
Lie Groups: Fall, 2025

Lecture VI: Real Analyticity for Real Lie Groups

October 7, 2025

1 BCH Formula Redux

1.1 Iterated Lie Brackets and Polynomials

Suppose that L is a K-Lie algebra and {X1, . . . , Xr} is a K-basis for the
underlying vector space. Then the basis determines coordinate functions
x1, . . . , xr : L → K. Namely, for any X ∈ L, xi(X) are defined so that
X =

∑
i x

i(X)Xi.
The Lie algebra structure is given by constants cki,j defined by [Xi, Xj ] =∑
k c

k
i,jXk. These are the structure constants of the Lie algebra in this basis.

Skew symmetry of the Lie bracket is the statement that cki,j = −ckj,i, i.e.,
that the cki,j are skew symmetric in i and j. The Jacobi identity is equivalent
to ∑

ℓ

(cmi,ℓc
ℓ
j,k + cmk,ℓc

ℓ
i.j + cmj,ℓc

ℓ
k,i) = 0,

for all i, j, k,m. [CHCK THIS.]
Thus, given X =

∑
i x

iXi and Y =
∑

j y
jXj we have

[X,Y ] =

k∑
r=1

∑
i,j

xiyjcki,jXk,

with coefficients of the Xk on the right-hand side being homogeneous poly-
nomial functions of degree 1 in the x variables, (x1, . . . , xr), and degree 1 in
the y, variables (y1, . . . , yr). The coefficients of these polynomial are them-
selves linear polynomials in the structure constants cki,j . It is easy to see by
induction that any iterated bracket in r copies of X and s copies of Y is∑r

k=1 f
k(x, y)Xk where each fk(x, y) is homogeneous polynomial function
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of by degree r in the x variables and degree s in the y variables, and the
coefficients of polynomial fk(x, Y ) are polynomials of degree (r + s − 1) in
the cki,j .

Recall that in the Hausdorff series H(X,Y ) =
∑

nHn(X,Y ), the term
Hn(X,Y ) is a linear combination of iterated n-fold brackets of copies of
X and Y . Thus Hn(X,Y ) =

∑r
k=1 f

k
n(x, y)Xk where fkn is homogeneous

polynomial of degree n in the variables (x1, . . . , yr). Thus, Hn(X,Y ) is an
expression of the form Fn(x, y) where Fn is a homogeneous polynomial func-
tion of degree n in (x1, . . . , yr) with values in L. This shows that H(X,Y ) is
a power series in the linear variables (x1, . . . , xr, y1, . . . , yr) on L×L centered
at (0, 0) with values in L.

1.2 LOG and EXP

Suppose that A is an associative algebra andX ∈ A. Denote by EXP(X) the

power series 1+
∑∞

k=1
Xk

k! . Similarly, denote by LOG(1+X) =
∑

k≥1
(−1)n−1Xn

n .
At this point we are not considering whether the series converges or not,
these are simply formal expressions.

The consequence of the last lecture is that if S = {X,Y } the two power
series EXP(X)EXP(Y ) and H(X,Y ) = LOG(EXP(X)EXP(Y)) defined on

Û(FL)(S) × Û(FL)(S) with values in Û(FL)(S) converge. The latter,
H(X,Y ) is given as series whose nth term is a linear combintation iter-

ated brackets of copies of X and Y . Since we are working in Û(FL)(S) the
equality of power series simply means that for each N each of the series has
only finitely many terms of degree ≤ N and these terms are the same.

1.3 BCH Formula and Local Lie Groups

Now consider a finite-dimensional, real Lie algebra L. Fix a positive definite
inner product on this Lie algebra. the real vector space structure on L
determines a real analytic structure.

Your homework problems were to show that there is a neighborhood UL
of 0 ∈ L with the property for (X,Y ) ∈ UL × UL the series

∑
nHn(X,Y )

converges uniformly and absolutely in L with limit a real analytic function

mL : UL × UL → L.

