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October 14, 2025

We begin with a basic lemma.
Lemma 0.1. The component group of any compact Lie group is finite.

Proof. Since a Lie group is a manifold and hence locally connected, each
connected component of G is an open subset of G. Were there infinitely
many connected components, this would give an infinite covering by disjoint
open sets, contradicting compactness. ]

1 Linear Actions of S!' and Tori

1.1 Complex Actions of S!

Identify the Lie algebra of S with R and the exponential map with the usual
map R — S! given by ¢ + exp(it). Let S' x V — V be a finite dimensional,
complex linear action. The induced map on Lie algebras sends 1 € R to
some A € M(n x n,C). According to the Jordan canonical form, we can
find a basis of V in which A = A+ A, with Ags is diagonalizable and A,
is a strictly upper trianglar matrix commuting with Ags. Let Aq,..., A\, be
the diagonal entries of Ag. Since exp(2mA) = 1, we see that each A; is of
the form in; for some integers n;.

Since exp(itA) and exp(itAss) are periodic of period 27 and since Agg
and A,; commute, it follows that exp(itA) = exp(itAss)exp(itAnir), so that
(it Ap;p) is also periodic of period 27. On the other hand, since A,,;; is strictly
upper triangular, some power of A,; is identically zero. Thus, exp(itAy;)



a finite polynomial expression in itA,; whose constant term is Id and the
linear term is itA,;;. The only periodic polynomials of ¢ are constant poly-
nomials.. This implies that A,; = 0 and A = A, is diagonalizable with
eigenvalues in; for integers n;.

Definition 1.1. A character of S is a homomorphism S — S1. The group
of characters of S' is naturally identified with Z given by 6 ~ 6.

A representation of S! on a complex vector space of dimension n is, up
to conjugation, given by n characters. That is to say there is a basis in
which the action of given by diagonal matrices, and each diagonal entry is
a character of S'.

1.2 Complex Actions of a Torus

Definition 1.2. By a torus we mean a compact, connected, abelian Lie
group 7T'. The Lie algebra t of T'is an abelian Lie algebra and hence the BCH
series is H(X,Y) = X +Y. This converges on all of t x t and defines a group
structure of t which is the usual addition. The exponential map is a Lie group
map from t with its addition to 7" and is a local diffeomorphism. Hence,
the kernel of exp is a discrete subgroup A of t and the exponential mapping
induces an isomorphism from t/A — T'. Since T" is compact, A C t must be
a lattice; i.e., a discrete subgroup generated by an R-basis {a1,...,a,} of t,
where n = dim(t).

Remark 1.3. The circle is a one-dimensional torus. Any torus is isomorphic
as a Lie group to a finite product of circles with the product Lie group
structure. (This is a homework problem.)

The results about complex actions of S' generalize to any torus 7.

Definition 1.4. A character of a torus T is a homomorphism 7" — S'. If
we write 7' = t/A then a character of T' is a linear map t — R that sends
A — 277Z. The group of characters is the dual group A* = Hom(A, 27Z), to
A. The formula for the character T — S! associated to the linear function
a:t— R sending A — Z is

exp(v) — exp(ia(v)).

Let T'x V — V be a complex linear action. We write the torus as a
product of commuting circles. Let X1, ..., X be the elements of t generating
these circles as before. We have seen that each X; is diagonalizable. Since



the X; commute, they have common eigenspaces. This means that we can
find a basis for V', {ej,...,e,} so that T stabilizes each of the complex lines
Ce;. The action of T on Ce; is a by a character of T', and up to conjugation,
an action of 7" on an n-dimensional vector space is the same as n characters

of T.

Definition 1.5. The characters of this action are the weights of the repre-
sentation of T on V.

