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All of the structure of reflections, walls, and chambers comes from rank-
one groups.

1 Rank-1 groups

Theorem 1.1. Let G be a compact, connected Lie group of rank 1. Then
G is isomorphic to one of the three following groups:

o 51
e SO(3)
o S3.

In the second and third case there is one pair of roots for G and the Weyl
group is a group of order 2 acting on the mazimal torus by t — t L.

Proof. Let T C G a maximal torus. Then G/T is even dimensional. We
claim that this dimension is either 0 or 2. If the dimension is 0, then since
G is connected T = G and we have the first of the groups listed above.
Suppose that the dimension of G is n > 0. Choose a positive definite inner
product on g that is invariant under the adjoint representation. Denote by
S(g) be the unit sphere about 0 in g. It is diffeomorphic to ™.

Let v be a unit vector in t. The map p: G — S™ ! defined by g
ad(g)(v) factors to define a smooth map p: G/T — S(g). We claim this map
is one-to-one and is a local diffeomorphism. For if ad(g;)(v) = ad(g2)(v),



then ad(g; 'g2)(v) = v and ad(g; ' g2) fixes t and hence g; ' go commutes with
T. By Corollary 2.4 of Lecture 7 the closure of abelian group generated by
91 Lgo and T has a topological generator and hence is contained in a torus.
Since T is a maximal torus, this implies that gig, L' e T. This proves that
p: G/T — (g) is one-to-one.

Since p(exp(tX)(v) = Ad(exp(tX))(v), differentiating at the identity
gives dep(X) = [X, v]. Thus, the kernel of the differential d.p at e € G is ker-
nel of [v, -]. The kernel of this map is the subspace fixed by the adjoint action
of T', which, by Theorem 3.5 of Lecture 7, is t. This proves that the kernel
of dep is t and hence that the kernel of djgp is trivial. Since the dimensions
of the domain and range are the same this implies that dp is an isomor-
phism. Direct computation shows that dy(p)(g - X) = Ad(g)(de(p)(X)) =
ad(g)([X,v]), so that the kernel of dy(p) is one-dimensional and hence dy(p)
is injective for every g € G. The same dimension count shows that djy(p) is
an isomorphism for every [g] € G/T.

Since both G/T and S(g) are compact, connected manifolds of dimension
(n—1) and S(g) is simply connected, it follows that p is a diffeomorphism.
In particular, there is w € G with ad(w)(v) = —v. Thus, w € Ng(T) and
its image in w € W(G,T) acts on T by sending 6 to 6~ 1.

Connecting w by a path w(t) to e, we have a path of homomorphisms
Ad(w(t)): ST — G from the identity map to the inverse map. From this it
follows that the map m1(7") — 71(G) sends twice the generator of 71 (T") to
the trivial element in 71 (G). From the long exact sequence of a fibration

WQ(G/T) — 7T1(T) — 71’1(G)

we conclude that 7o (G/T) # 0. Since G/T is homeomorphic to S"~! we
conclude that n = 3.

The adjoint map is a homomorphism G — SO(g) = SO(3) with kernel
equal to the center of G. Also, the center of G is finite since G has rank
1 and is not abelian. In particular, the adjoint form of G (by definition
G/(center(@))) is three-dimensional and is a subgroup of SO(3). This shows
that the adjoint form of G is SO(3). Since m1(SO(3)) = Z/2Z, it follows
that G = SO(3) or S3, the simply connected double cover of SO(3).

The statement about the roots and Weyl group follow immediately. [

2 Reflections in W(G,T)

Our next step is to extend the results about reflections for rank-one Lie
groups to general compact, connected Lie groups. For this we begin with a



technical lemma.

Lemma 2.1. Let K be a compact, connected Lie group. Let T C K be a
mazximal torus and let H CT be a normal sub Lie group of K. Then:

e The pre-image in K of Ni/g(T/H) is Ni(T).
e T/H is a mazximal torus of K/H.

e The map K — K/H induces an identification

W(K,T) = W(K/H,T/H).

