
Lie Groups: Fall, 2025

Lecture VII:

Compact Lie Groups, Maximal Tori, and Weyl

Groups

October 14, 2025

We begin with a basic lemma.

Lemma 0.1. The component group of any compact Lie group is finite.

Proof. Since a Lie group is a manifold and hence locally connected, each
connected component of G is an open subset of G. Were there infinitely
many connected components, this would give an infinite covering by disjoint
open sets, contradicting compactness.

1 Linear Actions of S1 and Tori

1.1 Complex Actions of S1

Identify the Lie algebra of S1 with R and the exponential map with the usual
map R → S1 given by t 7→ exp(it). Let S1×V → V be a finite dimensional,
complex linear action. The induced map on Lie algebras sends 1 ∈ R to
some A ∈ M(n × n,C). According to the Jordan canonical form, we can
find a basis of V in which A = Ass+Anil with Ass is diagonalizable and Anil

is a strictly upper trianglar matrix commuting with Ass. Let λ1, . . . , λn be
the diagonal entries of Ass. Since exp(2πA) = 1, we see that each λj is of
the form inj for some integers nj .

Since exp(itA) and exp(itAss) are periodic of period 2π and since Ass

and Anil commute, it follows that exp(itA) = exp(itAss)exp(itAnil), so that
(itAnil) is also periodic of period 2π. On the other hand, since Anil is strictly
upper triangular, some power of Anil is identically zero. Thus, exp(itAnil)
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a finite polynomial expression in itAnil whose constant term is Id and the
linear term is itAnil. The only periodic polynomials of t are constant poly-
nomials.. This implies that Anil = 0 and A = Ass is diagonalizable with
eigenvalues inj for integers nj .

Definition 1.1. A character of S1 is a homomorphism S1 → S1. The group
of characters of S1 is naturally identified with Z given by θ 7→ θn.

A representation of S1 on a complex vector space of dimension n is, up
to conjugation, given by n characters. That is to say there is a basis in
which the action of given by diagonal matrices, and each diagonal entry is
a character of S1.

1.2 Complex Actions of a Torus

Definition 1.2. By a torus we mean a compact, connected, abelian Lie
group T . The Lie algebra t of T is an abelian Lie algebra and hence the BCH
series is H(X,Y ) = X+Y . This converges on all of t× t and defines a group
structure of t which is the usual addition. The exponential map is a Lie group
map from t with its addition to T and is a local diffeomorphism. Hence,
the kernel of exp is a discrete subgroup Λ of t and the exponential mapping
induces an isomorphism from t/Λ → T . Since T is compact, Λ ⊂ t must be
a lattice; i.e., a discrete subgroup generated by an R-basis {a1, . . . , an} of t,
where n = dim(t).

Remark 1.3. The circle is a one-dimensional torus. Any torus is isomorphic
as a Lie group to a finite product of circles with the product Lie group
structure. (This is a homework problem.)

The results about complex actions of S1 generalize to any torus T .

Definition 1.4. A character of a torus T is a homomorphism T → S1. If
we write T = t/Λ then a character of T is a linear map t → R that sends
Λ → 2πZ. The group of characters is the dual group Λ∗ = Hom(Λ, 2πZ), to
Λ. The formula for the character T → S1 associated to the linear function
α : t → R sending Λ → Z is

exp(v) 7→ exp(iα(v)).

Let T × V → V be a complex linear action. We write the torus as a
product of commuting circles. LetX1, . . . , Xk be the elements of t generating
these circles as before. We have seen that each Xi is diagonalizable. Since
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the Xi commute, they have common eigenspaces. This means that we can
find a basis for V , {e1, . . . , en} so that T stabilizes each of the complex lines
Cei. The action of T on Cei is a by a character of T , and up to conjugation,
an action of T on an n-dimensional vector space is the same as n characters
of T .

Definition 1.5. The characters of this action are the weights of the repre-
sentation of T on V .