We set ΩL = m−1
L (UL) ∩ (UL × UL) with its induced real analytic structure

so that mL defines a real analytic map

mL : ΩL → UL.
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In fact, this map is given by a power series on L×L centered at (0, 0) with
values in L that is absolutely convergent on ΩL ⊂ L × L. The identities
H(0, X) = H(X, 0) = X of formal power series imply that

mL(0, X) = mL(X, 0) = X for all X ∈ UL. (1.1)

Similarly, the identity H(X,−X) = 0 implies

mL(X,−X) = 0 for every X ∈ UL. (1.2)

The identity H(H(X,Y ), Z) = H(X,H(Y, Z)) of power series in three vari-
ables implies that

mL(mL((X,Y ), Z))) = mL(X,mL(Y, Z)) (1.3)

if (mL(X,Y ), Z) and (X,mL(Y,Z) are contained in ΩL

Definition 1.1. A local Lie group structure in a finite-dimensional vector
space L consists of a five-tuple

(UL, 0,−1,ΩL,mL)

where UL is open set of L containing 0; ΩL ⊂ L×L is an open neighborhood
of (0, 0); mL : ΩL → UL is a smooth map satisfying Equations (1.1–1.3).

In summary, the results of the previous lecture and the convergence re-
sults from your homework show that, for any real Lie algebra, the Hausdorff
series defines a local Lie group in L. In fact, it is a real analytic local Lie
group in the sense that mL is given by a power series that is convergent on
ΩL and inverse is a real analytic function.

The germ of this local Lie group at 0 is independent of the choice of UL
with the property that the power series H(X,Y ) converges absolutely on
UL × UL and is functorial in the Lie algebra L.

2 The case of gl(n,R)

We just defined an abstract local Lie group determined by any finite-dimensional,
real Lie algebra. But more is true when the Lie algebra is gl(n,R).

Claim 2.1. The functions X 7→ {Xi,j}1≤i,j≤n give an identification of

M(n × n) with Rn2
. There is a ball V ⊂ M(n × n) = Rn2

centered at
e ∈ GL(n,R) such that:

1. V ⊂ GL(n,R) ⊂M(n× n).
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2. There is an open neighborhood U of 0 in gl(n,R) with exp|U : U → V
being a diffeomorphism.

3. Writing any g ∈ V ⊂ GL(n,R) ⊂ M(n × n) as g = Id + A for
A ∈M(n× n) the power series

LOG(Id +A) =
∑
n≥1

(−1)(n−1)An

n

converges absolutely, uniformly on V .

4. The function, also denoted LOG, given by the power series in Item 3
is the inverse of exp|U : U → V .

Proof. The existence of a neighborhood V as stated in the first three items
is clear. Now consider Id +A ∈ V . Then, for −1 ≤ t ≤ 1, the arc Id + tA is
contained in V . Restricting to this interval we see that EXP(LOG(Id+ tA)
is equal to Id at t = 0. Because the power series LOG and the power
series EXP are formally inverses of each other, the functions Id + tA and
exp(LOG(Id+ tA)) on the interval agree to all orders at t = 0. This implies
that the analytic functions are equal on the entire interval. Since this is true
for an arbitrary (Id + A) ∈ V , the analytic function on V defined by the
power series LOG is the inverse to exp|U .

Denote by Ugl(n,R),Ωgl(n,R) and mgl(n,R) the subsets and map described
in the previous section for any Lie algebra for the special case of the Lie
algebra gl(n,R). Without loss of generality, by taking Ugl(n,R) smaller we
can suppose that the map (A,B) 7→ exp(A)exp(B) sends Ωgl(n,R) → V ,
where V is the open set V given in Claim 2.1.