Proof. Clearly, if w € K normalizes T, then the image, w, of w in K/H
normalizes T'/H. Conversely, suppose that w € K/H normalizes T'/H and
let w € K be a lift of @. Then for t € T, wtHw™' = t'H for some ' € T.
Since H is normal in K, the element w normalizes H. This implies that
wtw™t = t'h’ for some h' € H. Since H C T, this implies that wtw™' € T.
Since this is true for every ¢t € T, we conclude that that w € Ng (7). This
establishes Item 1.

T/H is a torus in K/H. Let U/H C K/H be a maximal torus in K/H
containing T/H. Then U/H commutes with 7/H and hence normalizes
T/H. From Item 1 it follows that T'C U C Nk (T). Since T is a maximal
torus of K, dim(7") = dim(Ng(T'). It follows that dim(7") = dim(U) and
hence dim(T/H) = dim(U/H). Since both these groups are tori, they are
equal.

Item 3 is immediate from Items 1 and 2. O

Theorem 2.2. Let k be the rank of G. Let T' C G be a maximal torus and
let o be a root for G. Let U, = ker(a: T — S') and let U, be its component
of the identity.

1. U, is a codimension-1 torus in T and the component group of Uy is a
cyclic.

2. The component of the identity of the normalizer of Uy, Ng(Uy)o, has
dimension k 4+ 2 and there are the only roots of G that vanish on U,,
namely +a.

3. T is a mazimal torus of Ng(Ua)o and W(Ng(Ua)o,T) = Z/27Z. Let
wq be the non-trivial element of W(Ng(Uqa)o,T). The adjoint action
of wa on T fizes U, and acts by inverse on the quotient T /U,,.



4. U, centralizes Na(Ua)o, and Ng(f]a)o = Ng(Ua)o-

5. The element w, centralizes Ul,. Also, U, has at most 2 components,
and we, acts on T /U, by inverse.

Proof. 1). U, is the component of the identity of ker(«) and thus is a
subtorus of T of codimension-1. The group of components of U, is cyclic
group of order equal to the order of divisibilty of « in the group of characters.

2). Since the automorphism group of U, is finite Ng (U, )o centralizes of
U,. Being a torus, U, has a generator g. We have just seen that Ng (U, )o
is contained in the Z(g), the centralizer of g in G. Obviously, then it is
contained in the component of the identity of Z(g). The centralizer of g
in G is the centralizer of U, in G and is contained in Ng(U,). Thus the
component of the identity of Z(g) is contained in Ng(U,)o. This proves
that Ng(Uq)o is equal to the component of the identity of Z(g).

According to Lemma 3.4 of Lecture 7, the Lie algebra of Z(g) is equal
to ker(ad(g)). This kernel is t @g|g(g)=1} V3. In particular, the dimension
of Ng(Ua)o is k + #{B|8(g9) = 1}. We must show that +« are the only
roots sending g to the identity, or equivalently the only roots vanishing on
Ua. Suppose that there were a second pair {£5} # {+a} vanishing on g.
Then ad(g) vanishes on t ® V, @ Vg the dimension of Z(g) = Ng(Ua)o is
at least k + 4. It follows from Lemma 2.1 that 7'/U, is a maximal torus
of N¢(Ua)o/Uqs. Thus, Ng(Uy)o/U, is of rank 1 and dimension > 5, con-
tradicting Theorem 1.1. This shows that is exactly one pair of roots that
vanish on U,; namely +a.

3). Since T is a maximal torus of G contained in N¢ (U, )o, it is a maximal
torus of Ng(Uy)o. Lemma 2.1 identifies the Weyl group W (Ng(Uq)o,T)
with the Weyl group W(Ng(Uqa)o/Ua, T/Uy). But Ng(Ua)o/U, is a group
of rank one and dimension 3, and hence is isomorphic to SO(3) or S3, and
the non-trivial element in the Weyl group acts by inverse on the maximal
torus.