1.3 Real Actions

Now let V be a finite dimension real vector space S1 × V → V be a real
linear action. We can complexify the action and diagonalize the result:

V ⊗R C = E0 ⊕j∈I Enj

where the action on E0 is trivial and the action of the Enj are given by
eit · w = einjtw for w ∈ Enj a non-zero integer.. Since the action is real, we

have Enj = E−nj . In particular, E0 is real, meaning that E0 = (E0∩Rn)⊗R
C, and each Enj ⊕ E−nj is real. The action of S1 on (E0 ∩ Rn) is trivial.
The intersection of Enj ⊕E−nj with the real subspace projects equivariantly
and isomorphically onto each of Enj and E−nj . Depending on the choice of
which subspace we project onto, we see that the action of S1 on this real
subspace is given by eit rotates by either eint or e−int. (These two actions
are equivalent by the isomorphism eit 7→ e−it of S1.)

This generalizes to tori. Any real linear action of a torus T on V is a
direct sum of a trivial action and actions on two-dimensional spaces given
by a character (i.e., a homomorphism) αj : T → S1 followed by the standard
action of S1 on R2. As in the case of the circle the character is only defined
up to inverse. The weights of the real action are defined to be {α±1

j }j . In
fact, these are the weights of the complexification of the representation.)

From now on we view characters of the torus T = t/Λ as Λ∗ =
Hom(Λ, 2πZ) and write characters additively instead of multiplica-
tively.

2 Closures of Cyclic Subgroups

Definition 2.1. Let A be a Lie group. An element g ∈ A is said to gen-
erate A topologically if the cyclic group generated by g is dense in A, or
equivalently the closure of {gn}n∈Z is A. In this case we say that A has a
topological generator.

3



Lemma 2.2. If a subgroup A of a Lie group has a topological generator g,
then A is abelian and its group of components is a cyclic group.

Proof. Since all powers of g commute with each other, any element in A,
the closure of the group generated by g, commutes with every power of g.
Hence, A commutes with the closure of the group generated by g. This
proves that eery element of A commutes with A, so that A is abelian.

Since the powers of g are dense in A, every component of A contains a
power of g. Thus, the cyclic group generated by g maps onto the component
group of A. Thus, the component group of A is also cyclic.

Corollary 2.3. Every torus has a topological generator.

Proof. Let T be a torus written as V/Λ, a vector space modulo a lattice
Λ. A codimension-1 subtorus is determined by a linear map π : V → R
that induces a surjection πΛ : Λ → 2πZ. The subtorus is the quotient of the
kernel of π modulo the lattice by a lattice ker(πΛ). There are only countably
many such maps and subtori.

Consider the union over the countable collection of all such maps, πΛ
of π−1(2πQ) ⊂ V . This is a nowhere dense subset D̃ invariant under the
action of Λ. Let D be the image in T of D̃. It is nowhere dense in T . For
any g ̸∈ D, no positive power of g is contained in a codimension-1 subtorus.
Let C be the closure of {gn}∞n=1. This is an abelian sub Lie group of G.
The component group of C is finite and hence some positive power of g is
contained in the component of the identity C0 of C. Being a connected,
abelian Lie group C0, is a torus. Since it contains a positive power of g, it
follows from the fact that g and all its positive powers are in the complement
ofD that no positive power of g is contained in a proper subtorus of T . Thus,
C0 = T .

Corollary 2.4. 1. Let A ⊂ G be an abelian Lie subgroup containing a torus
T with finite cyclic quotient. Then A has a topological generator.

2. If A ⊂ G is the closure of an abelian group that is generated by a connected
subgroup of G and a single element of G, then A has a generator.

Proof. We prove the first statement. Let a ∈ A generate the finite cyclic
quotient. Let n be the order of this quotient. Then an ∈ T . Let g ∈ T be
such that ang generates T . Since T is divisible, there is h ∈ T with hn = g.
Then the element ha generates the finite cyclic quotient and (ha)n generates
T . The first statement follows.
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Suppose that A ⊂ G is the closure of an abelian subgroup of G generated
by a connected subgroup R and an element of g ∈ G. The component group
of A is finite. Let B ⊂ A be the union of the connected components of A
that contain a power of g. Then B is a closed subgroup of A that contains
both R and g. This means B = A and g generates the component group,
implying that the component group is cyclic. Since the component of the
identity of A is a compact, connected abelian Lie group, it is a torus. The
result now follows from the first statement.

