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1. For p, q ≥ 0, let Qp,q be the quadratic form on Rp+q given by

Qp,q(x1, . . . , xp+q) = x21 + · · ·x2p − (x2p+1 + · · ·+ x2p+q).

Show that the orthogonal group of Qp,q is a Lie group. Show that
this Lie group is compact if and only if either p = 0 or q = 0.

Solution. Let O(p, q) denote the orthogonal group of Qp,q. If p, q are both
at least one, then O(1, 1) ⊂ O(p, q) is a closed Lie subgroup. We take a

different basis y1, y2 for R2 where the form is given by the matrix

(
0 1
−1 0

)
.

(E.g., y1 = x1 + x2, y2 = (x1 − x2)/2) Then there is a proper embedding
R∗ ⊂ O(1, 1) defined by

t 7→
(
t 0
0 t−1

)
.

This proves O(p, q) is non-compact unless either p = 0 or q = 0
Changing the sign of a quadratic form does not change its orthogonal

group so to complete the prolem it suffices to prove that the classical or-
thogonal group O(n) is compact. But an element of O(n) is determined by
where it sends the standard unit basis vectors, e1, . . . , en. This determines a
homeomorphismk between O(n) and a subgroup of the n-fold product of the
unit sphere with itself. The image is a set v1, . . . , vn of mutually orthogonal
unit vectors and thus is a closed subset of the product of Sn−1’s and hence
is compact.

2. Let L be a Lie algebra and let x1, . . . , xn ∈ L be elements. We
define a legitimate expression in the {xi}i, by induction on the
length of the expression. Any xi is a legitimate expression of
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length 1. If A and B are legitimate expressions of length k and
ℓ, both at least 1, then [A,B] is a legitimate expression of length
k+ ℓ. Show that any legitimate expression of length r in x1, . . . , xn
determines an element of L. Show any such element of L can
be written is a linear combination with integer coefficients of a
legitimate expressions of the form

[xi1 , [xi2 , . . . , [xir−1 , xir ] · · · ].

Solution. We prove the first part by induction of the length of the expres-
sion. Each xi is an element of L, so these represent elements of L. Suppose
we have an expression [A,B], with A and B each of length at least 1, of
total degree k and we know the result for expressions of length < k. Then
A and B represent elements of L and this expression represents the bracket
of these element.

We call an expression of the type given at the end of the problem as
being an expression of standard form. We prove the second part by double
induction. The outer induction is on the length of the expression. The
result is tautologically true for expressions of length 1 and 2. Suppose that
for some k ≥ 2, we know the result for expressions of length < k and we
have an expression of length k. By definition, any expression of length k is
of the form [A,B] with A and B of length at least 1. If the length of A is
one then by induction, we can rewrite B as an integral linear combination
of expressions of standard form. Since A is a single element, this gives the
required rewritiing of [A,B] as an integral linear combination of terms in
standard form. Suppose now we know the result of all [A,B] of total length
k with the length of A less than ℓ, and suppose that A has length ℓ. Since
ℓ < k, we can write A as an integral linear combination of terms of the form
[a,A′

i], with ai one of the xj . Let examine each of these. Now by the Jacobi
identity

[[ai, A
′
i], B] = −[[B, ai], A

′
i]− [[A′

i, B], ai] = [A′
i, [B, a

′
i]] + [ai, [A

′
i, B]].

Since the length of A′
i is less than the length of Ai and the length of [A′

i, B]
is less than [A,B], the result follows by induction for [A,B]. This completes
the inductive argument.

3. Let G be a compact group of rank 2. List the possible dimen-
sions for G, and for each dimension, give the Cartan matrix and all
fundamental groups, up to isomorphism, for compact Lie groups
of rank 2 of that dimension.
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Solution. Since G has rank two, the dimension of the root system (the
dimension of the subspace of t∗ spanned by the roots) has dimension 0, 1,
or 2. If it is dimension 0, the G has dimension 2 and is a torus. Its Cartan
matrix is empty and its fundamental group is isomorphism to Z⊕ Z.

If the root system has dimension 1, then component of the identity of the
center of G is S1 and the quotient by this S1 is either SU(2) or SO(3). (The
only rank one groups with roots.) Thus, the dimension of these groups is 4,
the possible fundamental groups are, up to isommorphism, Z or Z⊕ Z/2Z.
The Cartan matrix is the one-by-one matrix (2).

If the dimension of the root system is 2, then the quotient of the dual
to the root system over the co-root lattice is a finite group. Thus, all the
compact groups we are considering have finite fundamental groups. We have
classified with 2-dimensional root systems: They are A2, B2, G2. A2 is the
simply laced group. B2 has long and short roots whose lengths squared differ
by a factor of 2 and G2 has long and short roots whose lengths squared differ
by a factor of 3. In the three cases the Cartan matrices are(

2 −1
−1 2

) (
2 −2
−1 2

) (
2 −3
−1 2

)
.

