
Lie Groups: Fall, 2025

Lecture IX:

Root Systems

October 13, 2025

For this lecture we fix a compact, connected Lie group G, a maximal
torus T ⊂ G.

1 ‘Lattices’

We have the action of the Weyl groupW on T and the induced linear action
ofW on t. We define the dual actionW×t∗ → t∗ by wφ(X) = φ(ad(w−1)X).

1.1 Basic Definitions

Definition 1.1. The basic lattice we have to begin with is Λ ⊂ t, the kernel
of exp: t → T . It is identified both with the fundamental group of T and
with the lattice Hom(S1, T ). It is the co-root lattice.

The weight space is the lattice Hom(T, S1). It is the lattice of all char-
acters of all linear representations of T . It is identified with the lattice in t∗ of
all linear maps t → R that send Λ → 2πZ, and hence with Hom(Λ, frm−epiZ) =
Λ∗. Clearly, the natural pairing t∗ ⊗ t → R induces the usual dual pairing
of the weight lattice and the co-root lattice, namely the tautological pairing
Λ∗ ⊗ Λ → 2πZ.

Definition 1.2. The root lattice R ⊂ t∗ is the (possibly partial) lattice
spanned by the roots of (G,T ). The root lattice is a subgroup of the weight
lattice Λ∗ generated by the non-zero weights of the adjoint action of T on g.
The co-weight space is a subgroup of t dual to the partial root lattice. By
definition, it consists of all v ∈ t with the property that α(v) ∈ 2πZ for all
α ∈ R. In general, the root lattice is partial lattice in t∗ in the sense that is
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a discrete subgroup but imay not span t∗ over R. We examine the structure
of the co-weight space below.

Since the roots are characters of the adjoint action of T on g, they are
weights; i.e., R ⊂ Λ∗.

Examples 1. If G is a torus V/Λ, then the co-root lattice is Λ and the
weight lattice is Λ∗. On the other hand, the root lattice is {0} and the
co-weight space is t.
Example 2. The root lattice is a (full) lattice if and only if the roots span
t∗ over R. This is the case exactly when the co-weight space is a lattice.

1.2 The Co-Weight Space and the Center of G

Lemma 1.3. The image of co-weight space Z̃ ⊂ t under the exponential
map is the center of G. That is to say, the center of G is the quotient of the
co-weight space by the co-root lattice.

Proof. By definition, the co-weight space is the intersection over all roots
α : t → R of α−1(2πZ). Thus, the image of the co-weight space under
exponentiation is the intersection over all roots α : T → S1 of the kernel of
α.

The adjoint action of g ∈ T on Vα is the trivial action if and only if
α(g) = 1. Hence, the image of the co-weight space in T is the kernel of the
adjoint action of T on g. These are exactly the elements in T for which the
adjoint action on g is trivial. Since G is connected the kernel of the adjoint
action of T on g is equal to the kernel of the adjoint action of T on G;i.e.,
all elements of T contained in the center of G. On the other hand, we know
the center of G is contained in every maximal torus and hence is contained
in T .

Corollary 1.4. The co-weight space in t is the universal covering of a com-
pact abelian group. Thus, it is isomorphic to Rk × F where F is a finite
abelian group. The subgroup Rk of t is the center of g; i.e., the kernel of
ad: g → GL(g). Say another way, it is the set of X ∈ g such that [X, g] = 0.

Corollary 1.5. 1. The root lattice is a full lattice if and only if the center
of G is finite if and only if the adjoint action of g on itself is a faithful
representation.

2. The root lattice equals the weight lattice if and only if the center of G
is the trivial group if and only if the adjoint action of G on g is a faithful
representation.
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Often one only invokes the terms root lattice and co-weight lattice, in
the case when these are (full) lattices; i.e., when the center of G is finite.

Definition 1.6. A group with trivial center is said to be the adjoint form.
For any compact group, its adjoint form is the quotient of G by its center.
The adjoint form of a Lie group G is the image in GL(g) of the adjoint
action of G on g.

