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1 Free (Non-Associative) Algebras and Free Lie
Algebras

Definition 1.1. By an algebra (over K) we mean a K-vector space V with a
multiplication, which is a K-linear map µ : V ⊗K V → V . A map of algebras
is a K-linear map preserving the multiplications.

Let S be a set. (We are primarily interested in the case when S has car-
dinality 2.) By induction on i ≥ 1 we define sets Si. We begin with S1 = S.
Given Si for i < n. we define Sn =

∐
i+j=n;i,j≥1 Si×Sj . Using a multiplica-

tive notation we can view Sn as all expressions that are a composition of
ordered binary products of pairs of elements. Fox example, S2 = {(x · y)}
for x, y ∈ S1. S3 has two types of elements: those of the form (x1 · (x2 · x3))
and those of the form ((x1 · x2) · x3) for x1, x2, x3 ∈ S. S4 has the following
types of elements:

S1 × S3 : (x1 · ((x2 · x3) · x4)), (x1 · (x2 · (x3 · x4)))
S2 × S2 : ((x1 · x2) · (x3 · x4))
S3 × S1 : (((x1 · x2) · x3) · x4), ((x1 · (x2 · x3)) · x4)

We set S∞ =
∐∞

n=1 Sn, and we denote by F (S) to be the K-vector space
generated by S∞. The multiplication of x ∈ Si and y ∈ Sj is the element
(x ·y) ∈ Si×Sj ⊂ Si+j . We extend this multiplication on the basis elements
S∞ by bilinearity to a multiplication on F (S). The freeness of F (S) is
captured in the following property.

Lemma 1.2. Given an algebra A and a set function ψ : S → A, There is a
unique extension of the function of ψ to a map of algebras ψ̂ : F (S) → A.
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Proof. Exercise.

The grading on S∞ induces a grading on F (S) making F (S) a graded
algebra.

Definition 1.3. Let S be a set. The free Lie algebra generated by S, denoted
FL(S), is the quotient of F (S) by the two-sided ideal generated by Q(a.a) =
a · a and J(a, b, c) = a · (b · c) + c · (a · b) + b · (c · a) for a, b, c ∈ S. The Lie
bracket on FL(S) is given by [a, b] = (a · b) for a, b ∈ F (S) and a and b their
images in FL(S). Clearly, the relations imposed in forming the quotient
FL(S) imply that with this definition of bracket it is a Lie algebra. Since
the relations are homogeneous with respect to the grading on F (S), there is
an induced grading on FL(S) that makes it a graded Lie algebra.

Each element of S∞ maps in the quotient to a legitimate expression of
iterated brackets in the Lie algebra generated by FL(S). The fact that it is
a free Lie algebra generated by S is the content of the next proposition.

Proposition 1.4. Given a Lie algebra L and a set function φ : S → L, there
is a unique extension of φ to a homomorphism of Lie algebras φ̂ : FL(φ) : FL(S) →
L.

Proof. First use the universal property of F (S) to define an algebra map
F (φ) : F (S) → L extending S → L and sending the product in F (S) to the
bracket in L. Then notice that the generators of the two-sided ideal Q(a, a)
and J(a, b, c) map to zero in L since L is a Lie algebra. This implies that
F (φ) factors through the quotient FL(S), and thus defines a Lie algebra
homomorphism FL(φ) : FL(S) → L. Uniqueness of the extension is clear
since S generates F (S) and hence FL(S).

2 The Universal Enveloping Algebra U(FL(S))

Since FL(S) is a Lie algebra, it has a universal enveloping algebra, U(FL(S))
with co-muiltiplication as defined in Proposition 2.9 of Lecture 4. Like all
universal enveloping algebras is it a associative, co-associative, co-commutative
bi-algebra with a unit and co-unit. In this case giving U(FL(S)) the grad-
ing coming from the grading on S∞ both the multiplication and the co-
multiplication preserve the grading. Also, as established in Proposition 2.13
in Lecture 4 the space of primitive elements of the co-multiplication c is the
subspace FL(S) ⊂ U(FL(S)).

In this case, we understand the algebra structure on U(FL(S)). Denote
by T (S) the tensor algebra on the K vector space with basis S. As we have
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seen this is the free associative algebra (with unit) generated by S meaning
that if A is any associative algebra with unit and S → A is a set function,
then there is a unique unital algebra map T (S) → A extending the given
map S → A. The tensor algebra T (S) has a multiplicative grading by setting
the elements of S to be homogeneous of degree 1. This is the usual grading
on T (S)

Proposition 2.1. Let S be a set.

