element
of 0 · 0 + 〈n〉 = 〈n〉. In general, we can only say that the set (r + I)(s + I)
is contained in rs+ I.

Example 1.5. 1) In any ring R, the set {0} is an ideal (the zero ideal) and
the ring R itself is an ideal (the unit ideal). An ideal I 6= R is called proper
ideal.

2) If R is a ring and I is an ideal of R such that 1 ∈ I, then by the absorbing
property, for all r ∈ R, r = r · 1 ∈ I, hence I = R. More generally, if I
is an ideal containing a unit u, then 1 = u−1u ∈ I and hence I = R. In
particular, if F is a field and I is a nonzero ideal of F , then I contains a
unit and hence I = F . Thus a field contains no proper nonzero ideals, i.e.
every ideal of F is either {0} or F .

One way that ideals arise is as follows:

Proposition 1.6. Let φ : R → S be a ring homorphism. Then Kerφ is an
ideal in R.

Proof. We know that Kerφ is an additive subgroup of R, so we just have
to check the absorbing property. If r ∈ Kerφ and s ∈ R, then φ(sr) =
φ(s)φ(r) = φ(s) · 0 = 0. Hence by definition sr ∈ Kerφ, so that Kerφ has
the absorbing property.

Example 1.7. If R is a ring and a ∈ R, then Ker eva = {f ∈ R[x] : eva(f) =
f(a) = 0} is an ideal in R[x]. For example,

Ker ev0 =

{
N∑
i=0

aix
i : a0 = 0

}
= {xg : g ∈ R[x]} .

A slightly more complicated argument shows that

Ker eva = {(x− a)g : g ∈ R[x]}.

More generally, if R is a subring of a ring S and b ∈ S, then Ker evb is an
ideal in R[x]. However, it is usually much more difficult to describe Ker evb.

Remark 1.8. In a non-commutative ring, there are left ideals, right ideals,
and two-sided ideals, and for coset multiplication to be well-defined on R/I,
we need I to be a two-sided ideal. The analogue of Proposition 1.6 is then
that the kernel of a homomorphism is a two sided ideal.
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Many of the results about isomorphisms in group theory hold in this
context as well. For example, a (ring) homomorphism φ is injective ⇐⇒
Kerφ = 0, since a ring homomorphism is in particular a homomorphism of
abelian groups. Likewise, the first isomorphism theorem holds:

Proposition 1.9. Let φ : R → S be a ring homorphism and let I = Kerφ.
The Imφ ∼= R/I. More precisely, there is a unique isomorphism φ̃ : R/I →
Imφ such that φ = i◦φ̃◦π, where π : R→ R/I is the quotient homomorphism
and i : Imφ→ S is the inclusion.

Proof. The standard argument in group theory shows that, defining φ̃ : R/I →
Imφ by φ̃(r + I) = φ(r), φ̃ is well-defined and is an isomorphism of abelian
groups. It then suffices to check that φ̃ is a ring homomorphism, which
follows from the definition of coset multiplication.

Next we turn to a very general construction of ideals, which is an ana-
logue of the definition of a cyclic subgroup:

Definition 1.10. Let R be a ring and let r ∈ R. The principal ideal
generated by r, denoted (r), is the set

{sr : s ∈ R}.

Thus (r) is the set of all multiples of r.

Proposition 1.11. The principal ideal (r) generated by r is an ideal of R
containing r. Moreover, if I is any ideal of R and r ∈ I, then (r) ⊆ I.

Proof. First, (r) is closed under addition: given s1r, s2r ∈ (r), s1r + s2r =
(s1 + s2)r ∈ (r). Moreover r = 1 · r ∈ (r). Hence (r) is nonempty, so to
show that it is an ideal it suffices to show that the absorbing property holds.
Given sr ∈ (r) and t ∈ R, t(sr) = (ts)r ∈ (r). Hence (r) is an ideal of R
containing r. Finally, if I is an ideal of R and r ∈ I, then, by the absorbing
property, for all s ∈ R, sr ∈ I. Hence (r) ⊆ I.

More generally, if R is a ring and r1, . . . , rn ∈ R, the ideal generated by
r1, . . . rn is by definition the ideal

(r1, . . . , rn) =

{
n∑

i=1

siri : si ∈ R

}
.

It is an ideal in R, containing r1, . . . , rn, and is the smallest ideal in R with
this property: I is an ideal of R and ri ∈ I for all i, then (r1, . . . , rn) ⊆ I. An
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ideal of the form (r1, . . . , rn) is called a finitely generated ideal. For many
rings R, such as F [x1, . . . , xn], every ideal is finitely generated. But therer
are interesting rings such as C∞(R) for which some ideals are not finitely
generated.

As an application of this construction, we show the following:

Proposition 1.12. Let R be a ring such that R 6= {0}. Then R is a field
⇐⇒ every ideal of R is either {0} or R.

Proof. We have seen the implication =⇒ in Part 2 of Example 1.5. To
see the ⇐= direction, suppose that R 6= {0} and that every ideal of R is
either {0} or R. We must show that, if r ∈ R and r 6= 0, then r is invertible.
Consider the principal ideal (r). This is an ideal and it is not equal to {0}
since r ∈ (r) and r 6= 0. Then by hypothesis (r) = R. In particular, 1 ∈ (r).
Thus, there exists s ∈ R such that sr = 1. Hence r is a unit.

2 Prime ideals and maximal ideals

Finally, we want to know when a ring of the form R/I is an integral domain
or a field.