As an example, the adjoint form of S3 is SO(3). The adjoint form of a
torus is the trivial group. (Often, one talks about the adjoint form only for
groups with finite center, so that the adjoint form has the same Lie algebra
as the original group.)

2 Action of the Weyl Group

2.1 Identification of t and t∗

By the definitions, the roots α are elements of t∗ and the action of the Weyl
group is on t. The generators of the Weyl group are the reflections in the
Weyl walls Wα = ker(α) in the sense that they are the identity on Wα and
interchange the sides of Wα. As described above, we have the adjoint action
of W on t∗. Of course, the action on t∗ of the reflections in W has the same
structure as their action on t. That is to say, the action of a reflection on
t∗ has a point-wise fixed codimension-one subspace. But we have no good
description of the invariant subspace.

To get a much clearer picture, we fix a Weyl invariant metric on t, which
we denote by (·, ·). and identify t and t∗ using this metric.

Definition 2.1. We identify t and t∗ by x ∈ t 7→ φx ∈ t∗ by φx(y) = (x, y)
and φ ∈ t∗ 7→ xφ ∈ t by (xφ, y) = φ(y). It is easy to see that these
identifications are inverses of each other.

We then transport the metric from t to t∗. That is to say or all φ,ψ ∈ t∗,
we define (φ,ψ) = (xφ, xψ). By definition, this makes the identification of t
with t∗ is an isometry.

With these choices, we see that α⊥ ⊂ t∗ is identified with Ker(α) = x⊥α ⊂
t.

Lemma 2.2. The identification t ∼= t∗ determined by a Wel-invariant metric
on t is a Weyl-invariant isomorphism
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Proof. Let w ∈W and x ∈ t. Then for all y ∈ t we have

(wφx)(y) = φx(w
−1y) = (x,w−1y) = (wx, y) = φwx(y).

Since this is true for all y ∈ t, w(φx) = φwx.

2.2 Formulae for the actions of Reflections on t and t∗

We are now in a position to give formulae for the actions of the Weyl group
on t and t∗. Since the Weyl group is generated by reflections associated with
roots, we need only write formulae for the actions of these elements.

Claim 2.3. Let α be a root. The action of the reflection wα on t∗ is given
by

φ 7→ φ− 2(α,φ)α

(α, α)
.

The action of wα on t is given by

X 7→ X − 2α(X)xα
(α, α)

.

Proof. The action of wα on t actis as an orthogonal reflection in ker(α).
Under the equivariant isometry t ∼= t∗, the action of wα on t is sent to
its action on t∗ and ker(α) is sent to α⊥. Thus, the action of wα on t∗ is
an orthogonal reflection in α⊥. The first formula given above determines a
linear map t∗ → t∗ that clearly fixes α⊥ point-wise and sends α→ −α. Since
α is perpendicular to α⊥, the formula determines the orthogonal reflection
in α⊥.

The action of wα on t is an orthogonal reflection in ker(α). The second
formula determines a linear map that clearly fixes ker(α) and, since α(xα) =
(α, α), sends xα to −xα. Since xα is orthogonal to ker(α), the formula
produces the orthogonal reflection in ker(α).

2.3 Two Fundamental Results

Now that we have explicit formulae for the action of the reflections on t and
t∗ we can derive the fundamental facts about all this structure.

Claim 2.4. For every root α and every weight λ ∈ Λ∗, we have

−2(α, λ)

(α, α)
∈ Z.
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Proof. (Following Adams) Fix a root α and choose v ∈ t a vector with
α(v) = 2π. Then exp(v) ∈ ker(α : T → S1). Hence, is fixed by wα acting on
T . This means that in t we have

wα(v)− v =
−2α(v)xα
(α, α)

is an element of Λ. Hence, for any weight λ ∈ Λ∗ we have

−2α(v)λ(xα)

(α, α)
=

−2α(v)(α, λ)

(α, α)
∈ 2πZ.

Since α(v) = 2π, we see that

−2(α, λ)

(α, α)
∈ Z.