1. The inclusion S → T (S) extends uniquely to a map of Lie algebras
ψS : FL(S) → T (S), where the Lie algebra structure on T (S) is the
XY − Y X bracket T (S). This map preserves the gradings.

2. The map ψS extends uniquely to a map of associative algebras

ψ̂S : U(FL(S)) → T (S).

This map also preserves the gradings

3. The map ψ̂S is an isomorphism of graded, associative algebras and
identifies the universal enveloping algebra U(FL(S)) with the tensor
algebra T (S).

Proof. By the universal property of the free Lie algebra FL(S), the in-
clusion of S → T (S) extends uniquely to a Lie algebra homomorphism
ψS : FL(S) → T (S), when T (S) is equipped with the XY − Y X bracket.
This map preserves the gradings. By the universal property of U(FL(S)),
this map extends uniquely to an algebra homomorphism ψ̂S : U(FL(S)) →
T (S). The relation imposed on T (FL(S)) to form the universal enveloping
algebra are homogeneous in the induced grading on T (FL(S)). Thus, there
is an induced grading on U(FL(S)). The map ψ̂ preserves the gradings and
is the identity on the natural inclusions of S into U(FL(S)) and into T (S).

On the other hand, the universal property of T (S) implies that the in-
clusion S → U(FL(S)) extends to an algebra homomorphism ρS : T (S) →
U(FL(S)). Both ρS ◦ ψ̂S and ψ̂S ◦ ρS are the identity on S and hence by
the uniqueness part of the universal properties of T (S) and U(FL(S)) both
compositions are the identity. Thus, they are inverse isomorphisms and each
preserves the gradings.

This gives us a complete understanding of U(FL(S)). As an algebra it
is isomorphic to T (S) commuting with the inclusions of S into each as the
generators. This embeds FL(S) ⊂ T (S). For example, for X,Y ∈ S we
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have [X,Y ] 7→ X ⊗Y −Y ⊗X. Any iterated bracket of elements of S maps
in a similar way and can be computed by induction. Both FL(S) and T (S)
are graded and this inclusion preseres the grading.

In addition the co-multiplication c : U(FL(S)) → U(FL(S))⊗U(FL(S))
satisfies c(X) = X ⊗ 1 + 1 ⊗ X for all X ∈ S, so that under this iden-
tification the co-multiplication for U(FL(S)) is identified with the usual
co-multiplication of the tensor algebra T (S).

3 Formal completions of T (S)) and FL(S)

The reason for introducing the completions of the universal enveloping al-
gebra T (S) and the Lie algebra FL(S) is so that our power series will have
meaning, without having to worry about convergence issues. Indeed, in this
algebraic context no convergence is possible without completing.

Define a decreasing filtration Fn(T (S)) = ⊕k≥nT k(S). This is a decreas-
ing filtration given by the powers of the ideal F 1(T (S)). We form the com-

pletion T̂ (S) of T (S) with respect to the powers of this ideal. Then T̂ (S) =∏∞
n=0 T

n(S)) with the topology being the product topology of the discrete

topologies on each factor. We let F̂L(S) be the closure of FL(S) ⊂ T (S) in

T̂ (S). Since FL(S) = ⊕n≥1FL
n(S) where FLn(S) = FL(S) ∩ Tn(S),

F̂L(S) =
∞∏
n=0

FLn(S)

with the product topology.

Corollary 3.1. Let Bn(S) = ⊕i+j=nT
i(S)⊗T j(S) and set B̂(S) =

∏
n≥0B

n(S)
with the product topology. The co-multiplication of T (S) induces a continu-

ous map ĉ : T̂ (S) → B̂(S) defined by

ĉ(
∑
n≥0

an) =
∑
n≥0

c(an).

Set
δ′(

∑
n≥0

an) =
∑
n≥0

an ⊗ 1

and
δ′′(

∑
n≥0

an) =
∑
n≥0

1⊗ an.
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These are continuous maps of T̂ (S) → B̂(S). An element
∑

n an is primitive
for ĉ, i.e.,

ĉ(
∑
n≥0

an) = δ′(
∑
n≥0

an) + δ′′(
∑
n≥0

an),

if and only if an ∈ FL(S) for all n ≥ 1; i.e., if and only if
∑

n≥0 an ∈ F̂L(S).

Proof. All of this is immediate from the fact that the multiplication and
co-multiplication preserve the grading, that the only primitive elements in
Tn(S) are the elements of FLn(S), and that FL(S) = ⊕n≥1FL

n(S).