4). Under the adjoint representation U, acts trivially on the root space
Va. Since U, C T, its adjoint action on t is trivial. Being an extension of
finite cyclic group by a torus, U, has a topological generator, say v € 1. The
adjoint action of v on the Lie algebra t® V, of Ng(U,)o is trivial. It follows
that v centralizes Ng(U,)o as does its closure U,. Equivalently, Ng(Uqa)o
centralizers U, and hence normalizes it. That is to say Na(Ua)o C Ng(f]a).
It follows that Ng (U)o € Na(Ua)o-

Conversely, any element that normalizes Uy clearly also normalizes its

A

connected component of the identity, namely, U,. It follows that Ng(U,) C

~

N¢(U,), and hence that Ng(Uy)o C Ng(Uy)o. This proves 4.



5). Since wy € Ng(Ua)o, by Item 4 it centralizes U,. Thus, Ad(w,) acts
trivially on Ua/Ua C T/U,. Since the adjoint action of w, on T/U, sends
every element to its inverse, there are only two fixed points of the action.
Thus, U, /U,y has cardinality 1 or 2. Since w, acts by inverse on T'/U,, it
also acts by inverse on 7'/ Us,. O

Corollary 2.3. For each pair of roots o of T, there is an element of order
two w, € W(G,T) that fizes the kernel of a: T — St pointwise and acts by
inverse on the quotient T'/ker(c).

Proof. Theorem 2.2 constructs exactly such an element in W(Ng(Uq)o,T).
Of course, W (Ng(Uy)o,T') is naturally a subgroup of W(G,T). O

Remark 2.4. Examining the proof above closely, one can see that we have
given a complete description of Ng(Uy)o. We have the inclusion i: U, C
N¢ (U, )o whose image is a central subgroup. We also have the 3-dimensional
Lie algebra generated by a basis X,Y of V,. The element Z = [X,Y] € t
and the line it generates is complementary to L(U,), the Lie algebra of U,.
Since the adjoint action of t on g stabilizes V,,, we see that R(Z) & V, is
closed under bracket and is the Lie algebra so(3). Hence, there is a map of
Lie groups p: S — Ng(U,)o whose Lie algebra image is exactly this so(3).
Since i: Uy C Ng(Uy)o is central, we can form the product map

i % p: Uy x S = Ng(Ua)o.

This Lie group homomorphism induces an isomorphism on Lie algebras.
The kernel of the homomorphism is a discrete central subgroup A. Since
i: Uy C Ng(Uy)o is an injection, A N U, = {e}. This means that the
projection onto S® induces an injection from A — S3 whose image obviously
lies in the center of S®. There are two possibilities for Ng(Uy)o:

o A= {e}and Ng(Uy,)o 2 U, x S3.

e A=7/27 and Ng(Uy,) =2 U, x 453, where the projection to S? induces
an isomorphism to A to the center of S® and the projection of A to
U, is an element of order 2 or 1 of T'.

In the first case U, has two components and in the second it has one.

Definition 2.5. The derived sub-algebra of a Lie algebra L is the sub-algebra
[L, L], the R-linear span over of all brackets of two elements in L.



Corollary 2.6. The derived sub-algebra of the Lie algebra of Ng(Uy)o is
50(3) generated by a basis X,Y of Vo C g. Furthermore, the line spanned
by [X,Y] is contained in t, is invariant under wy, and the action of w, on
this line is multiplication by —1.

Proof. Since the Lie algebra of Ng(Uy)o is isomorphic to L(U,) @ so(3),
it is clear that its derived algebra is s0(3). A direct computation with the
presentation of s0(3) shows that under the decomposition so(3) = ([X,Y]) ®
Va, the bracket [X,Y] lies in t. The inclusion of so(3) into the Lie algebra
of Ng(Uy,)o integrates to give a map S® — Ng(U,, T)o that sends the Weyl
group of S? isomorphically onto the Weyl group of W (N (o), T). Thus, the
line spanned by [X, Y] in t is invariant under the Weyl group and the non-
trivial element of this groups acts by —1 on the line spanned by [X,Y]. O

Corollary 2.7. Let T C G be a mazximal torus. Any element in g € T that
18 mot in the kernel of any root is contained in no mazximal torus distinct
from T. If g € ker(ar) C T for some root «, then g is contained in at least
two distinct mazimal tori.

