
Problem Set 1 for Lie Groups: Fall 2025

September 4, 2025

Problem 1. Fix a field K and consider the polynomial ring with variables
Xij with 1 ≤ i, j ≤ n. This is the ring of polynomial functions (with coeffi-

cients in K) on Kn2
. We identify the space M(n× n,K) of n× n matrices

overK with the vector spaceKn2
in such a way that the functionXi,j assigns

to each matrix its (i, j)-entry. For any r, we give Kr the Zariski topology
where the closed subsets are exactly the loci in Kr where some given col-
lection of polynomial vanishes. (These are called subvarieties.) Show that
this is indeed a topology. Show that GL(n,K) ⊂ M(n × n,K) is open in
the Zariski topology. Show that SL(n,K), the matrices of determinant 1,
is a closed subset in the Zariski topology. Show that matrix multiplication
is an algebraic map, meaning that it pulls back polynomial functions on
M(n×n,K) to polynomial functions on M(n×n,K)×M(n×n,K). Show
that this map is cotninuous in the Zariski topology. Show that GL(n,K)
and SL(n,K) are groups under matrix multipliciation.

Problem 2. A linear algebraic group over K is an K-affine subvariety; i.e.,
a subvariety V of Kn for some n, and a algebraic morphisms µ : K×K → K
and ι : K → K together with a K-algebraic point e ∈ V that satisfy all the
group laws in the category of K-algebraic varieties and morphisms.. Show
that GL(n,K) with its usual matrix multiplication and inverses is a linear
algebraic group.Show that multiplication and inverse are given by rational
functions of the matrix entries where the denominator is a power Show that
any subvariety of GL(n,K) that is closed under multiplication and inverses
and contains the identity matrix is a linear algebraic group over K. Show
that any linear algebraic group over R, resp. C, is a Lie group, resp. a
complex Lie Group.

Problem 3. Let Q be a positive definite quadratic form on a n-dimensional
real vector space. Show that the orthogonal group of Q is a Lie group by
showing that it is a smooth submanifold of GL(n,R). [Hint: Show that there
is no loss of generality in taking Q to be the standard Euclidean quadratic
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form. Then show a matrix A ∈ M(n×n,R) is in the orthogonal group if and
only if its columns form an orthonormal basis of Rn. Then use the implicit
function theorem to show establish the result.] The result is the orthogonal
group of Q, denoted O(n).

Problem 4. Show that O(n) has two components. Define SO(n) to be
the subgroup of orthogonal matrices of determinant 1. Show SO(n) is the
component of the identity of O(n).
Problem 5. Given any non-degenerate quadratic form Q on Rn (meaning
that if Q(x + y) = Q(y) for all y ∈ Rn, then x = 0). Show any such form
can be diagonalized, i.e., there is a basis e1, . . . , en such that Q(ei) = ±1
and Q(ei+ ej) = Q(ei)+Q(ej) for all i ̸= j. Define the orthogonal group of
Q and show that it is a sub Lie group of GL(n,R).
Problem 6. Show that the group of unitary n × n-matrices, i.e., A ∈
GL(n,C) satisfying A

tr
= A−1 is a real Lie subgroup of GL(n,C). Show

that in general it is not a complex Lie subgroup.

Problem 7. Let A be a non-degenerate skew symmetric pairing on R2n.
Define Symp(2n,R) as the set of elements in g ∈ GL(2n,R) that preserve
A in the sense that A(x, y) = A(gx, gy) for all x, y ∈ R2n. Show that
Symp(2n,R) is a sub-Lie Group of GL(n,R).

Problem 8. Let R+ act on R2 \ {(0, 0)} by t · (x, y) = tx, t−1y. Show that
this is a smooth action free action and every orbit is a closed submanifold
of R2 \ {(0, 0)}. Show the quotient space is not Hausdorff.

Problem 9. (Basic Topology) A topology on a set X is second countable
if there is a countable basis for the topology (i.e., a countable collection of
open sets {Un}n∈Z such that every open set is a union of a subset of the Un).
A topology is first countable if the topology at every point has a countable
basis, meaning for each x ∈ X there is a countable union of open subsets
containing x such that any other subset contains an open set about x if and
only if it contains one of the given collections. Show that a metric space is
first countable. Show that a metric space is second countable if and only if
it has a countable dense subset (dense meaning that the closure is the entire
space).

Problem 10. Let G be a connected Lie group. Show that G is generated
by any open neighborhood of the identity.
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