For x ∈ F1(T̂ (S)), set e(x) =
∑

n≥1 x
n/n! and ℓ(x) =

∑
k≥1(−1)kxk/k.

These power series are well defined on the maximal ideal F1(T̂ (S)) and take

values in the maximal ideal.. The reason is that for x ∈ F1(T̂ (S)), for each
n ≥ 1, all but finitely many of the terms in the series for e or ℓ vanish modulo

Fn(T̂ (S)). Thus, the infinite sum represents a well-defined element of the

inverse limit T̂ (S). We define a maps EXP and LOG by EXP(x) = 1+ e(x)
and LOG(1 + x) = ℓ(x), for any x in the maximal ideal,. The function
EXP maps the maximal ideal to the affine subspace of elements congruent
to 1 modulo the maximal ideal and LOG maps the subspace of elements
congruent to 1 modulo the maximal ideal to the maximal ideal.

Theorem 3.2. The continuous maps

exp: F1(T̂ (S) → {1}+ F1(T̂ (S)

LOG: {1}+ F1(T̂ (S) → F1(T̂ (S)

are inverses.

Proof. For t ∈ (−1, 1) the power series for e(t) and ℓ(t) are convergent and
converge to exp(t) − 1 and log(1 + t). Thus, for t sufficiently close to 0
these are inverse functions: we have e(ℓ(t)) = t and ℓ(e(t)) = t. For each n,
this leads to finite number algebraic equations for the coefficients terms of
degree n of the composition. These manipulations are valid for composing

the power series for e and ℓ in either order applied to x ∈ F1(T̂ (S). The
reason is that, since all homogeneous terms of ℓ((x) and e(x) are rational
coefficients times a power of x, all homogeneous terms in both power series
commute with each other. Hence, the same manipulations can be carried

out for e(x) and ℓ(x). Thus, for any x ∈ F1(T̂ (S)) we have ℓ(e(x)) = x and

and e(ℓ(x)) = x. Hence, for any x ∈ F1(T̂ (S)) we have LOG(EXP(x)) = x
and EXP(LOG(1 + x)) = 1 + x.
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4 Case S = {X, Y } and the exponential and loga-
rithm series

Now we specialize to the case when S = {X,Y }. Consider

LOG(X) =
∑
n≥0

Xn

n!
; EXP(Y ) =

∑
n≥0

Y n

n!
.

These formal power series are elements in T̂ (S) and as is their product

∑
n≥0

 ∑
i+j=n

XiY j

i!j!

 .

Now consider

LOG(EXP(X)EXP(Y )) =
∑
m≥1

(−1)m−1

m

∑
r,s≥0

XrY s

r!s!

m

.

Working modulo Fn(T̂ (S)) all but finitely many of the terms vanish
and thus there is no issue about convergence of the rearrangement of the

coefficients modulo Fn(T̂ (S)) for each n. Applying the discussion above in
this context we have

EXP(LOG(EXP(X)EXP(Y ))) = EXP(X)EXP(Y ).

Clearly

EXP(LOG(EXP(0)EXP(X))) = EXP(LOG(EXP(X)EXP(0))) = EXP(X),

and EXP(X)EXP(−X) = 1 so that

EXP(LOG(EXP(X)EXP(−X))) = EXP(LOG(1)) = 1.

Lastly, we claim that letting S = {X,Y, Z}

EXP(X)(EXP(Y )EXP(Z)) = (EXP(X)EXP(Y ))EXP(Z)

in T̂ (S). The terms from the left-hand side are of the form
(Xn

1 Y
n2 )(Zn3 )

n1!n2!n3!
,

whereas the terms from the right-hand side are
Xn

1 (Y
n2Zn3 )

n1!n2!n3!
. Since T̂ (S) is

associative, these terms are equal.
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5 The Hausdorff Series

Theorem 5.1. Let X,Y ∈ S. Then the series H(X,Y ) = LOG(EXP(X)EXP(Y ))

in T̂ (S) actually lies in F̂L(S), meaning that H(X,Y ) =
∑

n≥1Hn(X,Y )
with Hn(X,Y ) ∈ FLn(S) for all n.

Definition 5.2. H(XY ) =
∑

n≥1Hn(X,Y ) is the universal Hausdorff se-
ries.