Corollary 2.5. 1. Let A be an abelian subgroup of G containing a torus
with cyclic quotient. Then A is contained in a maximal torus.
2. If A ⊂ G be an abelian group generated by a connected abelian group A0

and a single element g, then A is contained in a maximal torus.

Proof. According to Corollary 2.4, in either case the closure of A has a
generator. That generator is contained in a maximal torus and hence so is
the closure of A.

3 Maximal Tori in a Compact, Connected Lie Group

3.1 Definition and Existence

Let G be a non-trivial, compact connected lie group.

Proposition 3.1. G contains a positive dimensional torus.

Proof. Since G is connected and non-trivial it is positive dimensional. Thus,
its Lie algebra is non-zero. FixX ̸= 0 in t. Then exp(tX) is a non-trivial one-
parameter subgroup A ⊂ G. The group A is connected, positive dimensional
and abelian. So is its closure, which is a Lie subgroup according to Theorem
3.9 of Lecture 2. By definition, this subgroup is a positive dimensional
torus.

Corollary 3.2. There is a positive dimensional torus in G that is not prop-
erly contained in any other torus in G.

Proof. We have seen that G contains a positive dimensional torus. Let T
be a torus of maximal dimension in G. Then T is not properly contained
in any other torus in G. For, if T is properly contained in a torus T ′, then
since T ′ is connected, the Lie algebra of T ′ is strictly larger than that of T .
This means that the dimension of T ′ is larger than the dimension of T .

Definition 3.3. Any torus satisfying the conclusion of the previous claim
is a maximal torus.
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3.2 The Roots of a Maximal torus

Lemma 3.4. 1. If T is a maximal torus, then its Lie algebra t is not
properly contained in an abelian sub Lie algebra of g.

2. If g ∈ T is a topological generator of T , then the Lie algebra of the
centralizer Z(g) of g is t.

Proof. Suppose that L is an abelian subalgebra of g properly containing
t. The image exp(L) is a connected abelian subgroup containing T that
contains a submanifold whose tangent space at e is L. The same is true of
its closure, which is a closed, connected abelian subgroup and hence a torus.
This torus properly contains T , which is a contradiction. This proves 1.

Let g be a topological generator of a the maximal torus T . Then the
centralizer, Z(g), of g is a Lie subgroup containing T and commuting with
T . Let L be its Lie algebra. Then t ⊂ L since T ⊂ Z(g). Suppose this is a
proper inclusion. Let X ∈ L be an element not contained in t. Since exp(X)
commutes with T , it follows that [X, t] = 0. Of course [X,X] = 0. Thus,
t⊕⟨X⟩ is an abelian Lie algebra properly containing t. This contradicts the
first item.

Applying the discussion of Section 1.3 and Part 2 of Lemma 3.4, we have
the following.

Theorem 3.5. The action of a maximal torus T decomposes g as

g = t⊕ V1 ⊕ · · · ⊕ Vr

where each Vi is two-dimensional and on which T acts by a non-trivial char-
acter αi : T → S1 followed by a standard semi-free rotation action of the
circle on Vi.

Proof. By the results in Section 1.3 we need only how that 0-eigenspace, E0,
for the adjoint action of T on g is contained in the Lie algebra t of T . Since
the adjoint action of T on E0 is trivial, T commutes with exp(E0). Let g be
a topological generate of T . Then exp(E0) is a subgroup of Z(g), and hence
E0 is a subspace of the Lie algebra of Z(g). Part 2 of Lemma 3.4 tells us
that the Lie algebra of Z(g) is t.

Remark 3.6. The characters αi : T → S1 are only defined up to sign, since
reversing the orientation of Vi replaces αi by −αi.

Definition 3.7. The non-zero weights of the action of T on g; i.e., the non-
trivial characters {±αi}i of the action of T on g, are the roots of (G,T ),
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or simply the roots of G if T is clear from context. The associated two-
dimensional subspaces Vi ⊂ g are the root spaces, with Vi being the root
space for ±αi.

4 The Weyl group

4.1 Definition and First results

Lemma 4.1. The automorphism group of a torus is a discrete group.

