Problem Set 1 for Lie Groups: Fall 2025

September 4, 2025

Problem 1. Fix a field K and consider the polynomial ring with variables X_{ij} with $1 \le i, j \le n$. This is the ring of polynomial functions (with coefficients in K) on K^{n^2} . We identify the space $M(n \times n, K)$ of $n \times n$ matrices over K with the vector space K^{n^2} in such a way that the function $X_{i,j}$ assigns to each matrix its (i,j)-entry. For any r, we give K^r the Zariski topology where the closed subsets are exactly the loci in K^r where some given collection of polynomial vanishes. (These are called subvarieties.) Show that this is indeed a topology. Show that $GL(n,K) \subset M(n \times n,K)$ is open in the Zariski topology. Show that SL(n,K), the matrices of determinant 1, is a closed subset in the Zariski topology. Show that matrix multiplication is an algebraic map, meaning that it pulls back polynomial functions on $M(n \times n, K)$ to polynomial functions on $M(n \times n, K) \times M(n \times n, K)$. Show that this map is cotninuous in the Zariski topology. Show that GL(n,K) and SL(n,K) are groups under matrix multipliciation.

Problem 2. A linear algebraic group over K is an K-affine subvariety; i.e., a subvariety V of K^n for some n, and a algebraic morphisms $\mu \colon K \times K \to K$ and $\iota \colon K \to K$ together with a K-algebraic point $e \in V$ that satisfy all the group laws in the category of K-algebraic varieties and morphisms. Show that GL(n,K) with its usual matrix multiplication and inverses is a linear algebraic group. Show that multiplication and inverse are given by rational functions of the matrix entries where the denominator is a power Show that any subvariety of GL(n,K) that is closed under multiplication and inverses and contains the identity matrix is a linear algebraic group over K. Show that any linear algebraic group over \mathbb{R} , resp. \mathbb{C} , is a Lie group, resp. a complex Lie Group.

Problem 3. Let Q be a positive definite quadratic form on a n-dimensional real vector space. Show that the orthogonal group of Q is a Lie group by showing that it is a smooth submanifold of $GL(n, \mathbb{R})$. [Hint: Show that there is no loss of generality in taking Q to be the standard Euclidean quadratic

form. Then show a matrix $A \in M(n \times n, \mathbb{R})$ is in the orthogonal group if and only if its columns form an orthonormal basis of \mathbb{R}^n . Then use the implicit function theorem to show establish the result.] The result is the orthogonal group of Q, denoted Q(n).

Problem 4. Show that O(n) has two components. Define SO(n) to be the subgroup of orthogonal matrices of determinant 1. Show SO(n) is the component of the identity of O(n).

Problem 5. Given any non-degenerate quadratic form Q on \mathbb{R}^n (meaning that if Q(x+y)=Q(y) for all $y\in\mathbb{R}^n$, then x=0). Show any such form can be diagonalized, i.e., there is a basis e_1,\ldots,e_n such that $Q(e_i)=\pm 1$ and $Q(e_i+e_j)=Q(e_i)+Q(e_j)$ for all $i\neq j$. Define the orthogonal group of Q and show that it is a sub Lie group of $GL(n,\mathbb{R})$.

Problem 6. Show that the group of unitary $n \times n$ -matrices, i.e., $A \in GL(n,\mathbb{C})$ satisfying $\overline{A}^{tr} = A^{-1}$ is a real Lie subgroup of $GL(n,\mathbb{C})$. Show that in general it is not a complex Lie subgroup.

Problem 7. Let A be a non-degenerate skew symmetric pairing on \mathbb{R}^{2n} . Define $Symp(2n,\mathbb{R})$ as the set of elements in $g \in GL(2n,\mathbb{R})$ that preserve A in the sense that A(x,y) = A(gx,gy) for all $x,y \in \mathbb{R}^{2n}$. Show that $Symp(2n,\mathbb{R})$ is a sub-Lie Group of $GL(n,\mathbb{R})$.

Problem 8. Let \mathbb{R}^+ act on $\mathbb{R}^2 \setminus \{(0,0)\}$ by $t \cdot (x,y) = tx, t^{-1}y$. Show that this is a smooth action free action and every orbit is a closed submanifold of $\mathbb{R}^2 \setminus \{(0,0)\}$. Show the quotient space is not Hausdorff.

Problem 9. (Basic Topology) A topology on a set X is second countable if there is a countable basis for the topology (i.e., a countable collection of open sets $\{U_n\}_{n\in\mathbb{Z}}$ such that every open set is a union of a subset of the U_n). A topology is first countable if the topology at every point has a countable basis, meaning for each $x \in X$ there is a countable union of open subsets containing x such that any other subset contains an open set about x if and only if it contains one of the given collections. Show that a metric space is first countable. Show that a metric space is second countable if and only if it has a countable dense subset (dense meaning that the closure is the entire space).

Problem 10. Let G be a connected Lie group. Show that G is generated by any open neighborhood of the identity.