1.3 Real Actions

Now let V be a finite dimension real vector space S' x V — V be a real
linear action. We can complexify the action and diagonalize the result:

V @r C = Ey ®jer En;

where the action on Ep is trivial and the action of the Ej; are given by
et . w = eMitw for w € E,, a non-zero integer.. Since the action is real, we
have En]. = E_,,. In particular, Ej is real, meaning that Ey = (EgNR") @R
C, and each E,; ® E_p; is real. The action of S Lon (Ep NR™M) is trivial.
The intersection of Ey,; & E_,; with the real subspace projects equivariantly
and isomorphically onto each of E,, and E_,;. Depending on the choice of
which subspace we project onto, we see that the action of S' on this real
subspace is given by e rotates by either e or e, (These two actions
are equivalent by the isomorphism e® s e~% of S'.)

This generalizes to tori. Any real linear action of a torus 7 on V is a
direct sum of a trivial action and actions on two-dimensional spaces given
by a character (i.e., a homomorphism) a;: T — S followed by the standard
action of S' on R2. As in the case of the circle the character is only defined
up to inverse. The weights of the real action are defined to be {afl}j. In
fact, these are the weights of the complexification of the representation.)

From now on we view characters of the torus 7' = t/A as A* =
Hom(A, 277Z) and write characters additively instead of multiplica-

tively.

2 Closures of Cyclic Subgroups

Definition 2.1. Let A be a Lie group. An element g € A is said to gen-
erate A topologically if the cyclic group generated by g is dense in A, or
equivalently the closure of {¢"},cz is A. In this case we say that A has a
topological generator.



Lemma 2.2. If a subgroup A of a Lie group has a topological generator g,
then A is abelian and its group of components is a cyclic group.

Proof. Since all powers of g commute with each other, any element in A,
the closure of the group generated by g, commutes with every power of g.
Hence, A commutes with the closure of the group generated by g¢. This
proves that eery element of A commutes with A, so that A is abelian.
Since the powers of g are dense in A, every component of A contains a
power of g. Thus, the cyclic group generated by g maps onto the component
group of A. Thus, the component group of A is also cyclic. O

Corollary 2.3. FEvery torus has a topological generator.

Proof. Let T be a torus written as V/A, a vector space modulo a lattice
A. A codimension-1 subtorus is determined by a linear map 7: V — R
that induces a surjection 7wz : A — 27Z. The subtorus is the quotient of the
kernel of m modulo the lattice by a lattice ker(my ). There are only countably
many such maps and subtori.

Consider the union over the countable collection of all such maps, ma
of 771(2rQ) C V. This is a nowhere dense subset D invariant under the
action of A. Let D be the image in T of D. It is nowhere dense in 7. For
any g € D, no positive power of ¢ is contained in a codimension-1 subtorus.
Let C be the closure of {g"}° ;. This is an abelian sub Lie group of G.
The component group of C is finite and hence some positive power of g is
contained in the component of the identity Cy of C. Being a connected,
abelian Lie group Cy, is a torus. Since it contains a positive power of g, it
follows from the fact that g and all its positive powers are in the complement
of D that no positive power of ¢ is contained in a proper subtorus of T'. Thus,
Co=T. O

Corollary 2.4. 1. Let A C G be an abelian Lie subgroup containing a torus
T with finite cyclic quotient. Then A has a topological generator.

2. If A C G is the closure of an abelian group that is generated by a connected
subgroup of G and a single element of G, then A has a generator.

Proof. We prove the first statement. Let a € A generate the finite cyclic
quotient. Let n be the order of this quotient. Then a™ € T'. Let g € T be
such that a™g generates T'. Since T is divisible, there is h € T' with A" = g.
Then the element ha generates the finite cyclic quotient and (ha)™ generates
T. The first statement follows.



Suppose that A C G is the closure of an abelian subgroup of G generated
by a connected subgroup R and an element of g € G. The component group
of A is finite. Let B C A be the union of the connected components of A
that contain a power of g. Then B is a closed subgroup of A that contains
both R and g. This means B = A and g generates the component group,
implying that the component group is cyclic. Since the component of the
identity of A is a compact, connected abelian Lie group, it is a torus. The
result now follows from the first statement. O

Corollary 2.5. 1. Let A be an abelian subgroup of G containing a torus
with cyclic quotient. Then A is contained in a mazximal torus.

