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All of the structure of reflections, walls, and chambers comes from rank-
one groups.

1 Rank-1 groups

Theorem 1.1. Let G be a compact, connected Lie group of rank 1. Then
G is isomorphic to one of the three following groups:

• S1

• SO(3)

• S3.

In the second and third case there is one pair of roots for G and the Weyl
group is a group of order 2 acting on the maximal torus by t 7→ t−1.

Proof. Let T ⊂ G a maximal torus. Then G/T is even dimensional. We
claim that this dimension is either 0 or 2. If the dimension is 0, then since
G is connected T = G and we have the first of the groups listed above.
Suppose that the dimension of G is n > 0. Choose a positive definite inner
product on g that is invariant under the adjoint representation. Denote by
S(g) be the unit sphere about 0 in g. It is diffeomorphic to Sn−1.

Let v be a unit vector in t. The map ρ̃ : G → Sn−1 defined by g 7→
ad(g)(v) factors to define a smooth map ρ : G/T → S(g). We claim this map
is one-to-one and is a local diffeomorphism. For if ad(g1)(v) = ad(g2)(v),
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then ad(g−1
1 g2)(v) = v and ad(g−1

1 g2) fixes t and hence g−1
1 g2 commutes with

T . By Corollary 2.4 of Lecture 7 the closure of abelian group generated by
g−1
1 g2 and T has a topological generator and hence is contained in a torus.
Since T is a maximal torus, this implies that g1g

−1
2 ∈ T . This proves that

ρ : G/T → (g) is one-to-one.
Since ρ̃(exp(tX)(v) = Ad(exp(tX))(v), differentiating at the identity

gives deρ̃(X) = [X, v]. Thus, the kernel of the differential deρ̃ at e ∈ G is ker-
nel of [v, ·]. The kernel of this map is the subspace fixed by the adjoint action
of T , which, by Theorem 3.5 of Lecture 7, is t. This proves that the kernel
of deρ̃ is t and hence that the kernel of d[e]ρ is trivial. Since the dimensions
of the domain and range are the same this implies that d[e]ρ is an isomor-
phism. Direct computation shows that dg(ρ̃)(g · X) = Ad(g)(de(ρ̃)(X)) =
ad(g)([X, v]), so that the kernel of dg(ρ̃) is one-dimensional and hence d[g](ρ)
is injective for every g ∈ G. The same dimension count shows that d[g](ρ) is
an isomorphism for every [g] ∈ G/T .

Since both G/T and S(g) are compact, connected manifolds of dimension
(n− 1) and S(g) is simply connected, it follows that ρ is a diffeomorphism.
In particular, there is w ∈ G with ad(w)(v) = −v. Thus, w ∈ NG(T ) and
its image in w ∈ W (G,T ) acts on T by sending θ to θ−1.

Connecting w by a path w(t) to e, we have a path of homomorphisms
Ad(w(t)) : S1 → G from the identity map to the inverse map. From this it
follows that the map π1(T ) → π1(G) sends twice the generator of π1(T ) to
the trivial element in π1(G). From the long exact sequence of a fibration

π2(G/T ) → π1(T ) → π1(G)

we conclude that π2(G/T ) ̸= 0. Since G/T is homeomorphic to Sn−1 we
conclude that n = 3.

The adjoint map is a homomorphism G → SO(g) ∼= SO(3) with kernel
equal to the center of G. Also, the center of G is finite since G has rank
1 and is not abelian. In particular, the adjoint form of G (by definition
G/(center(G))) is three-dimensional and is a subgroup of SO(3). This shows
that the adjoint form of G is SO(3). Since π1(SO(3)) = Z/2Z, it follows
that G ≡ SO(3) or S3, the simply connected double cover of SO(3).

The statement about the roots and Weyl group follow immediately.

2 Reflections in W (G, T )

Our next step is to extend the results about reflections for rank-one Lie
groups to general compact, connected Lie groups. For this we begin with a
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technical lemma.

Lemma 2.1. Let K be a compact, connected Lie group. Let T ⊂ K be a
maximal torus and let H ⊂ T be a normal sub Lie group of K. Then:

• The pre-image in K of NK/H(T/H) is NK(T ).

• T/H is a maximal torus of K/H.

• The map K → K/H induces an identification

W (K,T ) = W (K/H, T/H).