Proof. The proof of this result takes up almost all of the rest of this subsec-

tion. By Corollary 3.1 the only primitive elements for the map ĉ : T̂ (S) →
B̂(S) =

∏
nBn(S) given in are elements of F̂L(S). That is to say, ĉ(x) =

x ⊗ 1 + 1 ⊗ x if and only if x ∈ F̂L(S), or equivalently x =
∑

n≥0 xn
with xn ∈ FLn(S) for all n ≥ 1. We prove the theorem by showing that
ĉ(H(X,Y )) = H(X,Y )⊗ 1 + 1⊗H(X,Y ).

We have the inverse homeomorphisms EXP and LOG between the maxi-

mal ideal of T̂ (S) and the affine subspace of elements congruent to 1 modulo
the maximal ideal. Since ĉ is an algebra map, for any x in the maximal ideal,
we have

ĉ(EXP(x)) = EXP(ĉ(x))

For any y congruent to 1 modulo the maximal ideal we have

ĉ(LOG(y)) = LOG(ĉ(y)).

Definition 5.3. Elements x ∈ T̂ (S) congruent to 1 modulo the maximal
ideal and satisfying ĉ(x) = δ′(x)δ′′(x) = x⊗x are called group-like elements.

Claim 5.4. If a, b in T̂ (S) are group-like, then so is ab.

Proof. Suppose a, b are group-like. Then ĉ(a) = δ′(a)δ′′(a) and ĉ(b) =
δ′(b)δ′′(b). But δ′′(a) and δ′(b) commute so that

ĉ(ab) = ĉ(a)ĉ(b) = δ′(a)δ′′(a)δ′(b)δ′′(b) = δ′(a)δ′(b)δ′′(a)δ′′(b) = δ′(ab)δ′′(ab),

showing that ab is group-like.

Claim 5.5. 1. EXP maps primitive elements in the maximal ideal to
group-like elements congruent to 1 modulo the maximal ideal.

2. LOG sends group-like elements congruent to 1 modulo the maximal

ideal to primitive elements in F1(T̂ (S)

7



3. EXP and LOG are inverse isomorphisms between these primitive ele-
ments and group-like elements.

Proof. Let us prove the first item. Let X be a primitive element of T̂ (S).
Thus,

ĉ(EXP(X)) = EXP(c(X)) = EXP(X ⊗ 1 + 1⊗X).

Since X ⊗ 1 and 1⊗X commute we have

ĉ(EXP(X)) = EXP(X ⊗ 1)EXP(1⊗X)

= (EXP(X)⊗ 1)(1⊗ EXP(X))

= δ′(EXP(X))δ′′(EXP(X)).

Thus, EXP(X) is group-like.
Now we consider the second item. Suppose that a is a group-like element

congruent to 1 modulo the maximal ideal. Then

ĉ(LOG(a)) = LOG(ĉ(a)) = LOG(δ′(a)(δ′′(a)).

Since δ′(a) and δ′′(a) commute we have

LOG(δ′(a)(δ′′(a)) = LOG((δ′(a)) + LOG(δ′′(a))

= LOG((a⊗ 1) + LOG(1⊗ a))

= LOG(a)⊗ 1 + 1⊗ LOG(a),

so that LOG(a) is a primitive element of F1(T̂ (S). This shows that LOG

maps group-like elements congruent to 1 modulo F1)(T̂ (S)) to elements of

F1(T̂ (S)).
Lastly, we know that LOG and EXP are inverse isomorphisms between

the subspaces of elements congruent to 1 modulo the maximal ideal and
elements in the maximal ideal. From this and the first two items the third
item follows.

Now suppose that that X,Y ∈ FL(S). Then they are primitive elements
and hence EXP(X) and EXP(Y ) are group-like. Then EXP(X) ·EXP(Y ) is
group-like. Consequently, H(X,Y ) = LOG(EXP(X) ·EXP(Y )) is primitive.
By the discussion in Section 2, it follows that H(X,Y ) =

∑
n≥1Hn(X,Y )

and Hn(X,Y ) ∈ FLn(S) ⊂ T̂n(S). This means that Hn(X,Y ) is a sum of
iterated brackets of copies of X and Y of length n.
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Remark 5.6. Because of skew symmetry and the Jacobi identity, there are
many different ways expressions in FLn(S)for Hn(X,Y ). But they all give
the same element of FLn(S). These elements for the Hausdorff series. It is
a universal expression and given two elements A and B in any Lie algebra L,
there is a resulting series

∑
n≥1Hn(A,B) is written as a series of nth order

iterated brackets of A and B. If the series converges it is an element of L.