2. If A C G be an abelian group gemerated by a connected abelian group Ag
and a single element g, then A is contained in a mazximal torus.

Proof. According to Corollary 2.4, in either case the closure of A has a
generator. That generator is contained in a maximal torus and hence so is
the closure of A. O

3 Maximal Tori in a Compact, Connected Lie Group

3.1 Definition and Existence

Let G be a non-trivial, compact connected lie group.
Proposition 3.1. G contains a positive dimensional torus.

Proof. Since G is connected and non-trivial it is positive dimensional. Thus,
its Lie algebra is non-zero. Fix X # 0in t. Then exp(¢X) is a non-trivial one-
parameter subgroup A C G. The group A is connected, positive dimensional
and abelian. So is its closure, which is a Lie subgroup according to Theorem
3.9 of Lecture 2. By definition, this subgroup is a positive dimensional
torus. O

Corollary 3.2. There is a positive dimensional torus in G that is not prop-
erly contained in any other torus in G.

Proof. We have seen that (G contains a positive dimensional torus. Let T
be a torus of maximal dimension in G. Then T is not properly contained
in any other torus in G. For, if T is properly contained in a torus 7", then
since T” is connected, the Lie algebra of T” is strictly larger than that of T'.
This means that the dimension of T” is larger than the dimension of 7. [J

Definition 3.3. Any torus satisfying the conclusion of the previous claim
is a mazximal torus.



3.2 The Roots of a Maximal torus

Lemma 3.4. 1. If T is a mazimal torus, then its Lie algebra t is not
properly contained in an abelian sub Lie algebra of g.

2. If g € T is a topological generator of T, then the Lie algebra of the
centralizer Z(g) of g is t.

Proof. Suppose that L is an abelian subalgebra of g properly containing
t. The image exp(L) is a connected abelian subgroup containing 7' that
contains a submanifold whose tangent space at e is L. The same is true of
its closure, which is a closed, connected abelian subgroup and hence a torus.
This torus properly contains 7', which is a contradiction. This proves 1.
Let g be a topological generator of a the maximal torus 7. Then the
centralizer, Z(g), of g is a Lie subgroup containing 7" and commuting with
T. Let L be its Lie algebra. Then t C L since T' C Z(g). Suppose this is a
proper inclusion. Let X € L be an element not contained in t. Since exp(X)
commutes with T, it follows that [X,t] = 0. Of course [X, X] = 0. Thus,
t@ (X) is an abelian Lie algebra properly containing t. This contradicts the
first item. O

Applying the discussion of Section 1.3 and Part 2 of Lemma 3.4, we have
the following.

Theorem 3.5. The action of a mazimal torus T decomposes g as
g=teVio---aV;

where each V; is two-dimensional and on which T acts by a non-trivial char-
acter o;: T — St followed by a standard semi-free rotation action of the
circle on V.

Proof. By the results in Section 1.3 we need only how that O-eigenspace, Fy,
for the adjoint action of T" on g is contained in the Lie algebra t of T". Since
the adjoint action of T' on Ej is trivial, 7' commutes with exp(Ep). Let g be
a topological generate of T'. Then exp(Ejy) is a subgroup of Z(g), and hence
Ey is a subspace of the Lie algebra of Z(g). Part 2 of Lemma 3.4 tells us
that the Lie algebra of Z(g) is t. O

Remark 3.6. The characters a;: T — S! are only defined up to sign, since
reversing the orientation of V; replaces a; by —a;.

Definition 3.7. The non-zero weights of the action of 1" on g; i.e., the non-
trivial characters {£a;}; of the action of T' on g, are the roots of (G,T),



or simply the roots of G if T is clear from context. The associated two-
dimensional subspaces V; C g are the root spaces, with V; being the root
space for +qy.

4 The Weyl group

4.1 Definition and First results

Lemma 4.1. The automorphism group of a torus is a discrete group.