Proof. If g € T is not contained in the kernel of any root, then g acts non-
trivially on each root space V. Thus, the subspace of g on which ad(g) acts
by the identity is t. By Lemma 3.4 of Lecture 7, this means that the Lie
algebra of the centralizer Z(g) is t. This means that the component of the
identity of Z(g) is T. Obviously, then g is contained in only one maximal
torus, which is 7.

Now suppose that g € ker(a). Then g € U, which, by Ttem 4 of The-
orem 2.2, implies that g centralizes N(;(Ua)o. Since g € T C Ng(T)o, g
is in the center of Ng(Uc«)g. Thus, g is contained in every maximal torus
Ng(Uq)o. All maximal tori of Ng(Uy)o are conjugate in Ng (U, )o and hence
are conjugate in G. Since T is a maximal torus of Ng(Uy)o, all the maxi-
mal tori of Ng(U,)o are maximal tori of G. Since dim(Ng(Uy)o > dim(7T),
there is more than one maximal torus of Ng(U,)). (In fact, there is a
two-dimensional family of them.) O

3 Weyl Chambers, Weyl Walls and Reflections

Now we pass from a study of the roots and Weyl group action on the maximal
torus to a study of the analogous objects in t, the Lie algebta of T'.

Remark 3.1. In Lecture 7 and so far in this lecture, the roots refer to non-
trivial characters a;;: T — S I that occur in the decomposition of the adjoint



action of T on its Lie algebra t. In this section we shall discuss the lifts of
these to homomorphisms t — R of the universal covers, where they have the
condition that restricted to A C t they lie in Hom(A, 27Z). In fact, lifting
in this fashion gives an isomorphism A* = Hom(7, §') = Hom(A, 277)

By abuse of notation we shall use the term roots to also mean the maps
t — R induced by roots aj: T' — S1 and denote them by the same symbols.
It should be clear from context when we introduce a ‘root’ «; in which
context we are working.

3.1 The Definitions

We fix a compact, connected Lie group G and a maximal torus T C G.
Since W (G, T) is a finite group, there is a positive definite W (G, T')-invariant
quadratic form on t. We fix one and denote the associated non-degenerate
bilinear form by (-, ).

Definition 3.2. Let R C Hom(t,R) be the set of roots for (G,T"). For each
root a € R, let W, be the kernel of a: t = R. These are the Weyl walls.
Notice W, = W_,.

One relationship between the two notions of roots is obvious. It is:

Lemma 3.3. For each root o, the exponential map induces a covering W, —
U, where, as above, Uy is the component of the identity of ker(a: T — S1).

Lemma 3.4. There are only finitely many Weyl walls and each is a codimen-
sion-1 linear subspace of t. If 3 and o are roots and B # *o, then W, # Wp
For each Weyl wall Wy, there is an element w, € W(G,T) that acts as a
reflection in W, with respect to the W (G, T')-invariant bilinear form

Proof. Since there are only finitely many roots «, there are finitely many
Weyl walls W,. The reflection w,, is produced by Corollary 2.3. It follows
from Part 2 of Theorem 2.2 that if 8 # L« then § is non-trivial restricted
to ker(a) C T. By Lemma 3.3, this implies the same result when we lift to
t. O

Definition 3.5. A Weyl chamber is a connected component of t\ (Uae g Wy ).

Lemma 3.6. 1. For any Weyl chamber C' C t and any root «, either
a>0onC ora<0onC.

2. If ¢ and y are points not lying on any Weyl wall, then x and y lie in
the same Weyl chamber if and only if the sign of a(x) equals that of
a(y) for every root a.



3. The Weyl chambers are open, convex subsets of t.

Proof. 1. Since every Weyl chamber C' is connected, if there are x,y € C
and a root o with a(z) < 0 < a(y), then by the intermediate value them
there is a point z € C with «a(z) = 0. But this is absurd since that means
z € W, whereas z is in a Weyl chamber and hence is disjoint from all Weyl
walls.