Claim 2.5. For roots α and β we have

β − 2(α, β)α

(α, α)

is a root, and
−2(α, β)

(α, α)
∈ Z

Proof. The second statement follows from Claim 2.4. The first statement
follows from Claim 2.3 and the fact that the Weyl group action preserves
the roots.

3 Root Systems

In this section we formalize the properties that we established in the previous
section and the previous lecture.

3.1 Definitions

Definition 3.1. A root system consists of a finite dimensional real vector
space V and a finite set of non-zero vectors R = {α1, . . . , αk} of V , the roots,
a finite group W , the Weyl group, acting linearly and effectively on V and
a positive definite W -invariant inner product on V , satisfying the following
axioms:
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1. If α is a root then so is −α but no other real multiple of α is a root.

2. W preserves the set of roots.

3. For each α ∈ R there is an element wα ∈ W that is the reflection in
the hyperplane orthogonal to α.

4. The reflections associated with the roots generate W .

5. For each pair of roots α, β we have

−2(α, β)

(α, α)
∈ Z.

We extend the basic terminology of roots, Weyl walls, Weyl chambers,
and reflections to general root systems.

Definition 3.2. Given a root system (V,R,W, (·, ·, )), we say that R is the
set of roots and any element of R is a root; W is the Weyl group; for each
root α ∈ R the linear subspace Wα = α⊥ ⊂ V is the Weyl wall associated
with α and the set of Weyl walls is the set of Wα for all roots α ∈ R. Of
course, Wα = W−α. The Weyl chambers are the connected components of
V \ ∪α∈RWα. These are open, convex subsets of V . For each α ∈ R, the
element wα ∈ W is the reflection in Wα. A Weyl wall Wα is a wall of a
Weyl chamber C if C ∩Wα contains a point in no other Weyl wall beside
Wα. (Here, C is the closure of C.)

Clearly, if the root system is the root system associated with a compact,
connected Lie group, these terms agree with the ones we are already using.

3.2 Comparison of Root Systems in General with those com-
ing from compact, connected Lie groups

In one direction, the data coming from a connected, compact Lie group is a
root system.

Theorem 3.3. For any compact, connected Lie group G with maximal torus
T , the data (t∗, roots of T, W =W (G,T ),W -invariant metric) form a root
system.

Proof. The first four properties are established in Theorem 2.2 (Item 2),
Proposition 4.7, Corollary 2.3, and Corollary 3.27, respectively, of the pre-
vious lecture. The last property is established in Claim 2.4 above.
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In the other direction, things we established in the Lie group context
hold for general root systems.

Lemma 3.4. If α, β are roots and β ̸= ±α, then the intersection Wα ∩Wβ

is a codimension-2 linear subspace of V and is nowhere dense in Wα.

Proof. This is immediate from Axiom 1 for a root system.

Corollary 3.5. For any affine linear segment ω : [0, 1] → V with ω(i) in
a Weyl chamber Ci for i = 0, 1, there is an arbitrarily close generic affine
linear segment. Theorem 3.14 holds for all root systems.

Proof. Once we have Lemma 3.4, the proofs given for Lemma 3.13 and
Theorem 3.14 in Lecture 8 go over mutatis mutandis

Lemma 3.6. In a general root system, for any root α, the formula for
reflection in Weyl wall Wα is given by

v 7→ v − 2(α, v)

(α, α)
.

In addition, Claim 2.5 of Lecture 8 holds for all pairs roots α, β.

Proof. It is a direct computation that the given formula is the formula for
reflection in α⊥. Claim 2.5 from Lecture 8 then follows by applying this
with v = β and using the axiom that the roots are invariant under the Weyl
action.

4 Properties of Root Systems

We fix a root system (V,R,W, (·, ·, )).

Lemma 4.1. Let α, β be a pair of roots with β ̸= ±α. Then

0 ≤
(−2(α, β)

(α, α)

)(−2(β, α)

(β, β)

)
< 4.