Definition 2.1. Let R be a ring. An ideal I in R is a prime ideal if I 6= R
and, for all r, s ∈ R, if rs ∈ I then either r ∈ I or s ∈ I. Equivalently, I is
a prime ideal if I 6= R and, for all r, s ∈ R, if r /∈ I and s /∈ I, then rs /∈ I.

Proposition 2.2. Let R be a ring and let I be an ideal in R. Then R/I is
an integral domain if and only if I is a prime ideal.

Proof. First note that I 6= R ⇐⇒ R/I 6= {0}, so it is enough to show
that the condition that for all r, s ∈ R, if rs ∈ I then either r ∈ I or s ∈ I
is equivalent to the statement that R/I has no divisors of zero. But R/I
has no divisors of zero ⇐⇒ for all r, s ∈ R with r + I 6= 0 = 0 + I and
s+ I 6= 0 = 0 + I, the coset product rs+ I 6= 0 + I. But r + I 6= 0 = 0 + I
is equivalent to the statement that r /∈ I, and similarly for s and rs, so the
statement that R/I has no divisors of zero is equivalent to the statement
that, if r /∈ I and s /∈ I, then rs /∈ I. Hence R/I is an integral domain ⇐⇒
I is a prime ideal.

Definition 2.3. Let R be a ring. An ideal I in R is a maximal ideal if
I 6= R and, if J is an ideal in R containing I, then either J = I or J = R.

Proposition 2.4. Let R be a ring and let I be an ideal in R. Then R/I is
a field if and only if I is a maximal ideal.
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Proof. As before, I 6= R ⇐⇒ R/I 6= {0}, so it is enough to show: for all
ideals J containing I, either J = I or J = R ⇐⇒ every nonzero coset
r + I ∈ R/I has a multiplicative inverse.

=⇒ Suppose that, for all ideals J containing I, either J = I or J = R.
Let r + I be a nonzero coset in R/I; equivalently, r /∈ I. Consider the set

J = {s+ tr : s ∈ I, t ∈ r}.

Then we claim that J is an ideal of R containing I and r. In fact, J is
the ideal sum I + (r) as defined in the homework, and thus is an ideal.
To check this directly, note that J is closed under addition since, given
s1 + t1r, s2 + t2r ∈ J ,

(s1 + t1r) + (s2 + t2r) = (s1 + s2) + (t1 + t2)r ∈ J,

and, for all w ∈ R, s+ tr ∈ J ,

w(s+ tr) = (ws) + (wt)r ∈ J.

Finally, taking s an arbitrary element of I and t = 0, we see that I ⊆ J ,
and taking s = 0, t = 1, we see that r ∈ J . Thus J 6= I, and so J = R.
In particular, there exist s ∈ I and t ∈ R such that 1 = s + tr. Thus
1 ∈ (r+I)(t+I), so by definition of coset multiplication (r+I)(t+I) = 1+I.
Hence r + I has a multiplicative inverse.
⇐= : We must show that, if every nonzero coset r + I ∈ R/I has a

multiplicative inverse and J is an ideal of R such that I ⊆ J and J 6= I,
then J = R, or equivalently that 1 ∈ J . Since J 6= I, there exists r ∈ J ,
r /∈ I. Then r + I is not the zero coset, so there exists s ∈ I such that
(r+ I)(s+ I) = rs+ I = 1 + I. Equivalently, rs = 1 + t, where t ∈ I. Then,
since r ∈ J , rs ∈ J , and since I ⊆ J , t ∈ J and hence rs + t ∈ J . Thus
1 ∈ J , so that J = R.

Corollary 2.5. A maximal ideal is a prime ideal.

Proof. This follows since a field is an integral domain.

Example 2.6. 1) A ring R 6= {0} is an integral domain ⇐⇒ (0) = {0} is
a prime ideal. Indeed, in this case R is an an integral domain ⇐⇒ for all
r, s ∈ R, rs ∈ (0), i.e. rs = 0, ⇐⇒ either r = 0 or s = 0, i.e. r ∈ (0) or
s ∈ (0), ⇐⇒ (0) is a prime ideal. Likewise, by Proposition 1.12, R 6= {0}
is a field ⇐⇒ (0) is a maximal ideal.

2) In Z, an ideal (n) = 〈n〉, where n ≥ 0, is a prime ideal if and only if n = 0
or n = p is a prime number. It is a maximal ideal if and only if n = p is a
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prime number. To see this last statement, note in general that, for n ∈ Z
and a ∈ Z, a ∈ (n) ⇐⇒ n divides a. Suppose that (p) is contained in an
ideal J of Z. Since J is in particular an additive subgroup, it is cyclic, and
so J = 〈n〉 = (n) for some n ≥ 0. Then n divides p. Then either n = 1, in
which case (n) = (1) = Z, or n = p, in which case (n) = (p). It then follows
that (p) is also a prime ideal; of course, it is easy to check this directly, using
the basic fact that, if a prime p divides a product of two integers r, s, then
it divides at least one of r, s.

Conversely, if n ∈ N is not a prime, then it is easy to see that (n) is not
a prime ideal and hence is not maximal: writing n = ab with 1 < a < n,
1 < b < n, it follows that ab ∈ (n) but neither a nor b lies in (n). Hence (n)
is not a prime ideal.

3) If F is a field and R = F [x1, x2], then the ideals (0) and (x1) are prime
ideals in R but are not maximal, whereas (x1, x2) is a maximal ideal in
R (it is the kernel of the surjective homomorphism ev0,0 : F [x1, x2] → F ).
However, it is easy to see that (x1, x2) is not a principal ideal, i.e. is not of
the form (f) for some f ∈ F [x1, x2]. This says in particular that there is no
polynomial f such that x1 and x2 are both multiples of f .
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