Of course, the power series EXP(A) converges absolutely and uniformly
on every compact subset of gl(n,R) to the exponential map exp: gl(n,R) →
GL(n,R) ⊂ M(n × n). Since matrix multiplication is given by polynomial
expressions of the entries of the matrices being multiplied, the power series
EXP(A)EXP(B) centered at (0, 0) that converges absolutely on gl(n,R) ×
gl(n,R) to the function exp(X)exp(Y ). Since the image under this map of
Ωgl(n,R) is contained in V , it follows that LOG(EXP(A)EXP(B)) is a power
series centered at (0, 0) that converges absolutely on Ωgl(n,R) to the function
(exp|Ugl(n,R))

−1(exp(X)exp(Y )).
Set S = {X,Y } As we noted above, for the free Lie algebra FL(S) have

an equality of power series series center at (0, 0)

H(X,Y ) = LOG(EXP(X)EXP(Y )).
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On the other hand, given elements (A,B) ∈ Ωgl(n,R) there is a unique
map of Lie algebras FL(S) → g(n,R) sending X 7→ A and Y 7→ B. Since
U(FL)(S) is the universal enveloping algebra of FL(S) and M(n×n) is an
associative algebra, this map induces an algebra map U(FL)(S) →M(n×n)
extending the given map S → M(n × n). In particular it sends the power
series LOG(EXP(X)EXP(Y )) to LOG(EXP(A)EXP(B)). It also sends the
universal Hausdorff series H(X,Y ) to the Hausdorff series evaluated at
(A,B), namely H(A,B).

Since H(X,Y ) = LOG(EXP(X)EXP(Y )) as power series centered at

(0, 0) ∈ Û(FL)(S) × Û(FL)(S), it follows that, as power series centered at
(0, 0) in gl(n,R)× gl(n,R), we have

H(A,B) = LOG(EXP(A)EXP(B)).

But both series converge on Ωgl(n,R) ⊂ gl(n,R) × gl(n,R). Thus, the func-
tions on Ωgl(n,R) that they converge to are equal. This means the function
mgl(n,R) : Ωgl(n,R) → Ugl(n,R) that is the limit of the Hausdorff series H(A,B)
is given by

mgl(n,R)(A,B) = (exp|Ugl(n,R))
−1(exp(A)exp(B)).

We rewrite this as

exp(mgl(n,R)(A,B)) = exp(A)exp(B)

for (A,B) ∈ Ωgl(n,R).
We have established the following.

Theorem 2.2. Set Ugl(n,R) and Ωgl(n,R) and m = mgl(n,R) be the multiplica-
tion defined by the Hausdorff series H(X,Y ). Assume, as above, Ugl(n,R) is
chosen small enough that exp(X)exp(Y) ∈ V for all (X,Y ) ∈ Ωgl(n,R), where
V is as in Claim 2.1 The local Lie group (Ugl(n,R), 0,−1,Ωgl(n,R),mgl(n,R)) is

defined solely in terms of the Lie algebra structure of gl(n,R). Let Ω̃ ⊂ G×G
be the image (exp× exp)(Ωgl(n,R)). Then there are commutative diagrams

Ωgl(n,R)
mgl(n,R)−−−−−→ Ugl(n,R)

exp×exp

y yexp

Ω̃
multiplication−−−−−−−−→ V

and
Ugl(n,R)

−1−−−−→ Ugl(n,R)

exp

y yexp

V
inverse−−−−→ V.
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That is to say, the local Lie group (Ugl(n,R), 0,−1,mgl(n,R)) determined by
the Lie algebra structure of gl(n,R) is diffeomorphic, as a local Lie group,
by exp to the local Lie group defined by a neighborhood of the identity in
GL(n,R).

As the next theorem shows, this is not only true for gl(n,R) but also for
any Lie subalgebra of gl(n,R).

Theorem 2.3. Let L ⊂ gl(n,R) be a Lie sub-algebra. Let UL = Ugl(n,R) ∩L
and ΩL = Ωgl(n,R) ∩ (L×L). Denote the restriction of m to ΩL by mL. The
image of mL is contained in UL. There is a local Lie group

(UL, 0,−1,ΩL,mL). (∗),

determined by the Lie algebra structure of L
As beforemL is given by the power series HL(X,Y ) =

∑
k≥0(HL)k(X,Y )

of iterated brackets of elements of L. This series converges absolutely on ΩL.
Let L → GL(n,R) be a map of Lie groups that is a one-one immersion

with the image of the Lie algebra of L being L. Set VL = exp(UL) ⊂ L
and Ω̃L = (exp × exp)(ΩL). Then the exponential map identifies mL with
the restriction of group multiplication of L restricted to Ω̃L and identifies
−1: UL → UL with the inverse in L restricted to VL.