Proof. By Axiom 1, since β ̸= ±α, β and α are not real multiples of each
other As an immediate consequence by Cauchy-Schwarz and the fact that
the two terms have the same sign. (α, β)2 < (α, α)(β, β).
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Corollary 4.2. Let α, β be roots with β ̸= ±α and with (α, β) ≤ 0. Then
either (α, β) = 0 or one of

−2(α, β)

(α, α)
or

−2(β, α)

(β, β)

is equal to 1 and the other takes value in the set {1, 2, 3}.

Proposition 4.3. 1. If (α, β) = 0, then the angle between α and β is π/2,
the reflections in the hyperplanes perpendicular to α and β commute and
generate dihedral group of order 4.
2. Suppose that β ̸= ±α and

−2(β, α)

(β, β)
= 1.

Then the angle between α and β is π/3, π/4, or π/6 depending on whether

v =
−2(α, β)

(α, α)
= 1, 2, or 3.

Also, |β|
|α| =

√
v. In these cases the reflections in the hyperplanes perpendic-

ular to α and β generate a dihedral group of order 6, 8, or 12.
3. Furthermore, under the hypothesis of previous statement, β+kα is a root
for all

0 ≤ k ≤ −2(α, β)

(α, α)
.

Proof. The first statement is clear.. Let us consider Statement 2. Let θ be
the angle between α and β, so that 0 ≤ θ ≤ π/2. Set

v =
−2(α, β)

(α, α))
.

Then
cos2(θ) =

v

4
,

or equivalently

cos(θ) = ±
√
v

2
.

Statement 2 is now clear.
If −2(α,β)

(α,α) = 1, then the reflection of β is the hyperplane perpendicular
to α is β + α.
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If −2((α,β)
(α,α) = 2, then reflection of α in the hyperplane perpendicular to

β is β +α, whereas the reflection of β in the hyperplane perpendicular to α
is β + 2α.

Finally, if −2(α,β)
(α,α) = 3, the reflection of α in the hyperplane perpendicular

to β is α + β, and reflection of α + β in the hyperplane perpendicular to
α is β + 2α. Lastly, reflection of β in the hyperplane perpendicular to α is
β + 3α.

Since the roots are invariant under the Weyl group action, this establishes
Statement 3 in all cases.

5 Positive Roots and Simple roots

To study root systems further, we fix a Weyl chamber and describe things
in terms of that choice. Of course, all Weyl chambers are equivalent under
the action of the Weyl group, so different choices lead to an isomorphic
descriptions up to conjugation.

Definition 5.1. We fix a Weyl chamber C0, called the fundamental Weyl
chamber. Since C0 is disjoint from the walls defined by the roots, each root
is either positive or negative on C0. Those that are positive on C0 are called
positive roots, and those that are negative are called negative roots (relative,
of course, to C0 which we consider as fixed for this discussion).

Remark 5.2. Every root is either positive or negative and the involution
−1 on V interchanges positive and negative roots. Thus, each wall is defined
as the kernel of a unique positive root.

Since Theorem 3.14 of Lecture 8 holds for a general root system we have:

Claim 5.3. Let α1, . . . , αk be the positive roots defining the walls of C0.
Then C0 = ∩ki=1{αi > 0}.

Lemma 5.4. The fundamental Weyl chamber C0 is the only chamber on
which all positive roots are positive.

Proof. Let C be a chamber distinct from C0. We claim that there is a wall
separating C0 and C. If not then all the positive roots defining walls of C0

are positive on C and hence C ⊂ C0 which implies C = C0. If the wall Wα

associated to a positive root α separates C and C0, then α is negative on
C.
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Lemma 5.5. If α and β are positive roots and α+ β is a root, then α+ β
is a positive root. A non-trivial real linear combination of positive roots,∑

i λiαi with the λi > 0 is never the zero element of V .

Proof. The first statement is obvious from the definition. As to the sec-
ond, any non-trivial positive real linear combination of positive roots takes
positive value at any point of C0.

Definition 5.6. A positive root is a simple root if it cannot be written as
a sum of two positive roots.

The two main results we prove are:

• The simple roots are linearly independent and span the same sub-
space of V as all the roots, which is the orthogonal complement of the
subspace on which the Weyl group acts by the identity.

• The Weyl walls associated with the simple roots are exactly the walls
of the fundamental chamber.

