Problem Set 5 for Lie Groups: Fall 2025

September 26, 2025

Problem 1. Let $\{X_1, \ldots, X_n\}$ be generators for a Lie Algebra L. Show that every element of L can be written as a finite linear combination of elements of the form

$$[Z_1, [Z_2, [Z_3 \cdots [Z_{k-1}, Z_k]] \cdots]$$

where each Z_j is one of the X_i .

Problem 2. Let $H(X,Y) = H_1(X,Y) + H_2(X,Y) + H_3(X,Y) + \text{h.o.t}$ be the power series expansion for the Hausdorff series. Thus,

$$(1 + X + \frac{X^2}{2} + \frac{X^3}{3!} + \text{h.o.t})(1 + Y + \frac{Y^2}{2} + \frac{Y^3}{3!} + \text{h.o.t}) = 1 + (H_1 + H_2 + H_3) + (H_1 + H_2 + H_3)^2 / 2 + (H_1 + H_2 + H_3)^3 / 3! + \text{h.o.t}$$

Show that the Hausdorff series starts

$$H_1(X,Y) + H_2(X,Y) + H_3(X,Y) = (X+Y) + \frac{1}{2}[X,Y] + \frac{1}{12}([X,[X,Y]] + [Y,[Y,X]]).$$

Problem 3. Recall that a Lie algebra is nilpotent if there is an integer n such that all iterated brackets of length greater than n vanish. Prove that for any nilpotent Lie algebra N the Hausdorff series is a polynomial and that it determines the multiplication of a Lie group structure on N whose Lie algebra is canonically identified with N. Show exponential mapping, which we now view as a map from N with its Lie algebra structure to N with its Lie group structure is also a polynomial function.

For the next 3 problems we use the notation from the lecture: S is a finite set, F(S) is the free associative algebra generated by S, FL(S) is the free Lie algebra generated by S and $\hat{\psi} \colon U(F(S)) \to T(S)$ is the isomorphism between the universal enveloping algebra for FL(S) to the tensor algebra of

S. All these algebras are graded algebras induced from the grading $S_{\infty} = \coprod_{n=1}^{\infty} S_n$. Using the restriction of the isomorphism $\hat{\psi}$ to FL(S) deterimines an embedding of FL(S) as. aub-Lie algebra of T(S) with the Lie algebra structure derived from its natural associative algebra structure

Problem 4. Using the Lie algebra structure of T(S) derived from its associative algebra structure, show that there is a map $P: T(S) \to T(S)$ defined by the linear extension of

$$P(s_1 \otimes s_2 \otimes \cdots \otimes s_n) = \operatorname{ad}(s_1) \circ \operatorname{ad}(s_2) \circ \cdots \circ \operatorname{ad}(s_{n-1})(s_n),$$

for $s_1, \ldots, s_n \in S$. Show that P preserves the gradings, has image contained in FL(S), and is the identity on $S \subset T(S)$.

Problem 5. We keep the notation of P for the map defined in Problem 4. Define a map $\theta: T(S) \to \operatorname{End}(FL(S))$ by setting $\theta(s) = \operatorname{ad}(s)|_{FL(S)}$ for $s \in S$ and extending to all of T(S) using the fact that T(S) is the free associative algebra generated by S.

- (a) Show that the restriction of θ to FL(S) is a Lie algebra map from FL(S) to End(FL(S)) that sends $u \in FL(S)$ to the endomorphism $\theta(u) = ad(u) : FL(S) \to FL(S)$.
- (b) Show that for all $u \in FL(S)$ and all $v \in T(S)$ we have $P(uv) = \theta(u)P(v)$ for P the map in Problem 4.
- (c) For $u, v \in FL(S)$ show that P[u, v] = [P(u), v] + [u, P(v)].
- (d) Show that for every k, the restriction of P to $FL^k(S) = T^k(S) \cap FL(S)$ is multiplication by k, so that the function \overline{P} defined by

$$\overline{P} = \bigoplus_{k \ge 1} \frac{1}{k} P|_{T^k(S)} \colon T^k(S) \to FL^k(S)$$

is a projection $\overline{P}: T(S) \to FL(S)$ (meaning that $\pi|_{FL(S)} = \operatorname{Id}$).