Proof. We claim that mL(UL × UL) ⊂ L. The reason for this is that since
L is a Lie subalgebra of |frakgl(n,R) and hence all iterated brackets of
element in L are contained in L, It follows that the terms Hn(X,Y ) ∈ L
when X,Y ∈ L. The result then follows immediately from the result for
GL(n,R).

Now we need Ado’s Theorem, which we shall not prove in this course

Theorem 2.4. (Ado’s Theorem) Every finite-dimensional, real Lie algebra
has a faithful finite-dimensional, real linear representation, or equivalently,
can be embedded in gl(n,R) for some n <∞.

One consequence of Ado’s Theorem is:

Theorem 2.5. Let L be a finite-dimensional real Lie algeba. Then there is
a Lie group G whose Lie algebra g is isomorphic to L.

Proof. Use Ado’s Theorem to embed L ⊂ gl(n,R) for some n Then according
to Lie’s Theorems there is a Lie group G and a one-to-one immersion G→
GL(n,R) whose differential at e ∈ G identifies the Lie algebra g of G with
L.
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As a corollary of Ado’s Theorem and Theorem 2.3 we have:

Corollary 2.6. Suppose that G is a Lie group with Lie algebra L. Choose
a positive definite symmetric inner product on L with resulting norm | · |.
Then there is ϵ > 0 such that setting UL ⊂ L equal to the ball of radius ϵ,
the series H(X,Y ) converges uniformly and absolutely for X,Y in UL. As
before, we form a local Lie group

(UL, 0,−1,ΩL,mL).

The germ of this local Lie group maps isomorphic via the exponential map-
ping to the restriction of multiplication and inverse of G restricted to the
images of ΩL and UL under the exponential mapping.

Proof. By Ado’s theorem there is an embedding g → gl(n,R) for some n.
According to Lie’s first theorem there is a map of Lie groups G′ → GL(n,R)
that is a one-one immersion so that the induced map on Lie algebras, g′ →
gl(n,R), maps g′ isomorphically onto g. Then the previous result tells us
that the corollary as stated holds for G′ replacing G.

But G′ and G have the same Lie algebra and thus are isogenous. It
follows immediately that there are open subset of the identity of G and of
G′ and an isomorphism between them that induces the given identification
of their Lie algebras and identifies the multiplications and inverses and G
and G′ . Hence, possilby after replacing UL with a smaller neighborhood of
the identity, the corollary holds for G as well as for G′.

3 Real Analyticity of Real Lie groups

Theorem 3.1. Every Lie group G inherits a natural real analytic structure
from its Lie algebra via the exponential mapping that makes it a real analytic
Lie group. Every Lie group homomorphism is real analytic with respect to
these structures.

Proof. Fix a Lie group G with multiplication µ and inverse ι. Let L be its
Lie algebra. Then L has a neighborhood UL of 0 invariant under X 7→ −X
on which the series H converges to give an analytic function mL : ΩL → UL.
(in the real analytic structure on UL coming from the vector space structure
on L).

Possibly after replacing UL by a smaller open set, the exponential map
from L → G identifies UL with an open subset V ⊂ G. The exponential
map identifies the restriction of mL to ΩL and the restriction of −1 to UL
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with the restriction of µ : V ×V → G to µ−1(V ). It also identifies −1 on UL
with ι : V → V .

Fix an open neighborhood W ⊂ UL of 0, invariant under multiplication
by −1 such that

(
W × mL(W × W )

)
∪
(
mL(W × W ) × W

)
⊂ ΩL. Let

W = exp(W ). The open set W inherits a real analytic structure from the
linear structure on L. We use exp to transport this real analytic structure
on W to a real analytic structure on W , giving an analytic structure on
a neighborhood of e in G. Now, we define a real analytic structure in a
neighborhood gW of g ∈ G by transporting the real analytic structure just
defined on W via left multiplication by g. This gives a covering of G by real
analytic patches.