5.1 Formal Group Properties

The direct computations above translate to H(0, X) = H(X, 0) = X,
proving that 0 is the identity for the multiplication defined by H. Also,
H(X,−X) = 0, which means that −X is the inverse of X. This shows at
the formal level 0 is the identity of the formal group law defined by H and
inverse is given X 7→ −X. Here is the formal analogue of the associative
law.

Claim 5.7. S = {X,Y, Z} we have H(X,H(Y, Z)) = H((X,Y ), Z).

Proof. We have the following expressions:

H(X,H(Y, Z)) =
∑
r,s,t

Xr

r!

(Y sZt

s!t!

)

H(H(X,Y ), Z) =
∑
r,s,t

(XrY s

r!s!

)Zt

t!
.

Since T̂ (S) is an associative algebra, these expressions are equal.

6 Appendix: Algebraic Foundations

6.1 I-adic Topology and Completions

Suppose that we have an algebra A and an ideal I ⊂ A. We define the I-adic
topology on A by taking as the open neighborhoods 0 as In (and then the
open neighborhoods of a ∈ A as a + In). We can then form a complete
algebra with respect to this topology by setting Â = limnA/I

n with the
natural homomorphisms πn,k : A/I

n → A/Ik for k < n. By the definition

of (projective) limits there are homomorphisms π̂n : Â → A/In compatible
with the πn,k in the sense that πn,k ◦ π̂n = π̂k. Furthermore, for any algebra
B a system of compatible homomorphisms B → A/In is equivalent to a
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homomorphism B → Â The ideal I generates an ideal Î of Â, namely all
elements in the kernel of π̂1 : Â→ A/I.

The algebra Â is complete with respect to the Î-adic topology in the sense
that any sequence of elements xn that is eventually constant modulo Îr for
each r > 0 converges to a point of Â in the Î-adic topology. If ∩n>0I

n = 0,
the the natural homomorphism A → Â is an injection with dense image in
the I-adic topology. In this case Â is the completion of A with respect to
the I-adic topology.
Example (i). For a prime p, the p-adic integers Ẑp is the completion of Z
with respect to the p-adic topology where the ideal is the prime ideal (p)
generated by p. An element of this ring can be written uniquely as a power
series ∑

n≥0

anp
n,

where the integers an range from 0 to p − 1. More generally, any series∑
n≥0 anp

n for arbitrary integers an determines an element of Ẑp.
Example (ii). Let K[x] be a polynomial ring over a field and let I = (x)
be the ideal generated by x. Then the I-adic completion of K[x] is the ring
of formal power series in one variable K[[x]].
Example (iii). Let K[x1, . . . , xn] be the polynomial ring in n variables over
a field and let I = (0) be the ideal of all polynomials vanishing at 0. This is
the ideal generated by (x1, . . . , xn). The I-adic completion of K[x1, . . . , xn]
is the formal power series ring on n variablesK[[x1, . . . , xn]]. This is thought
of as the function field of a formal neighborhood of 0 in affine n-space.
Example (iv). Let A = ⊕∞

n=0A
n be a graded ring or algebra, meaning that

the multiplication is homogeneous with respect to the grading in the sense
that m : Ak ⊗ Aℓ → Ak+ℓ. Then let I = ⊕n≥1A

n be the ideal of element
of positive degree. Clearly, Ik is the ideal of elements of degree at least k
and ∩∞

k=1I
k = 0. The completion Â with respect to the I-adic topology is∏∞

n=0A
n with the obvious multiplication. Elements in this ring are formal

sums
∑∞

n=0 an, with an of degree n and the multiplication is the natural one
on these infinite series.
Example (v). There is a generalization of Example (iv). Instead of a
graded ring or algebra we consider a ring or algebra A with an increasing
filtration

F0(A) ⊂ F1(A) ⊂ · · · ⊂ Fn(A ⊂ · · ·
that is required to be multiplicative in the sense that m : Fk(A)⊗ Fℓ(A) →
Fk+ℓ(A). Then we can form the associated graded algebra

GrF (A) = ⊕∞
n=0Fn(A)/Fn−1(A)

10



with the induced graded multiplication. We can then form the completion
of this graded ring as in Example (iv).

6.2 Bi-Algebras

Recall that if A and B are associatve unital algebras then so is A⊗ B. Its
unit is the tensor product of the units of A and B and the multiplication is
given by (a⊗ b) · (c⊗ d) = ac⊗ bd.