Proof. An automorphism of a torus 7', lifts to a linear automorphism of
its Lie algebra t which stabilizes the kernel, A, of the exponential map.
Since a linear isomorphism of a vector space that fixes the lattice A point-
wise is the identity, we have an embedding of Auto(T) C Auto(A). [It is
easy to see that these automorphism groups are equal.] Then Auto(A) C
GL(t) is the subgroup stabilizing A. As such, it is a topologically closed
subgroup of GL(t) and hence a Lie subgroup. There are only countable many
automorphisms of a lattice, and hence this Lie group has only countably
many elements. That is to say its Lie algebra is zero-dimensional and hence
the Lie group is a discrete group. O

Definition 4.2. Let T be a maximal torus of a compact, connected Lie
group G. The Weyl group W (G, T') of T is defined to be the quotient of the
normalizer Ng(T') of T in G by T*:

W (G, T) = Na(T)/T.

Proposition 4.3. Let T be a mazximal torus of a compact, connected Lie
group G. The Weyl group of W(G,T) is finite and is the component group
of Nao(T)/T.

Proof. By definition Ng(T') is a topologically closed subgroup of G, hence
it is a sub Lie group and its component group is finite. Let No(T") be
the component of the identity of Ng(T'). First of all we have a surjection
W(T) = N(T)/T — N(T')/No(T) with kernel No(T")/T. The proposition
follows once we show that No(T) =T.

We suppose that No(7T') properly contains 7' and deduce a contraction.
Since T and Ny(T') are connected, the Lie algebra t of T" is properly contained
in the Lie algebra of Ny(7'). Choose a X in the Lie algebra of Ny(T") that is
not contained in t. Since the automorphism group of the torus is discrete,
the adjoint action of the component of the identity No(7') on T is trivial,



and consequently the adjoint action of the Lie algebra of Ny(7T'), and in

particular the adjoint action of X, on t is trivial. Of course, [X, X] = 0.
Thus, the subspace V of g spanned t and X is an abelian Lie subalgebra
properly containing t. This contradicts Part 1 of Lemma 3.4.. 0

4.2 The Adjoint Action of the Weyl Group on 7.

Definition 4.4. Let T be a maximal torus of G. We define the Weyl group
action on T, W(G,T) x T — T to be given by w - g = wgw™! = Ad(w)(g)
where g € T and w € N(T') with w as its image under the quotient map
N(T) — N(T)/T) = W(T).

We define the Weyl group action on T* = Hom(7,S') by w- ¢ = ¢ o
Ad(w™1);, where as before w € N(T) is a lift of w.

Remark 4.5. Since the adjoint action of T on itself is trivial the adjoint
action of Ng(T') on T factors through the quotient W(G,T) = Ng(T)/T.
The same is true for the action of W(G,T') on T*.

Notice for ¢ € T* and g € T we have

(@ )@ g) = p(Ad(w) " (Ad(w)(g)) = ©(9)-

That is to say the natural pairing 7% ® T'— S! is invariant under the Weyl
actions.

Remark 4.6. For w € N(T) and g € T we have to distinguish between
the product wg € G and the action w - g = Ad(w)(g) = wgw~!. We always
write the first by juxtaposition and the second with a -.

Proposition 4.7. Let G be a compact, connected Lie group and T C G a
mazximal torus. The Weyl group action on T™ preserves the set of roots of

T.

Proof. First two general comments. Suppose that pu: T'— T is a Lie group
isomorphism. Its action on T* is given by - p = po p~'. Thus, the action
of ;1 on T* sends the roots of ad to the characters {u*a = a o u~'}, as
« ranges over the roots of the adjoint representation. Of course, conjugate
representations have the same set of roots. Thus, if ad o (z~!) and ad are
conjugate, then p* preserves the set of roots.

Now let us consider our case. Fix w € Ng(T) and g € T and X € g.