To show that this defines a real analytic structure on G, we must check
that on the overlap of two charts the two analytic structures agree. Suppose
that V = gW ∩ hW ̸= ∅. The overlap function from g−1V ⊂W to h−1V ⊂
W is given by h−1g. Set V0 ⊂ W and V1 ⊂ W be the pre-images under log
of g−1V ⊂W and h−1V ⊂W .

Fix v0, w0 ∈ W such that gv0 = hw0 with v0 = exp(v0) and w0 =
exp(w0). Then h−1g = (w0)

−1v0 and the overlap function g−1V → h−1V
is given by multiplication by h−1g = (w0)

−1v0 = exp(mL(−w0, v0)). Since
v0, w0 ∈W and W is invariant under X 7→ −X, we see that

mL : {mL(−w0, v0)} × V0 → V1

is a real analytic map. Thus, left multiplication by (w0)
−1v0) as a map

g−1V 0 → h−1V 1 is real analytic. This proves that the overlap function,
multiplication by h−1g, from g−1V → h−1V is real analytic.

This, and the symmetric argument for the inverse, show that any two of
the given real analytic charts give the same real analytic structure on their
overlap and hence the collection of analytic charts {gW}g∈G defines an atlas
giving a global real analytic structure on G. We call this the real analytic
structure generated by the BCH formula.

Let us consider multiplication near (g, h) ∈ G×G. The analytic structure
on gW ×hW ⊂ G×G is given by (gw, hv) with the analytic structure on w
and v as defined previously. The product is given by gwhv = gh(h−1wh)v.
Since we know the product is analytic on W ×W , we need only see that
conjugation by h is analytic near the identity. But conjugation by h is a
homomorphism of Lie groups whose map on the Lie algebras is a linear
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isomorphism of Lie algebras. There is a commutative diagram

L
ad(h)−−−−→ L

exp

y exp

y
G

Ad(h)−−−−→ G.

Since near 0 ∈ L and e ∈ G, exp transports the analytic structure
determined by the vector space structure of L to the analytic structure on
G determined by the BCH formula, it follows that near e ∈ G conjugation
by h is real analytic since ad(h) is a linear map of L and thus obviously
analytic.

Lastly, let us consider the inverse map. Near g it sends gw to w−1g−1 =
g−1(gw−1g−1). For w ∈ W the map w 7→ (w)−1 lifted to W is the map
w 7→ −w, which is clearly real analytic. Thus w → (w)−1 is real analytic.
We have already seen that conjugation by g is real analytic near e. It
follows that the inverse map ι : G → G is real analytic. This completes the
proof that G with the analytic structure generated by the Baker-Campbell-
Hausdorff formula is a real analytic Lie group.

Now suppose that ψ : G→ H is a Lie group homomorphism. It induces
a linear map deψ : g → h which is linear and a map of Lie algebras. Thus, it
determines an analytic map between local Lie groups in g and h. We have
a commutative diagram

g
deψ−−−−→ h

exp

y yexp

G
ψ−−−−→ H

Since the real analytic structures near e ∈ G and e ∈ H are transported
from the usual real analytic structure on g and h and since deψ is linear and
hence real analytic, it follows that, near the identity in G, the map ψ is real
analytic.

Now let us consider ψ in a neighborhood of g ∈ G. In a neighborhood
of g, the map is given by ψ(gw) = ψ(g)ψ(w) for w near the identity in
G. Since multiplication by g in G and multiplication by ψ(g) in H are
real analytic isomorphisms, and w 7→ ψ(w) is a real analytic map near the
identity by what we just observed, it follows that ψ is real analytic near g,
an consequently, is a real analytic map.

This shows that the category of real analytic Lie groups is equivalent to
the category of smooth Lie groups. (Assuming, of course, Ado’s theorem.)
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4 Summary or our the Results About Lie Algebras

We have finished approximately three weeks of study of Lie algebras. Here,
we recap what we have established.

We began with the question about linear representations of a real Lie
algebra L on a vector space V . By this we mean a linear map ρ : L⊗V → V
that, for all X,Y ∈ L and v ∈ V satisfies

ρ(X ⊗ ρ(Y ⊗ v))− ρ(Y ⊗ ρ(X ⊗ v) = ρ([X,Y ]⊗ v).