Proof. An automorphism of a torus T , lifts to a linear automorphism of
its Lie algebra t which stabilizes the kernel, Λ, of the exponential map.
Since a linear isomorphism of a vector space that fixes the lattice Λ point-
wise is the identity, we have an embedding of Auto(T ) ⊂ Auto(Λ). [It is
easy to see that these automorphism groups are equal.] Then Auto(Λ) ⊂
GL(t) is the subgroup stabilizing Λ. As such, it is a topologically closed
subgroup ofGL(t) and hence a Lie subgroup. There are only countable many
automorphisms of a lattice, and hence this Lie group has only countably
many elements. That is to say its Lie algebra is zero-dimensional and hence
the Lie group is a discrete group.

Definition 4.2. Let T be a maximal torus of a compact, connected Lie
group G. The Weyl group W (G,T ) of T is defined to be the quotient of the
normalizer NG(T ) of T in G by T :

W (G,T ) = NG(T )/T.

Proposition 4.3. Let T be a maximal torus of a compact, connected Lie
group G. The Weyl group of W (G,T ) is finite and is the component group
of NG(T )/T .

Proof. By definition NG(T ) is a topologically closed subgroup of G, hence
it is a sub Lie group and its component group is finite. Let N0(T ) be
the component of the identity of NG(T ). First of all we have a surjection
W (T ) = N(T )/T → N(T )/N0(T ) with kernel N0(T )/T . The proposition
follows once we show that N0(T ) = T .

We suppose that N0(T ) properly contains T and deduce a contraction.
Since T andN0(T ) are connected, the Lie algebra t of T is properly contained
in the Lie algebra of N0(T ). Choose a X in the Lie algebra of N0(T ) that is
not contained in t. Since the automorphism group of the torus is discrete,
the adjoint action of the component of the identity N0(T ) on T is trivial,
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and consequently the adjoint action of the Lie algebra of N0(T ), and in
particular the adjoint action of X, on t is trivial. Of course, [X,X] = 0.
Thus, the subspace V of g spanned t and X is an abelian Lie subalgebra
properly containing t. This contradicts Part 1 of Lemma 3.4..

4.2 The Adjoint Action of the Weyl Group on T .

Definition 4.4. Let T be a maximal torus of G. We define the Weyl group
action on T , W (G,T ) × T → T to be given by w · g = wgw−1 = Ad(w)(g)
where g ∈ T and w ∈ N(T ) with w as its image under the quotient map
N(T ) → N(T )/T ) = W (T ).

We define the Weyl group action on T ∗ = Hom(T, S1) by w · φ = φ ◦
Ad(w−1);, where as before w ∈ N(T ) is a lift of w.

Remark 4.5. Since the adjoint action of T on itself is trivial the adjoint
action of NG(T ) on T factors through the quotient W (G,T ) = NG(T )/T .
The same is true for the action of W (G,T ) on T ∗.

Notice for φ ∈ T ∗ and g ∈ T we have

(w · φ)(w · g) = φ(Ad(w)−1(Ad(w)(g)) = φ(g).

That is to say the natural pairing T ∗ ⊗ T → S1 is invariant under the Weyl
actions.

Remark 4.6. For w ∈ N(T ) and g ∈ T we have to distinguish between
the product wg ∈ G and the action w · g = Ad(w)(g) = wgw−1. We always
write the first by juxtaposition and the second with a ·.

Proposition 4.7. Let G be a compact, connected Lie group and T ⊂ G a
maximal torus. The Weyl group action on T ∗ preserves the set of roots of
T .

Proof. First two general comments. Suppose that µ : T → T is a Lie group
isomorphism. Its action on T ∗ is given by µ · ρ = ρ ◦ µ−1. Thus, the action
of µ on T ∗ sends the roots of ad to the characters {µ∗α = α ◦ µ−1}α as
α ranges over the roots of the adjoint representation. Of course, conjugate
representations have the same set of roots. Thus, if ad ◦ (µ−1) and ad are
conjugate, then µ∗ preserves the set of roots.

Now let us consider our case. Fix w ∈ NG(T ) and g ∈ T and X ∈ g.

Claim 4.8.

ad(w−1 · g)(X) = ad(w−1) ◦ ad(g) ◦ ad(w)(X).
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Proof. Let γ(t) be a smooth curve in G with γ(0) = e and γ′(0) = X. Then

Ad(w−1 · g)(γ(t)) = w−1gw(γ(t))w−1g−1w = w−1
(
g
(
wγ(t)w−1

)
g−1

)
w.