Problem 6. Fix non-negative numbers m, r, s. Define $\alpha(m, r, s)$ to be the set of pairs of sequences $\mathbf{r} = (r_1, \ldots, r_m)$ and $\mathbf{s} = (s_1, \ldots, s_m)$ with the properties that (1) for each i we have $r_i + s_i \ge 1$ and (2) $|\mathbf{r}| := \sum_{i=1}^m r_i = r$ and $|\mathbf{s}| := \sum_{i=1}^m s_i = s$. Let $\alpha(m) = \bigcup_{(r,s)} \alpha(m,r,s)$. Show the following equality of formal power series:

$$\log(\exp(X)\exp(Y)) = \sum_{m} \frac{(-1)^{m-1}}{m} \left(\sum_{r,s \ge 0} \frac{X^{r}Y^{s}}{r!s!} \right)^{m}$$
$$= \sum_{m} \frac{(-1)^{m-1}}{m} \sum_{(\mathbf{r},\mathbf{s}) \in \alpha(m)} \frac{X^{r_{1}}Y^{s_{1}}}{r_{1}!s_{1}!} \frac{X^{r_{2}}Y^{s_{2}}}{r_{2}!s_{2}!} \cdots \frac{X^{r_{m}}Y^{s_{m}}}{r_{m}!s_{m}!}.$$

Problem 7. For $(\mathbf{r}, \mathbf{s}) \in \alpha(m)$: if $s_m \geq 1$ set

$$H(\mathbf{r},\mathbf{s})(X,Y) = \frac{1}{|\mathbf{r}| + |\mathbf{s}|} \frac{\operatorname{ad}(X)^{r_i} \operatorname{ad}(Y)^{s_i}}{r_i! s_i!} \cdots \frac{\operatorname{ad}(X)^{r_m} \operatorname{ad}(Y)^{s_m-1}}{r_m! s_m!} (Y),$$

and if $s_m = 0$ set

$$H(\mathbf{r},\mathbf{s})(X,Y) = \frac{1}{|\mathbf{r}| + |\mathbf{s}|} \frac{\operatorname{ad}(X)^{r_i} \operatorname{ad}(Y)^{s_i}}{r_i! s_i!} \cdots \frac{\operatorname{ad}(X)^{r_m - 1}}{r_m!} (X),$$

(a) For all pairs of non-negative numbers (r, s) set

$$H(r,s)(X,Y) = \sum_{m} (-1)^{m-1} \frac{1}{m} \sum_{(\mathbf{r},\mathbf{s}) \in \alpha(m,r,s)} H(\mathbf{r},\mathbf{s})(X,Y).$$

Show that H(r, s) is a finite sum of elements in FL(S), each being a bracket of exactly r copies of X and s copies of Y. Show that we have an equality of formal power series.

$$\log(\exp(X)\exp(Y)) = \sum_{r,s>0} H(r,s)(X,Y).$$

[Hint: Use the fact that $\log(\exp(X)\exp(Y)) \in FL(S)$.]

Problem 8. Consider the function $f(u,v) = -\log(2 - \exp(u+v))$. Show that the power series centered at (u,v) = (0,0) for f is

$$f(u,v) = \sum_{r,s>0} \eta_{r,s} u^r v^s$$

where

$$\eta_{r,s} = \sum_{m} \frac{1}{m} \sum_{\alpha(m,r,s)} \frac{1}{r_1! s_1! \cdots r_m! s_m!}.$$

Show that this series is absolutely convergent for $u, v \ge 0$ and $u+v < \log(2)$.

Problem 9. Let L be finite dimensional real Lie algebra. Fix a positive definite inner product on L with associated norm denoted $|\cdot|$. Show that there is a $1 \leq M < \infty$ such that $|[U,V]| \leq M|U||V|$ for all $U,V \in L$. Show that for any fixed r,s and for elements $U,V \in L$

$$|H(r,s)(U,V)| \le M^{r+s-1}|U|^r|V|^s\eta_{r,s}.$$

Problem 10. Show that with L a finite dimensional real Lie algebra and M as in the previous problem, the Hausdorff series $\sum_{r,s} H(r,s)(U,V)$ is absolutely convergent for U,V with $|U|,|V|<\frac{\log(2)}{2M}$.

Here are two elementary problems about completions of rings with respect to powers of an ideal.

Problem 11. Consider \mathbb{Z} with the p-adic topology. By this we mean take the open sets of $0 \in \mathbb{Z}$ to be $(p)^n$ where (p) is the prime ideal generated by the prime number p. Show that the completion $\hat{\mathbb{Z}}_p$ of \mathbb{Z} with respect to this topology is

$$\lim_{n\to\infty}\mathbb{Z}/p^n\mathbb{Z}$$

with the maps $\mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$ being the natural reductions. Show also that any element of $\hat{\mathbb{Z}}_p$ can be written as $\sum_{n=0}^{\infty} a_n p^n$, This expression is unique if we require in addition that all the a_n satisfy $0 \le a_n < p$.

Problem 12. Let R = k[x] and describe the completion of R with respect to the powers of the ideal (x) generated by x.