Proof. Clearly, if w ∈ K normalizes T , then the image, w, of w in K/H
normalizes T/H. Conversely, suppose that w ∈ K/H normalizes T/H and
let w ∈ K be a lift of w. Then for t ∈ T , wtHw−1 = t′H for some t′ ∈ T .
Since H is normal in K, the element w normalizes H. This implies that
wtw−1 = t′h′ for some h′ ∈ H. Since H ⊂ T , this implies that wtw−1 ∈ T .
Since this is true for every t ∈ T , we conclude that that w ∈ NK(T ). This
establishes Item 1.

T/H is a torus in K/H. Let U/H ⊂ K/H be a maximal torus in K/H
containing T/H. Then U/H commutes with T/H and hence normalizes
T/H. From Item 1 it follows that T ⊂ U ⊂ NK(T ). Since T is a maximal
torus of K, dim(T ) = dim(NK(T ). It follows that dim(T ) = dim(U) and
hence dim(T/H) = dim(U/H). Since both these groups are tori, they are
equal.

Item 3 is immediate from Items 1 and 2.

Theorem 2.2. Let k be the rank of G. Let T ⊂ G be a maximal torus and
let α be a root for G. Let Ûα = ker(α : T → S1) and let Uα be its component
of the identity.

1. Uα is a codimension-1 torus in T and the component group of Ûα is a
cyclic.

2. The component of the identity of the normalizer of Uα, NG(Uα)0, has
dimension k + 2 and there are the only roots of G that vanish on Uα,
namely ±α.

3. T is a maximal torus of NG(Uα)0 and W (NG(Uα)0, T ) ∼= Z/2Z. Let
wα be the non-trivial element of W (NG(Uα)0, T ). The adjoint action
of wα on T fixes Uα and acts by inverse on the quotient T/Uα.
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4. Ûα centralizes NG(Uα)0, and NG(Ûα)0 = NG(Uα)0.

5. The element wα centralizes Ûα. Also, Ûα has at most 2 components,
and wα acts on T/Ûα by inverse.

Proof. 1). Uα is the component of the identity of ker(α) and thus is a
subtorus of T of codimension-1. The group of components of Ûα is cyclic
group of order equal to the order of divisibilty of α in the group of characters.

2). Since the automorphism group of Uα is finite NG(Uα)0 centralizes of
Uα. Being a torus, Uα has a generator g. We have just seen that NG(Uα)0
is contained in the Z(g), the centralizer of g in G. Obviously, then it is
contained in the component of the identity of Z(g). The centralizer of g
in G is the centralizer of Uα in G and is contained in NG(Uα). Thus the
component of the identity of Z(g) is contained in NG(Uα)0. This proves
that NG(Uα)0 is equal to the component of the identity of Z(g).

According to Lemma 3.4 of Lecture 7, the Lie algebra of Z(g) is equal
to ker(ad(g)). This kernel is t ⊕{β|β(g)=1} Vβ. In particular, the dimension
of NG(Uα)0 is k + #{β|β(g) = 1}. We must show that ±α are the only
roots sending g to the identity, or equivalently the only roots vanishing on
Uα. Suppose that there were a second pair {±β} ̸= {±α} vanishing on g.
Then ad(g) vanishes on t ⊕ Vα ⊕ Vβ the dimension of Z(g) = NG(Uα)0 is
at least k + 4. It follows from Lemma 2.1 that T/Uα is a maximal torus
of NG(Uα)0/Uα. Thus, NG(Uα)0/Uα is of rank 1 and dimension ≥ 5, con-
tradicting Theorem 1.1. This shows that is exactly one pair of roots that
vanish on Uα; namely ±α.

3). Since T is a maximal torus ofG contained inNG(Uα)0, it is a maximal
torus of NG(Uα)0. Lemma 2.1 identifies the Weyl group W (NG(Uα)0, T )
with the Weyl group W (NG(Uα)0/Uα, T/Uα). But NG(Uα)0/Uα is a group
of rank one and dimension 3, and hence is isomorphic to SO(3) or S3, and
the non-trivial element in the Weyl group acts by inverse on the maximal
torus.