Claim 4.8.

ad(w™! - g)(X) = ad(w™?) o ad(g) o ad(w)(X).



Proof. Let () be a smooth curve in G with v(0) = e and 4/(0) = X. Then

Ad(w™ - )(5(1) = wgwir(O)w g w = w (g (wr (g .
Differentiating at ¢t = 0 gives the result. 0

We can reformulate this as a commutative diagram for g € T" and the
image w € Ng(T') we have

ad(w—1-
T x g d(w™'-g) p
IdTXad(w)J( lad(w)
Txg ad(g)

This is the statement that ad: T — Auto(g) is conjugate to the repre-

sentation given by
-1,
T = — Auto(g).

But ado(w™!) = wad, where w € W (G, T is the image of w € Ng(T). This
proves that wad is conjugate to ad and hence they have the same characters.
Consequently, the action of W(G,T) on T leaves invariant the set of roots
of ad. O

5 All Maximal Tori Are Conjugate and They Cover
G

Theorem 5.1. Let G be a compact, connected Lie group. Let T C G be a
maximal torus. Then every point g € G is contained in a conjugate of T
All mazimal tori of G are conjugate.

Proof. Let g € G. Then g € 2Tz~ ! if and only if g(2T) = 2T. Said another
way, g € G is in a conjugate of T if and only if, under the natural left action
of G x G/T — G/T, the element g has a fixed point.

Lefschetz theory tells us that if f: M — M is a continuous self-map of
a closed, oriented manifold and if L(f) = Y_,(—1)"Trace(f.: Hi(M;Q) —
H;(M;Q)) is non-zero, then f has a fixed point. Of course, L(f) depends
only on the homotopy class of f. The number L(f) is the homological
intersection [I'(f)] - [A] in M x M, where I'(f) is the embedding of M —
M x M as the graph of f and A is the embedding of M as the diagonal in
M x M.



If f is smooth and at each fixed point x of f, the differential of f at x
does not have 1 as an eigenvalue, then we can say much more, Under these
assumptions the graph I'(f): M — M x M is transverse to A and L(f)
is the sum of local intersection numbers of I'(f) with A at the points of
intersection. The intersection points are {(z,z)} with z a fixed point of f,
and the local intersection number at any such (z,z) is £1 and is equal to
sign(Id — det(df«(x))) as a map of TM, — TM,.

Claim 5.2. Let gy be a topological generator for T'. The map G — G given
by h — gohga1 factors to given the map left multiplication by go from G/T
to G/T

Proof. Since gg € T, we have gohgo_lT = gohT. O

Let us compute the L(gg) for gy a topological generator of T'. First, if
go € xTxz~!, then since, the cyclic group generated by go is dense in T, it
follows that 7' = xTx~!, meaning that x € N(T). Conversely, if z € N(T)
then T = 2Tx~! and g9 € 2T« '. Thus, the fixed points of the action of
left multiplication by go on G/T are the finite set W(T') = Ng(T)/T.

Let us compute the local Lefschetz number of gg at [eT] € G/T. We have
seen that the adjoint action of T" on g is given by t® Vo ®;_, V; where T" acts
trivially on t and by a non-trivial characters, +«;, on the two dimensional
spaces V;. The tangent space of G/T at [T] is identified with &]_,V;. By the
claim above, left multiplication by go on G /T agrees with the map induced
on G/T by the action of Ad(go) on G. Hence, the differential of action of
go on Tir)(G/T) is the restriction of the adjoint action to ad(go) to @j_;V;
That is to say, D(go-)« acting on Ter(G/T) = @]_,V; preserves the direct
sum decomposition and acts on V; by