5.1 Span of the Simple Roots

Lemma 5.7. Every positive root is a sum of simple roots.

Proof. Suppose that α is a positive root that cannot be written as a sum
of simple roots. Then α is not simple so that it can be written as a sum
β1 + β′1 of positive roots. If each of β1 and β′1 can be written as a sum of
simple roots then so can α. Thus, renumbering if necessary, we can assume
β1 cannot be written as a sum of simple roots, and, in particular is not a
simple root.

Repeating the argument, we have β1 = β2 + β′2 with β2 and β′ positive
roots and β2 not a sum of simple roots. Assuming that α is not a sum of
simple roots, inductively we creating a sequence {βi = βi+1 + β′i+1}∞i=1 with
each βi and β

′
i positive roots and βi not expressible as a sum of simple roots.

Claim 5.8. In any expression for α as a positive sum of two or more positive
roots the coefficient of α in the sum is 0.

Proof. Otherwise, α = α+µ where µ is a positive sum of positive roots.Then
µ = 0 which by Lemma 5.5 means µ is the trivial sum.

10



Since

α = β′1 + · · ·+ β′i−1 + (βi + β′i)

βj = β′j+1 + · · ·β′i−1 + (βi + β′i) for j < i

it follows from the previous claim α, β1, β2, . . . are all distinct. Since there
is a finite number of roots, this is a contradiction.

Lemma 5.9. If α and β are simple roots, then (α, β) ≤ 0.

Proof. If (α, β) > 0, the by Part 3 of Proposition 4.3 the element β − α is
a root. Either β − α or α − β is a positive root and consequently, either
β = α+ (β − α) or α = β + (α− β) is not simple.

Definition 5.10. We denote by S be the set of simple roots.

Proposition 5.11. The simple roots are linearly independent.

Proof. Suppose we have a linear relation
∑

α∈S λαα = 0. We form two
disjoint subsets of simple roots: S+ = {α|λα > 0} and S− = {α|λα < 0}.
Then define v by

v =
∑
α∈S+

λαα =
∑
α∈S−

−λαα

with both sides having positive numerical coefficients. We have

(v, v) =
∑

(α,β)∈S+×S−

λαλβ(α, β) ≤ 0.

This implies that v = 0, and consequently that
∑

α∈S+
λαα = 0. It follows

from Lemma 5.5 that S+ = ∅. The same argument shows that S− = ∅,
proving the linear independence of the simple roots.

Corollary 5.12. The simple roots are a basis for the orthogonal space to
the subspace on which the Weyl group acts trivially, and

∩α∈S{α > 0}

is the fundamental Weyl chamber.

Proof. Since every root is either a positive linear combination or negative
linear combination of the simple roots, the simple roots span the same space
as all the roots. This is clearly the orthogonal complement to the maximal
linear subspace on which Weyl group action is trivial. By the linear inde-
pendence of the simple roots, they form a basis for this subspace.
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5.2 The Weyl walls of the simple roots are exactly the walls
of the fundamental chamber

Let α1, · · · , αk be the simple roots. Then by Lemma 5.7 every positive root
is positive on D = ∩ki=1{αi > 0}. Thus, every negative root is negative
on D.. This means that no wall meets D and hence, D is contained in a
Weyl chamber C. On the other hand, D \ D is contained in the union of
the walls so that no connected open subset of V that properly contains D
is contained in a chamber. It follows that D is a chamber. Since the αi
are linearly independent each wall {αi = 0} contains an open subset in the
closure of D. Thus, each {αi = 0} is a wall of D.

6 The Dynkin diagram

Definition 6.1. The Dynkin diagram has nodes and connections between
the nodes. The nodes are indexed by the simple roots. Two nodes have
no connection if the roots that index the nodes are orthogonal. Two nodes,
indexed by α, β have a single line connection between them if the angle
between α and β is π/3; they have a double line connection between them
if the angle between α and β is π/4, and they have a triple line connection
between them if the angle between α and β is π/6. In the last two cases
we add an arrow to the multiple connection that points toward the shorter
root.
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