2. In Item 1 we saw that each « is either positive or negative on all of
any Weyl chamber C. Suppose now that z,y are points not in any Weyl
wall such that for all a the sign of a(z) agrees with that of a(y). Let v be
the affine linear line path from z to y. Then al, is an affine linear function
with the same sign at the endpoints. Hence, it has a constant sign along ~.
Thus, = and y are in the same connected component of the complement of
the Weyl walls; i.e., in the same Weyl chamber.

3. Being the finite intersections of open half spaces in t, the Weyl cham-
bers are open, convex subsets of t. ]

Remark 3.7. For a Weyl wall W, the complement, t\ W, is the disjoint
union of two open half-spaces. If there are k Weyl walls we define 2% dif-
ferent subsets of t as follows. The subsets are indexed by a choice for each
Weyl Wall of one of its two complementary open half-spaces. The subset
associated to an index is the intersection of the chosen open half-spaces. For
many of the indices, the corresponding subset of t is empty. The non-empty
intersections are exactly the Weyl chambers, and each Weyl chamber occurs
exactly once in the indeed collection.

3.2 The Weyl Group Action on the set of Weyl Chambers

Definition 3.8. A Weyl W, is a wall of a Weyl chamber C if and only if
intersection of the closure of C' and W, contains a point in no Weyl wall
distinct from Wy for every root 8 # +a..

Lemma 3.9. Fiz a Weyl wall W,,. Then for any other Weyl wall Wg with
B # *a, the intersection Wg N Wy is a codimension-1 linear subspace of
Wea. The union of these intersections as Wg ranges over Weyl walls distinct
from Wy, is a closed nowhere dense subset of W,.

Proof. The first statement is obvious. The second follows from it and the
fact that there are only finitely many Weyl walls. O

Definition 3.10. For each root o we define V,, C W, to be the complement
of the intersection of W, with the union of Weyl walls distinct from W,,.



Lemma 3.11. If W, is a wall of a Weyl chamber C, then the closure of C
meets Wy, in closure the of one of the components of V. The reflection w,
takes C to a Weyl chamber C' that also has Wy, as a wall.

Proof. Let x € W, N C be a point in no other Weyl wall. Then there is a
convex open neighborhood U of z in t that meets no Weyl wall other than
We. For each Weyl wall Wy distinct from W, there is a unique open half-
space of the complement of W3 that contains U. The intersection, A, of
these open half spaces as we range over roots § distinct from +a meets W,
in exactly in one of the components of V,,, the component containing U.
Consider the intersections A N {a > 0} and AN {a < 0}. Each of
these is non-empty since it contains a non-empty subset of U. Thus, each
of these two intersections is a Weyl chamber, and these are the only two
Weyl chambers whose closure contains z € W,. One of them is the original
Weyl chamber C' and the other is its image under the reflection in W,. Each
of these has W, as a wall and in fact the closure of each meets W, in the
closure AN W,. ]

Definition 3.12. We say that an affine linear segment w in g is generic if:
e cach end point of w is contained in Weyl chamber;
e w does not meet the intersection of any two distinct Weyl walls.

Lemma 3.13. Let w: [0,1] — t be an affine linear segment with end points
in Weyl chambers w(0) € C and w(1l) € C'. Then there is an arbitrarily
close, generic affine linear segment. It has end points in the same Weyl
chambers as w does.

Proof. Fixing one endpoint, the condition that an affine linear segment meet
a codimension-2 linear subspace is a single affine linear condition on the other
endpoint of w. The result follows easily. O

Theorem 3.14. Let C be a Weyl chamber and let W, ... W, be the walls
of C, with the a; chosen so that o;|c > 0. Then

Proof. We begin the proof of the theorem with a lemma.

Lemma 3.15. Let w be a generic affine linear segment with w(0) € C. If w
crosses a Weyl wall, then the first Weyl wall it crosses is a wall of C'.