4). Under the adjoint representation Ûα acts trivially on the root space
Vα. Since Ûα ⊂ T , its adjoint action on t is trivial. Being an extension of
finite cyclic group by a torus, Ûα has a topological generator, say v ∈ T . The
adjoint action of v on the Lie algebra t⊕Vα of NG(Uα)0 is trivial. It follows
that v centralizes NG(Uα)0 as does its closure Ûα. Equivalently, NG(Uα)0
centralizers Ûα and hence normalizes it. That is to say NG(Uα)0 ⊂ NG(Ûα).
It follows that NG(Uα)0 ⊂ NG(Ûα)0.

Conversely, any element that normalizes Ûα clearly also normalizes its
connected component of the identity, namely, Uα. It follows that NG(Ûα) ⊂
NG(Uα), and hence that NG(Ûα)0 ⊂ NG(Uα)0. This proves 4.
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5). Since wα ∈ NG(Uα)0, by Item 4 it centralizes Ûα. Thus, Ad(wα) acts
trivially on Ûα/Uα ⊂ T/Uα. Since the adjoint action of wα on T/Uα sends
every element to its inverse, there are only two fixed points of the action.
Thus, Ûα/Uα has cardinality 1 or 2. Since wα acts by inverse on T/Uα, it
also acts by inverse on T/Ûα.

Corollary 2.3. For each pair of roots ±α of T , there is an element of order
two wα ∈ W (G,T ) that fixes the kernel of α : T → S1 pointwise and acts by
inverse on the quotient T/ker(α).

Proof. Theorem 2.2 constructs exactly such an element in W (NG(Uα)0, T ).
Of course, W (NG(Uα)0, T ) is naturally a subgroup of W (G,T ).

Remark 2.4. Examining the proof above closely, one can see that we have
given a complete description of NG(Uα)0. We have the inclusion i : Uα ⊂
NG(Uα)0 whose image is a central subgroup. We also have the 3-dimensional
Lie algebra generated by a basis X,Y of Vα. The element Z = [X,Y ] ∈ t
and the line it generates is complementary to L(Uα), the Lie algebra of Uα.
Since the adjoint action of t on g stabilizes Vα, we see that R(Z) ⊕ Vα is
closed under bracket and is the Lie algebra so(3). Hence, there is a map of
Lie groups ρ : S3 → NG(Uα)0 whose Lie algebra image is exactly this so(3).
Since i : Uα ⊂ NG(Uα)0 is central, we can form the product map

i× ρ : Uα × S3 → NG(Uα)0.

This Lie group homomorphism induces an isomorphism on Lie algebras.
The kernel of the homomorphism is a discrete central subgroup A. Since
i : Uα ⊂ NG(Uα)0 is an injection, A ∩ Uα = {e}. This means that the
projection onto S3 induces an injection from A → S3 whose image obviously
lies in the center of S3. There are two possibilities for NG(Uα)0:

• A = {e} and NG(Uα)0 ∼= Uα × S3.

• A ∼= Z/2Z andNG(Uα) ∼= Uα×AS
3, where the projection to S3 induces

an isomorphism to A to the center of S3 and the projection of A to
Uα is an element of order 2 or 1 of T .

In the first case Ûα has two components and in the second it has one.

Definition 2.5. The derived sub-algebra of a Lie algebra L is the sub-algebra
[L,L], the R-linear span over of all brackets of two elements in L.
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Corollary 2.6. The derived sub-algebra of the Lie algebra of NG(Uα)0 is
so(3) generated by a basis X,Y of Vα ⊂ g. Furthermore, the line spanned
by [X,Y ] is contained in t, is invariant under wα, and the action of wα on
this line is multiplication by −1.

Proof. Since the Lie algebra of NG(Uα)0 is isomorphic to L(Uα) ⊕ so(3),
it is clear that its derived algebra is so(3). A direct computation with the
presentation of so(3) shows that under the decomposition so(3) = ⟨[X,Y ]⟩⊕
Vα, the bracket [X,Y ] lies in t. The inclusion of so(3) into the Lie algebra
of NG(Uα)0 integrates to give a map S3 → NG(Uα, T )0 that sends the Weyl
group of S3 isomorphically onto the Weyl group of W (N0(α), T ). Thus, the
line spanned by [X,Y ] in t is invariant under the Weyl group and the non-
trivial element of this groups acts by −1 on the line spanned by [X,Y ].

Corollary 2.7. Let T ⊂ G be a maximal torus. Any element in g ∈ T that
is not in the kernel of any root is contained in no maximal torus distinct
from T . If g ∈ ker(α) ⊂ T for some root α, then g is contained in at least
two distinct maximal tori.