Now the Cartan matrix is the pairing ⟨αiα
∨
j ⟩, which is the pairing between

R∗ the root lattice and Λ0. On the other hand, the quotient of R∗/Λ0 is
the center of the simply connected form of the group. One sees easily that
the determinant of the Cartan matrix in the three cases is 3, 2, 1. Thus, the
centers of the simply connected forms are Z/3Z,Z/2Z, and {1} in the three
cases. In addition, we have the adjoint form as well with fundamental groups
Z/3Z,Z/2Z, {1}, respectively. There are no other possibilities in these three
cases. A2 has 6 roots and hence dimension of the associated groups is 8; B2

has 8 roots and the dimension of the associated groups is 10 and G2 has 12
roots (6 short and 6 long, each making up an A2), so G2 has dimension 14.

4. Let g be a semi-simple real Lie algebra. Without appealing to
Ato’s theorem show that there is a simply connected Lie group
whose Lie algebra is isomorphism to g. Show that up to isomor-
phism there is only one such group.

Solution. Since g is semi-simple, the adjoint representation is injective.
Hence g is isomorphic to a sub Lie algebra of gl(g). By Lie’s theorem there is
a connected Lie group G and a morphism G→ GL(g) whose differential at
the identity identifies the Lie algebra of G with g. Passing to the universal
covering G̃ of G gives us a simply connected Lie group with Lie algebra
identified with g.
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If G̃′ is another such simply connected Lie group, Lie’s second theorem
produces a map of Lie groups G̃ → G̃′ that gives the identification of their
Lie algebras. This is a covering map, but since G̃′ is simply connected and
G̃ is connected, the map is a one-sheeted covering, i.e., a diffeomorphism.

5. Let R be an indecomposable (meaning not an orthogonal direct
summand of two non-empty root systems). Show that if R is
simply laced then all roots are conjugate under the Weyl group and
there is a unique root in the closure of the fundamental domain.
If R is not simply laced show that there are exactly two lengths
of roots of R, which we call long and short. Show all long roots of
R are conjugate under the action of the Weyl group and similarly
for all short roots. Show there is a unique long root in the closure
of the fundamental chamber and similarly for the short roots.

Solution. The Simply Laced Case. Take a Weyl invariant metric on the
root space V , Suppose that U is a Weyl-invariant subspace of V . Then V =
U ⊕ U⊥. Since reflection in any root α leaves this decomposition invariant
either α ∈ U or α ∈ U⊥. Since, by assumption, we cannot divide the roots
into two non-empty subsets R1

∐
R2 with every root in R1 orthogonal to

every root in R2, either U = V or U = ∅. This implies that the orbit of
any root spans V . That is to say, for roots α and β, there is an element
w ∈W with (w · α, β) ̸= 0. Either α = ±β, or {w · α, β} generate a subroot
system A2 inside R. In both cases and hence w · α and β are conjugate by
an element of the Weyl group generated by reflections in α, β. It follows
that α and β are in the same Weyl orbit, or said another way, all roots are
conjugate under the Weyl-action.

Choose a notion of positive roots and let C0 be the fundamental Weyl
chamber, with its associated notion of simple roots {α1, . . . , αk}. Begin with
r1 = α1. If it is possible to add a simple root to α1, and get a positive root
r2 choose one and add it, forming a positive root r2. Continue in this way
as long as possible, constructing positive roots rj with rj = rj−1+αij . This
process must terminate since the simple roots are linearly independent and
there are only finitely many positive roots. Let d be the root at which this
process terminates. Then, for every simple root αi we have (d, αi) ≥ 0, for
if it were negative we could add αi to d to form a new positive root. This
means that d ∈ C0.

Since all roots are conjugate under the Weyl action and since the quotient
of the Weyl action on t∗ is identified with the closure of C0, every W -orbit
meets the closure of C0 in a single point. Since the roots are an orbit, d is
the only root in the closure of C0.
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The Non-Simply Laced Case. The argument above shows that the
orbit of any root spans the root span. Thus, given any two roots α and β,
there is w ∈ W such that (w · α, β) ̸= 0. Thus, the ratio of the squares of
the lengths of α and β differ by a factor of 1, 2, or 3. But if we had three
different lengths {ℓ1, ℓ2, ℓ3} each pair of lengths would have to satisfy this
condition and that is not possible. Thus, there are only two lengths of roots.

The argument in the simply laced case now works equally well here to
show that the long roots form a W -obit and the short roots for a W orbit,
and that there is exactly one long root and one short root in the closure of
C0.

6. Let S be a set and let L(S) be the free Lie algebra generated by
S. Let U(L(S)) be the universal enveloping algebra of L(S). Define
inverse isomorphisms of algebras between U(L(S)) and the tensor
algebra, T (S), on S and prove that they are inverses of each other.

Soultion. The T (S) is the free associative algebra generated by S. We have
an inclusion S → U(L(S)) with U(L(S)) being an associative algebra. Thus,
there is a unique extension of this inclusion to an algebra homomorphism
T (S) → U(L(S)) extending the identity on S.