Definition 6.1. Let A be an associative algebra over a field K with mul-
tiplication m with unit 1. A bi-algebra structure on A is in addition a
comultiplication

c : A→ A⊗A

that (i) is a (unital) algebra homomorphism and (ii) has a co-unit, which is
a K-linear map ϵA→ K satisfying

K ⊗A −−−−→
IdA⊗ϵ

A⊗A −−−−→
m

A

is the natural identification of K⊗A→ A, and analogously for m◦(ϵ⊗IdA).

Equivalently, we can suppose that c : A → A ⊗ A is a co-algebra with
co-unit and m : A⊗A→ A is an associative algebra with unit and a homo-
morphism of co-unital co-algebras.

We say that the bi-algebra is co-commutative if T ◦ c = c where T : A⊗
A → A ⊗ A is the interchange of factors. We say that the bi-algebra is
co-associative if

(1⊗ c) ◦ c = (c⊗ 1) ◦ c.

Definition 6.2. In a co-algebra of a bi-algebra an element x is primitive if
c(x) = x⊗ 1+1⊗x. In a co-algebra or bi-algebra an element is group-like if

c(x) = x⊗ x.

Example (i). Let P (V ) be the polynomial algebra on a finite dimensional
vector space over a field of characteristic 0. The usual multiplication of
polynomials makes this an associative algebra. Define c : V → V ⊗ V by
c(v) = v ⊗ 1 + 1 ⊗ v. Since V generates P (V ) as an algebra there is at
most one algebra map c0 : P (V ) → P (V ) ⊗ P (V ) extending c. Since P (V )
is the free commutative and associative algebra generated by V and since
P (V ) ⊗ P (V ) is also a commutative, associative algebra, there is a unique
extension of c to a co-algebra map

c0 : P (V ) → P (V )⊗ P (V ).
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Its value on an nth power is given by

c0(v
n) =

n∑
k=0

(
n

k

)
vk ⊗ vn−k.

This is the standard co-multiplication on P (V ). It is an easy exercise to
show it makes a co-commutative, co-associative bi-algebra.

It is an exercise to show (since K has characteristic 0) that every homo-
geneous polynomial of degree n is a sum of nth powers.

Corollary 6.3. For V a finite dimensional vector space over a field of char-
acteristic the only primitive elements in P (V ) the usual co-multiplication are
the homogeneous polynomials of degree 1.

Proof. Since c0 is homogeneous with respect to degree, if x is a primitive
element then each of its homogeneous terms is. Thus, it suffices to assume
that x is homogeneous, say of degree n. Polynomials of degree 0 are elements
of K and since c0(1) = 1 ⊗ 1, there are no primitive elements of degree 0.
Suppose that x is non-zero and homogeneous of degree n ≥ 1. Then x =∑

i λiv
n
i and hence the terms of degree (1, n−1) in c(x) are

∑
i nλivi⊗v

n−1
i

and the product of this term in P (V ) is nx. Thus, this term is non-zero.
Hence, x is not primitive if n ̸= 1. Lastly, if x is homogeneous of degree 1
then x ∈ V and c0(x) = x⊗ 1 + 1⊗ x, so that x is primitive

6.3 Hopf Algebras or Quantum Groups (According to Drin-
feld)

Definition 6.4. A Hopf algebra is an associative, co-associative bi-algebra
H with a unit and co-unit with one piece of extra structure, called an
antipode. We denote the algebra multiplication by m and the co-algebra
structure c. The antipod is an anti-homomorphism of algebras S : H → H
with the property that for any x ∈ H we write c(x) =

∑
i ai ⊗ bi then∑

im(S(ai), bi) =
∑

im(aiS(bi)) = ϵ(x)1, where ϵ is the co-unit and 1 is the
unit.

In the case of a universal enveloping algebra, U(L), the antipode is de-
termined by S(X) = −X for X ∈ L. That, and the condition that it be an
anti-homomorphism, determine it. For example,

S([X,Y ]) = S(XY − Y X) = Y X −XY = −[X,Y ].

Another example of a Hopf algebra is the rational group ring Q[G]. The
multiplication comes from the multiplication in G. The co-multiplication is
determined by c(g) = g ⊗ 1 + 1⊗ g for any g ∈ G. Lastly, S(g) = g−1.
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Dually, the functions on a group Fun(G), in various categories form a
Hopf algebra where the comultiplication is dual to the product on the group.

All the examples of Hopf algebras coming from groups are commuta-
tive Hopf algebras. Drinfeld’s idea is that non-commutative Hopf algebras
correspond to truly quantum groups.
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