Proof. If g ∈ T is not contained in the kernel of any root, then g acts non-
trivially on each root space Vα. Thus, the subspace of g on which ad(g) acts
by the identity is t. By Lemma 3.4 of Lecture 7, this means that the Lie
algebra of the centralizer Z(g) is t. This means that the component of the
identity of Z(g) is T . Obviously, then g is contained in only one maximal
torus, which is T .

Now suppose that g ∈ ker(α). Then g ∈ Ûα which, by Item 4 of The-
orem 2.2, implies that g centralizes NG(Ûα)0. Since g ∈ T ⊂ NG(T )0, g
is in the center of NG(Uα)0. Thus, g is contained in every maximal torus
NG(Uα)0. All maximal tori of NG(Uα)0 are conjugate in NG(Uα)0 and hence
are conjugate in G. Since T is a maximal torus of NG(Uα)0, all the maxi-
mal tori of NG(Uα)0 are maximal tori of G. Since dim(NG(Uα)0 > dim(T ),
there is more than one maximal torus of NG(Uα)). (In fact, there is a
two-dimensional family of them.)

3 Weyl Chambers, Weyl Walls and Reflections

Now we pass from a study of the roots andWeyl group action on the maximal
torus to a study of the analogous objects in t, the Lie algebta of T .

Remark 3.1. In Lecture 7 and so far in this lecture, the roots refer to non-
trivial characters αj : T → S1 that occur in the decomposition of the adjoint
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action of T on its Lie algebra t. In this section we shall discuss the lifts of
these to homomorphisms t → R of the universal covers, where they have the
condition that restricted to Λ ⊂ t they lie in Hom(Λ, 2πZ). In fact, lifting
in this fashion gives an isomorphism Λ∗ = Hom(T, §1) = Hom(Λ, 2πZ)

By abuse of notation we shall use the term roots to also mean the maps
t → R induced by roots αj : T → S1 and denote them by the same symbols.
It should be clear from context when we introduce a ‘root’ αj in which
context we are working.

3.1 The Definitions

We fix a compact, connected Lie group G and a maximal torus T ⊂ G.
SinceW (G,T ) is a finite group, there is a positive definiteW (G,T )-invariant
quadratic form on t. We fix one and denote the associated non-degenerate
bilinear form by (·, ·).

Definition 3.2. Let R ⊂ Hom(t,R) be the set of roots for (G,T ). For each
root α ∈ R, let Wα be the kernel of α : t → R. These are the Weyl walls.
Notice Wα = W−α.

One relationship between the two notions of roots is obvious. It is:

Lemma 3.3. For each root α, the exponential map induces a covering Wα →
Uα, where, as above, Uα is the component of the identity of ker(α : T → S1).

Lemma 3.4. There are only finitely many Weyl walls and each is a codimen-
sion-1 linear subspace of t. If β and α are roots and β ̸= ±α, then Wα ̸= Wβ

For each Weyl wall Wα, there is an element wα ∈ W (G,T ) that acts as a
reflection in Wα with respect to the W (G,T )-invariant bilinear form

Proof. Since there are only finitely many roots α, there are finitely many
Weyl walls Wα. The reflection wα is produced by Corollary 2.3. It follows
from Part 2 of Theorem 2.2 that if β ̸= ±α then β is non-trivial restricted
to ker(α) ⊂ T . By Lemma 3.3, this implies the same result when we lift to
t.

Definition 3.5. AWeyl chamber is a connected component of t\(∪α∈RWα).

Lemma 3.6. 1. For any Weyl chamber C ⊂ t and any root α, either
α > 0 on C or α < 0 on C.

2. If x and y are points not lying on any Weyl wall, then x and y lie in
the same Weyl chamber if and only if the sign of α(x) equals that of
α(y) for every root α.
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3. The Weyl chambers are open, convex subsets of t.

Proof. 1. Since every Weyl chamber C is connected, if there are x, y ∈ C
and a root α with α(x) < 0 < α(y), then by the intermediate value them
there is a point z ∈ C with α(z) = 0. But this is absurd since that means
z ∈ Wα whereas z is in a Weyl chamber and hence is disjoint from all Weyl
walls.