Conversely, L(S) is the free Lie algebra on S and T (S) is a Lie algebra
with the ab − ba bracket. We an the inclusion S → T (S). Since L(S)
is a free Lie algebra, this map extends to a map of Lie algebras L(S) →
T (S). Now using the universal property of U(L(S)) we extend this to a
map U(L(S)) → T (S) extending the identity on S. The compositions in
the two orders give maps T (S) → T (S) and U(L(S)) → U(L(S)) that are
the identity on S. Since S generates both algebras (or by the uniqueness
property) it follows that each of these compositions is the identity, so we
have constructed inverse algebra isomorphisms between T (S) and U(L(S)).

7. Let G be a Lie group with the property each element g ∈ G is
contained in a torus subgroup T (g) ⊂ G. Show that G is compact.1

Solution. Let L ⊂ g be a maximal abelian sub algebra. Using Lie’s
theorem to integrate this gives a map A → G whose image is a closed,
connected abelian group and whose differential at the origin is L. (If it
weren’t closed its closure would be an abelian subgroup with a larger Lie
algebra.) That is to say, A is a closed Lie subgroup of G. It is of the form
T k × Rℓ.

Let us show ℓ = 0. For, if ℓ > 0, then there is an injective homomorphism
ψ : R → G whose image is a closed sub Lie group. Take a non-zero element

1This was the hardest problem; I didn’t expect anyone to get it.
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g = ψ(t). By hypothesis, it is contained in a compact torus T in G. The
same is true of all its powers. But the intersection of T with ψ(R) is a
compact subset of ψ(R). This is a contradiction.

Thus, any maximal abelian sub algebra t of g integrates to a torus T ⊂ G
that is ”maximal” in the sense that it is not contained in a larger torus.
Now take one of these ”maximal” tori, T . Since the Lie algebra of Z0, the
component of the identity of the center, is contained in any maximal abelian
sub algebra of g, Z0is contained in T . Of course, Z0 is a closed subgroup of
G. Since it is contained in a torus in G, it follows that Z0 is compact.

We consider the adjoint representation of T × g → g. There is the
trivial subspace of this action and 2-dimensional root spaces. Since T is
not contained in a larger torus, the trivial subspace is the tangent space
to the torus. The other root spaces are two dimensional and the roots
associated with any of these subspaces are ±iα where α : t → R and sends
the lattice of T to 2πZ. Thus, the Killing form for g restricted to t is given
by B(H,H) = −2

∑
α α(H)2. This pairing is negative semi-definite on T

with kernel equal to the intersection of the kernels of all the roots. Just as
in the case of compact groups, this intersection is the central sub algebra of
g, which is Lie algebra of Z0 ⊂ T ).

Now consider G/Z0. The argument above shows that for each ”maximal”
torus T , the Killing form for the Lie algebra of G/Z0 restricted to the Lie
algebra T/Z0 is negative definite. Since that is true for every ”maximal”
torus, and since by hypothesis these cover G and hence the quotients T/Z0

cover G/Z0, we see that the Killing form for the Lie algebra of G/Z0 is
negative definite. Consequently, G/Z0 is compact. Since Z0 is also compact,
so is G.

8. Let R be a simply laced, indecomposable root system. Show
that there is a unique root d which has the property that d+ α is
not a root for any simple root α. Show that the affine Weyl cham-
ber contained in the fundamental Weyl chamber whose closure
contains the origin has wall given by the vanishing of the simple
roots and the wall given by {d = 2π}.

Solution. Fix a notion of positive roots. We saw in Problem 5 that there is
a unique root d contained in the closure of the fundamental Weyl chamber
C0. Every other positive root r is not in this chamber and hence there is
a simple root α such that (r, α) < 0. Then r + α is a root. We begin
with the positive root r and continuing to add simple roots to create new
positive roots until the process terminates. As in Problem 5, when the
process terminates we have a root in the closure of C0. But there is only
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one such root, namely d. This shows that for any positive root r, there is a
collection of simple roots {αi1 , . . . , αik} such that d = r +

∑
j αij .

Now we consider the intersection of C0 with {d < 2π}. That is to say,
we truncate C0 by adding a new affine wall {d = 2π} and consider the
component of the complement of this wall in C0 that contains the origin
in its closure. This we claim is an affine Weyl chamber. If not then there
is a root β and an integer k such that the wall {β = 2πk} contains a
point x ∈ C0 with d(x) < 2π. If necessary, changing the sign of β and
k, allows us to assume that β is a positive root. Since positive roots are
positive on C0 it follows that k is also positive. We have just shown that
we have β +

∑
j αij = d, where the αij are simple roots. Then we have

2πk +
∑

j αij (x) = d(x) < 2π. Since the αij are simple roots, they take
positive values on x and k is a positive integer. This is a contradiction.
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