Proof. Suppose that w crosses a Weyl wall and let ¢ € (0,1] be the smallest
number with the property that w(t) is in a Weyl wall, say Wz with 8 > 0
on C. Clearly, w(s) € C for s € [0,t) and w(t) € C, so that w(t) € C'\ C. .
Since w is generic, w(t) does not lie in any Wz N W, for any root v # 4.
This proves that Wjg is a wall of C. O

Turning to the proof of the theorem, since the «; are positive on C, it
is clear that C' C ﬂle{ai > 0}. We must prove the converse. Arguing by
contradiction, suppose that C' is properly contained in ﬂle{ai > 0}. Then
some Weyl wall W3 must meet N_; {a; > 0}. For if not, then N¥_, {a; > 0}
is contained in a Weyl chamber which, since it contains C, must then be C.

We choose 3 so that it is positive on C. Let ¢ € Wp ﬁle {a; > 0}.
Then there is a generic affine linear line segment with one endpoint p € C
and the other endpoint arbitrarily close to ¢ with 3(q) < 0. This segment is
contained in N¥_;{a; > 0}. As such it crosses no wall of C. But it crosses
Wpg. This contradicts Lemma 3.15. O

Theorem 3.16. The action of the Weyl group on t sends Weyl chambers to
Weyl chambers. The Weyl group acts simply transitively on the set of Weyl
chambers.

Proof. According to Proposition 4.7 of Lecture 7, the action of the Weyl
group preserves the set of roots and hence stabilizes the UyepW,. Conse-
quently, it preserves the union of the Weyl chambers and hence permutes
the Weyl chambers, which are its connected components.

Suppose that C' is a Weyl chamber fixed by w € W(G,T) with w # e.
Let n > 1 be the order of w. Let v € C and consider the average

1 Z”
v = — wkv.
n
k=1

Since w*v € C for all k and C is convex, ¢ € C' and is invariant under w.
Let H be the one parameter subgroup exp(tv). Since 0 € C, the open
half-line R*wv is disjoint for the Weyl walls. There is a neighborhood V of
0 € g such that the exponential map U — G is a diffeomorphism onto an
open set Vand the intersection of U with kernel of a root a: t — R maps
diffeomorphically onto the intersection of V' with the kernel of a.: T — S.
Thus, exp(t9) € T is not in the kernel of any root a: T — S for all t € (0, ¢).
Let w € Ng(T) be a lift of w. Since w - 0 = 0, the element w commutes
with H. This means that the group K generated by H and w is ablelian.
It follows from Corollary 2.5 of Lecture 7 that K is contained in a maximal

10



torus T”. Since w € W(G,T) and w # e, if follows that w ¢ T, and,
as a result, T # T'. Thus, H is contained in two distinct maximal tori.
That implies that H C UaUa. This contradicts the fact that there is € > 0
such that for all ¢ € (0,€) exp(tv) is not in the kernel of any root. This is
a contradiction, showing that no non-trivial element of W(G,T) fixes any
Weyl chamber.

To complete the proof, we need to show that the Weyl group acts tran-
sitively on the set of Weyl chambers. For each Weyl wall W, we have
a reflection w, € W(G,T) and this reflection interchanges the two Weyl
chambers that have W, as a wall. Let C and C’ be Weyl chambers. Chose
a generic affine linear line segment w: [0, 1] — t from a point of C' to a point
of C'. Let C = Cy,C4,...C, = C' be the Weyl chambers, in order, that
this segment meets. At the point where it crosses from C; to C;y1 it lies in
some Weyl wall W,,. But since the segment is generic, it lies in no other
Weyl wall. That is to say W, is a wall of C; and (41 and w,, maps C; to
Ci+1. Hence the product wg,, ,wa, _, - Wa, maps C = Cp to C' = C,. O

3.3 Weyl Group is Generated by Reflections in Weyl Walls

Corollary 3.17. The reflections {wq} in the roots a € R generate the Weyl
group.

Proof. In the proof that the action of W(G,T') on the set of Weyl chambers
is transitive, we actually showed that the subgroup of the Weyl group gen-
erated by reflections in Weyl walls acts transitively. Since the action of the
Weyl group is effective, it follows that the subgroup generated by reflections
is the entire Weyl group. O
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