2. In Item 1 we saw that each α is either positive or negative on all of
any Weyl chamber C. Suppose now that x, y are points not in any Weyl
wall such that for all α the sign of α(x) agrees with that of α(y). Let γ be
the affine linear line path from x to y. Then α|γ is an affine linear function
with the same sign at the endpoints. Hence, it has a constant sign along γ.
Thus, x and y are in the same connected component of the complement of
the Weyl walls; i.e., in the same Weyl chamber.

3. Being the finite intersections of open half spaces in t, the Weyl cham-
bers are open, convex subsets of t.

Remark 3.7. For a Weyl wall W , the complement, t \ W , is the disjoint
union of two open half-spaces. If there are k Weyl walls we define 2k dif-
ferent subsets of t as follows. The subsets are indexed by a choice for each
Weyl Wall of one of its two complementary open half-spaces. The subset
associated to an index is the intersection of the chosen open half-spaces. For
many of the indices, the corresponding subset of t is empty. The non-empty
intersections are exactly the Weyl chambers, and each Weyl chamber occurs
exactly once in the indeed collection.

3.2 The Weyl Group Action on the set of Weyl Chambers

Definition 3.8. A Weyl Wα is a wall of a Weyl chamber C if and only if
intersection of the closure of C and Wα contains a point in no Weyl wall
distinct from Wβ for every root β ̸= ±α..

Lemma 3.9. Fix a Weyl wall Wα. Then for any other Weyl wall Wβ with
β ̸= ±α, the intersection Wβ ∩ Wα is a codimension-1 linear subspace of
Wα. The union of these intersections as Wβ ranges over Weyl walls distinct
from Wα is a closed nowhere dense subset of Wα.

Proof. The first statement is obvious. The second follows from it and the
fact that there are only finitely many Weyl walls.

Definition 3.10. For each root α we define Vα ⊂ Wα to be the complement
of the intersection of Wα with the union of Weyl walls distinct from Wα.
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Lemma 3.11. If Wα is a wall of a Weyl chamber C, then the closure of C
meets Wα in closure the of one of the components of Vα. The reflection wα

takes C to a Weyl chamber C ′ that also has Wα as a wall.

Proof. Let x ∈ Wα ∩ C be a point in no other Weyl wall. Then there is a
convex open neighborhood U of x in t that meets no Weyl wall other than
Wα. For each Weyl wall Wβ distinct from Wα there is a unique open half-
space of the complement of Wβ that contains U . The intersection, A, of
these open half spaces as we range over roots β distinct from ±α meets Wα

in exactly in one of the components of Vα, the component containing U .
Consider the intersections A ∩ {α > 0} and A ∩ {α < 0}. Each of

these is non-empty since it contains a non-empty subset of U . Thus, each
of these two intersections is a Weyl chamber, and these are the only two
Weyl chambers whose closure contains x ∈ Wα. One of them is the original
Weyl chamber C and the other is its image under the reflection in Wα. Each
of these has Wα as a wall and in fact the closure of each meets Wα in the
closure A ∩Wα.

Definition 3.12. We say that an affine linear segment ω in g is generic if:

• each end point of ω is contained in Weyl chamber;

• ω does not meet the intersection of any two distinct Weyl walls.

Lemma 3.13. Let ω : [0, 1] → t be an affine linear segment with end points
in Weyl chambers ω(0) ∈ C and ω(1) ∈ C ′. Then there is an arbitrarily
close, generic affine linear segment. It has end points in the same Weyl
chambers as ω does.

Proof. Fixing one endpoint, the condition that an affine linear segment meet
a codimension-2 linear subspace is a single affine linear condition on the other
endpoint of ω. The result follows easily.

Theorem 3.14. Let C be a Weyl chamber and let Wα1 . . .Wαk
be the walls

of C, with the αi chosen so that αi|C > 0. Then

C = ∩k
i=1{αi > 0}.

Proof. We begin the proof of the theorem with a lemma.

Lemma 3.15. Let ω be a generic affine linear segment with ω(0) ∈ C. If ω
crosses a Weyl wall, then the first Weyl wall it crosses is a wall of C.
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Proof. Suppose that ω crosses a Weyl wall and let t ∈ (0, 1] be the smallest
number with the property that ω(t) is in a Weyl wall, say Wβ with β > 0
on C. Clearly, ω(s) ∈ C for s ∈ [0, t) and ω(t) ̸∈ C, so that ω(t) ∈ C \ C. .
Since ω is generic, ω(t) does not lie in any Wβ ∩Wγ for any root γ ̸= ±β.
This proves that Wβ is a wall of C.