Differentiating at t = 0 gives the result.

We can reformulate this as a commutative diagram for g ∈ T and the
image w ∈ NG(T ) we have

T × g
ad(w−1·g)−−−−−−→ g

IdT×ad(w)

y yad(w)

T × g
ad(g)−−−−→ g.

This is the statement that ad: T → Auto(g) is conjugate to the repre-
sentation given by

T
w−1·−−−−→ T

ad−−−−→ Auto(g).

But ad◦(w−1·) = wad, where w ∈ W (G,T ) is the image of w ∈ NG(T ). This
proves that wad is conjugate to ad and hence they have the same characters.
Consequently, the action of W (G,T ) on T leaves invariant the set of roots
of ad.

5 All Maximal Tori Are Conjugate and They Cover
G

Theorem 5.1. Let G be a compact, connected Lie group. Let T ⊂ G be a
maximal torus. Then every point g ∈ G is contained in a conjugate of T .
All maximal tori of G are conjugate.

Proof. Let g ∈ G. Then g ∈ xTx−1 if and only if g(xT ) = xT . Said another
way, g ∈ G is in a conjugate of T if and only if, under the natural left action
of G×G/T → G/T , the element g has a fixed point.

Lefschetz theory tells us that if f : M → M is a continuous self-map of
a closed, oriented manifold and if L(f) =

∑
i(−1)iTrace(f∗ : Hi(M ;Q) →

Hi(M ;Q)) is non-zero, then f has a fixed point. Of course, L(f) depends
only on the homotopy class of f . The number L(f) is the homological
intersection [Γ(f)] · [∆] in M × M , where Γ(f) is the embedding of M →
M ×M as the graph of f and ∆ is the embedding of M as the diagonal in
M ×M .
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If f is smooth and at each fixed point x of f , the differential of f at x
does not have 1 as an eigenvalue, then we can say much more, Under these
assumptions the graph Γ(f) : M → M × M is transverse to ∆ and L(f)
is the sum of local intersection numbers of Γ(f) with ∆ at the points of
intersection. The intersection points are {(x, x)} with x a fixed point of f ,
and the local intersection number at any such (x, x) is ±1 and is equal to
sign(Id− det(df∗(x))) as a map of TMx → TMx.

Claim 5.2. Let g0 be a topological generator for T . The map G → G given
by h 7→ g0hg

−1
0 factors to given the map left multiplication by g0 from G/T

to G/T

Proof. Since g0 ∈ T , we have g0hg
−1
0 T = g0hT .

Let us compute the L(g0) for g0 a topological generator of T . First, if
g0 ∈ xTx−1, then since, the cyclic group generated by g0 is dense in T , it
follows that T = xTx−1, meaning that x ∈ N(T ). Conversely, if x ∈ N(T )
then T = xTx−1 and g0 ∈ xTx−1. Thus, the fixed points of the action of
left multiplication by g0 on G/T are the finite set W (T ) = NG(T )/T .

Let us compute the local Lefschetz number of g0 at [eT ] ∈ G/T . We have
seen that the adjoint action of T on g is given by t⊕V0⊕r

i=1 Vi where T acts
trivially on t and by a non-trivial characters, ±αi, on the two dimensional
spaces Vi. The tangent space of G/T at [T ] is identified with ⊕r

i=1Vi. By the
claim above, left multiplication by g0 on G/T agrees with the map induced
on G/T by the action of Ad(g0) on G. Hence, the differential of action of
g0 on T[eT ](G/T ) is the restriction of the adjoint action to ad(g0) to ⊕r

i=1Vi

That is to say, D(g0·)∗ acting on TeT (G/T ) = ⊕r
i=1Vi preserves the direct

sum decomposition and acts on Vi by(
cos(αi(g0) −sin(αi(g0)
sin(αi(g0) cos(αi(g0))

)
Thus

det(Id−Df∗(g0·)) =
r∏

i=1

(2− 2cos(αi(g0))).