We define ad(ρ) : L → End(V ) by ad(ρ)(X)(v) = ρ(X ⊗ v). Then ρ is a
representation of the Lie algebra L if and only if ad(ρ) : L → End(V ) is a
map of Lie algebras. A very closely related notion is that of a map µ : L→ A
where A is an associative algebra and µ is a homomorphism of Lie algebras
when we give A the Lie algebra bracket [x, y] = xy − yx.

We found the universal solution to the second problem. It is given by a
map L→ U(L), where U(L)is the universal enveloping algebra. To construct
U(L) we take the tensor algebra, T (L), generated by L, and impose the
relations X ⊗ Y − Y ⊗X = [X,Y ] for X,Y ∈ L.

It is a straight-forward formal argument to show that this produces a
universal solution to the problem of finding a Lie algebra map from L to
the xy-yx Lie algebra underlying an associate algebra. More delicate is to
understand the structure of U(L). The main theorem about the uni-
versal enveloping algebra, the Poincaré-Birkhoff-Witt Theorem, is
that U(L) has a natural increasing multiplicative filtration whose
associated graded algebra is isomorphic to the polynomial algebra
on L. In particular, the natural map L → U(L) is an inclusion.
This is the first major theorem of our study of Lie algebras. This theorem
is proved by defining an action of L on the polynomial algebra P (L) so that
the action of X ∈ L on a homogeneous polynomial is multiplication by X
to highest order.

We also showed that is that U(L) has a natural co-multiplication making
it a bi-algebra (even a Hopf algebra). The second main result is deduced
from the fact that the isomorphism from the associated graded algebra of
U(L) to the polynomial algebra on L identifies the associated graded ver-
sion of the co-multiplication in U(L) with the usual co-multiplication in
P (L). This leads to our second main result: the primitive elements
of the co-multiplication in U(L) are exactly the elements of L ⊂
U(L). We apply this to show that for elements X,Y ∈ L the power series
log(exp(X)exp(Y )) in the completion of Û(L) with respect to the ideal gen-
erated by L is equal to the Hausdorff series H(X,Y ) whose terms of degree
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n are elements of L; indeed, the nth order term is a linear combination of
iterated brackets of length n of copies of X and Y . This series is the
formal multiplication in a formal group on the Lie algebra. This
is the Campbel-Baker-Hausdorff Formula.

Using standard convergence results in your homework, you showed that,
for a finite-dimensional, real Lie algebra L, the Hausdorff series convergences
absolutely and uniformly forX,Y is some neighborhood of 0. The function
defined by the Hausdorff series is a local group multiplication in
the neighborhood of 0 in L. It, together with the local inverse,
X 7→ −X, defines a local group structure on a neighborhood of
0 ∈ L, a local group structure that is functorial in the Lie algebras
L.

In the case of L = gl(n,R), the exponential map produces an isomor-
phism between this local group structure in a neighborhood of 0 in gl(n,R)
to the local group structure given by GL(n,R) restricted to a neighborhood
of the identity.

It is easy to generalize this result to any sub-algebra of gl(n,R). Ado’s
theorem (which we do not prove) that says that every finite-dimensional,
real Lie algebra is isomorphic to a sub-algebra of gl(n,R) for some n. The
final major result is:

• Every finite-dimensional, real Lie algebra L is the Lie algebra
of a Lie group G(L).

• In a neighborhood of the identity the multiplication of G(L)
is given as the image under exponential map of the local mul-
tiplication in a neighborhood of 0 ∈ L given by the Hausdorff
series.

This construction produces a local real analytic structure near the iden-
tity of any Lie group in which multiplication and inverse are real analytic
maps. It is easy to extend this real analytic structure near the identity by
equivariance to the entire Lie group in such a way that multiplication and
inverse are real analytic maps. This leads to a subcategory of the category
of Lie groups, real analytic Lie groups. The subcategory of real analytic Lie
groups is a fully faithful subcategory of the category of Lie groups. This
means that every Lie group is isomorphic, as a Lie group, to a real
analytic Lie group, and every Lie group homomorphism between
real analytic Lie groups is real analytic.
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