(cos(ai (go) —sin(«; (go)>
sin(ai(go)  cos(ai(go))
Thus

-
det(Id — Dfi(g0)) = [ [ (2 — 2cos(i(g0)))-
i=1
Since gg is a topological generator of T, each non-trivial character of T is
non-trivial on gy, so that each of these two-by-two matrices has positive
determenent. Hence, the graph of the action of gg is transverse to the
diagonal and the local intersection number is a sign, +1.
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Now let w € N(T). Left multiplication by w: G/T — G/T sends [w™1T]
to [eT] and conjugates the left multiplication of gg at [wT] to left multiplica-
tion of wgow ™! at [eT]. Thus, the local Lefschetz number of left multiplica-
tion by go at the fixed point [w™!T is the same as the local Lefschetz number
of left multiplication of wgow ™! at [eT]. Since wgow ™! is a topological gen-
erator for T, the computation above applies to show that the local Lefschetz
number of left multiplication by wgow™! at [eT] is 1. This shows that its
local intersection number for left multiplication by go at w™'T € G/T is
+1. This is true for every w € W(G,T) and consequently, the intersec-
tion number of the graph I'(go-) with A, which is the Lefschetz number of
multiplication by go on G/T, is equal to #W (G, T) > 0.

Now consider an arbitrary g € . Since GG is connected, g and gg are
connected by a path. Thus, left multiplication by g and gy on G/T are
homotopic, and hence these actions on G/T have the same Lefschetz number,
which we have just seen is non-zero. It follows that g: G/T — G/T has a
fixed point [T, meaning that g € Tx~!. This proves that the conjugates
of T cover G. Of course, each of these conjugates is a maximal torus.

Now let 7" be another maximal torus of G and let g be a generator for
T'. Then g is contained in a conjugate zTxz~'. Since g generates 1, it
follows that 7" C Tz~ !. Since T” is maximal, 7" = 2Tz~ !. This proves
that all maximal tori are conjugate. O

Definition 5.3. The dimension of a maximal torus 7" in G is the rank of G.

Since all maximal tori of a compact, connected Lie group are conjugate,
the maximal torus with its adjoint action on g is, up to isomorphism inde-
pendent of the choice of maximal torus. In particular, the roots of a maximal
torus are, up to isomorphism, independent of the choice of maximal torus.

5.1 Consequences

Corollary 5.4. The center of a compact, connected Lie is contained in every
mazximal torus.

Proof. Let z be a central element of G. Then z is contained in a maximal
torus T'. Since every maximal torus is conjugate to T', every maximal torus
contains z. This shows that every element of the center is contained in every
maximal torus. O

Corollary 5.5. For any compact, connected Lie group G, the exponential
map exp: g — G is onto.

11



Proof. Let T C G be a maximal torus. Then the Lie algebra t is an
abelian Lie algebra and the exponential map is surjective homomorphism
from (t,+0) to 7. Thus, T is in the image of exp. We have just seen that
every g € (G is contain in a maximal torus. O

Theorem 5.6. Let T’ be a mazximal torus in a compact, connected Lie group
G. Then the action of W(T) x T — T is effective.

Proof. Let Z(T') C N(T) be the centralizer of T. The statement in the
proposition is equivalent to the statement that Z(T) = T. So suppose
there is an element z € Z(T') \ T. We have already seen that W(T') is the
component group of N(T'). This implies that {z} UT generates an abelian
group A containing T as a subgroup with finite cyclic quotient. According
to Corollary 2.4 there is a generator a for A. The element « is contained in
a maximal torus, 7. Since a generates A, A C T’, and a fortiori T C T’
Since z € T\ T, T # T'. This contradicts the fact that T' is a maximal
torus. O

Definition 5.7. We have defined an effective action of W(T') on T'. Taking
the differential of this action at the identity gives us an action W (T') x t — t.
This is the quotient of the action ad: N(T') — Auto(t).

Corollary 5.8. The action W (T): Auto(t) is effective and leaves invariant
the lattice A C t that is the kernel of exp: t = T

Proof. Since conjugation by N(7T') commutes with the exponential mapping
which is a surjective homomoprhism with kernel A both the statements in
the corollary are immediate from Theorem 5.6 and the fact that the action
of T'C N(T) is trivial and the action of W(T') is the one induced on the
quotient W(T') = N(T)/T. O
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