Since g0 is a topological generator of T , each non-trivial character of T is
non-trivial on g0, so that each of these two-by-two matrices has positive
determenent. Hence, the graph of the action of g0 is transverse to the
diagonal and the local intersection number is a sign, +1.
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Now let w ∈ N(T ). Left multiplication by w : G/T → G/T sends [w−1T ]
to [eT ] and conjugates the left multiplication of g0 at [wT ] to left multiplica-
tion of wg0w

−1 at [eT ]. Thus, the local Lefschetz number of left multiplica-
tion by g0 at the fixed point [w−1T ] is the same as the local Lefschetz number
of left multiplication of wg0w

−1 at [eT ]. Since wg0w
−1 is a topological gen-

erator for T , the computation above applies to show that the local Lefschetz
number of left multiplication by wg0w

−1 at [eT ] is 1. This shows that its
local intersection number for left multiplication by g0 at w−1T ∈ G/T is
+1. This is true for every w ∈ W (G,T ) and consequently, the intersec-
tion number of the graph Γ(g0·) with ∆, which is the Lefschetz number of
multiplication by g0 on G/T , is equal to #W (G,T ) > 0.

Now consider an arbitrary g ∈ G. Since G is connected, g and g0 are
connected by a path. Thus, left multiplication by g and g0 on G/T are
homotopic, and hence these actions onG/T have the same Lefschetz number,
which we have just seen is non-zero. It follows that g : G/T → G/T has a
fixed point [xT ], meaning that g ∈ xTx−1. This proves that the conjugates
of T cover G. Of course, each of these conjugates is a maximal torus.

Now let T ′ be another maximal torus of G and let g be a generator for
T ′. Then g is contained in a conjugate xTx−1. Since g generates T ′, it
follows that T ′ ⊂ xTx−1. Since T ′ is maximal, T ′ = xTx−1. This proves
that all maximal tori are conjugate.

Definition 5.3. The dimension of a maximal torus T in G is the rank of G.

Since all maximal tori of a compact, connected Lie group are conjugate,
the maximal torus with its adjoint action on g is, up to isomorphism inde-
pendent of the choice of maximal torus. In particular, the roots of a maximal
torus are, up to isomorphism, independent of the choice of maximal torus.

5.1 Consequences

Corollary 5.4. The center of a compact, connected Lie is contained in every
maximal torus.

Proof. Let z be a central element of G. Then z is contained in a maximal
torus T . Since every maximal torus is conjugate to T , every maximal torus
contains z. This shows that every element of the center is contained in every
maximal torus.

Corollary 5.5. For any compact, connected Lie group G, the exponential
map exp: g → G is onto.
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Proof. Let T ⊂ G be a maximal torus. Then the Lie algebra t is an
abelian Lie algebra and the exponential map is surjective homomorphism
from (t,+0) to T . Thus, T is in the image of exp. We have just seen that
every g ∈ G is contain in a maximal torus.

Theorem 5.6. Let T be a maximal torus in a compact, connected Lie group
G. Then the action of W (T )× T → T is effective.

Proof. Let Z(T ) ⊂ N(T ) be the centralizer of T . The statement in the
proposition is equivalent to the statement that Z(T ) = T . So suppose
there is an element z ∈ Z(T ) \ T . We have already seen that W (T ) is the
component group of N(T ). This implies that {z} ∪ T generates an abelian
group A containing T as a subgroup with finite cyclic quotient. According
to Corollary 2.4 there is a generator a for A. The element a is contained in
a maximal torus, T ′. Since a generates A, A ⊂ T ′, and a fortiori T ⊂ T ′

Since z ∈ T ′ \ T , T ̸= T ′. This contradicts the fact that T is a maximal
torus.

Definition 5.7. We have defined an effective action of W (T ) on T . Taking
the differential of this action at the identity gives us an action W (T )×t → t.
This is the quotient of the action ad: N(T ) → Auto(t).

Corollary 5.8. The action W (T ) : Auto(t) is effective and leaves invariant
the lattice Λ ⊂ t that is the kernel of exp: t → T

Proof. Since conjugation by N(T ) commutes with the exponential mapping
which is a surjective homomoprhism with kernel Λ both the statements in
the corollary are immediate from Theorem 5.6 and the fact that the action
of T ⊂ N(T ) is trivial and the action of W (T ) is the one induced on the
quotient W (T ) = N(T )/T .
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