Turning to the proof of the theorem, since the αi are positive on C, it
is clear that C ⊂ ∩k

i=1{αi > 0}. We must prove the converse. Arguing by
contradiction, suppose that C is properly contained in ∩k

i=1{αi > 0}. Then
some Weyl wall Wβ must meet ∩k

i=1{αi > 0}. For if not, then ∩k
i=1{αi > 0}

is contained in a Weyl chamber which, since it contains C, must then be C.
We choose β so that it is positive on C. Let q ∈ Wβ ∩k

i=1 {αi > 0}.
Then there is a generic affine linear line segment with one endpoint p ∈ C
and the other endpoint arbitrarily close to q with β(q) < 0. This segment is
contained in ∩k

i=1{αi > 0}. As such it crosses no wall of C. But it crosses
Wβ. This contradicts Lemma 3.15.

Theorem 3.16. The action of the Weyl group on t sends Weyl chambers to
Weyl chambers. The Weyl group acts simply transitively on the set of Weyl
chambers.

Proof. According to Proposition 4.7 of Lecture 7, the action of the Weyl
group preserves the set of roots and hence stabilizes the ∪α∈RWα. Conse-
quently, it preserves the union of the Weyl chambers and hence permutes
the Weyl chambers, which are its connected components.

Suppose that C is a Weyl chamber fixed by w ∈ W (G,T ) with w ̸= e.
Let n > 1 be the order of w. Let v ∈ C and consider the average

v̂ =
1

n

n∑
k=1

wkv.

Since wkv ∈ C for all k and C is convex, v̂ ∈ C and is invariant under w.
Let H be the one parameter subgroup exp(tv̂). Since v̂ ∈ C, the open

half-line R+v is disjoint for the Weyl walls. There is a neighborhood V of
0 ∈ g such that the exponential map U → G is a diffeomorphism onto an
open set V and the intersection of U with kernel of a root α : t → R maps
diffeomorphically onto the intersection of V with the kernel of α : T → S.
Thus, exp(tv̂) ∈ T is not in the kernel of any root α : T → S1 for all t ∈ (0, ϵ).

Let w̃ ∈ NG(T ) be a lift of w. Since w · v̂ = v̂, the element w̃ commutes
with H. This means that the group K generated by H and w̃ is ablelian.
It follows from Corollary 2.5 of Lecture 7 that K is contained in a maximal
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torus T ′. Since w ∈ W (G,T ) and w ̸= e, if follows that w̃ ̸∈ T , and,
as a result, T ̸= T ′. Thus, H is contained in two distinct maximal tori.
That implies that H ⊂ ∪αÛα. This contradicts the fact that there is ϵ > 0
such that for all t ∈ (0, ϵ) exp(tv) is not in the kernel of any root. This is
a contradiction, showing that no non-trivial element of W (G,T ) fixes any
Weyl chamber.

To complete the proof, we need to show that the Weyl group acts tran-
sitively on the set of Weyl chambers. For each Weyl wall Wα we have
a reflection wα ∈ W (G,T ) and this reflection interchanges the two Weyl
chambers that have Wα as a wall. Let C and C ′ be Weyl chambers. Chose
a generic affine linear line segment ω : [0, 1] → t from a point of C to a point
of C ′. Let C = C0, C1, . . . Cn = C ′ be the Weyl chambers, in order, that
this segment meets. At the point where it crosses from Ci to Ci+1 it lies in
some Weyl wall Wαi . But since the segment is generic, it lies in no other
Weyl wall. That is to say Wαi is a wall of Ci and Ci+1 and wαi maps Ci to
Ci+1. Hence the product wαn−1wαn−2 · · ·wα0 maps C = C0 to C ′ = Cn.

3.3 Weyl Group is Generated by Reflections in Weyl Walls

Corollary 3.17. The reflections {wα} in the roots α ∈ R generate the Weyl
group.

Proof. In the proof that the action of W (G,T ) on the set of Weyl chambers
is transitive, we actually showed that the subgroup of the Weyl group gen-
erated by reflections in Weyl walls acts transitively. Since the action of the
Weyl group is effective, it follows that the subgroup generated by reflections
is the entire Weyl group.
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