Lie Groups: Fall, 2025 Lecture III: Lie's Theorems

September 22, 2025

# 1 Lie sub algebras to Lie subgroups: The Statements

The first result is that a sub Lie algebra of the Lie algebra of a Lie group G integrates to a unique Lie group (up to isomorphism) with an one-to-one immersion into G.

**Theorem 1.1.** Let G be a Lie group and  $\mathfrak{h} \subset \mathfrak{g}$  a sub Lie algebra. Then there is a connected Lie group H, a Lie group map  $H \to G$  that is a one-to-one immersion whose differential at the identity identifies the Lie algebra of H with  $\mathfrak{h}$ . The image of H is G is the subgroup generated by the restriction of the exponential map to  $\mathfrak{h}$ .

**Theorem 1.2.** Let  $G_1$  and  $G_2$  be connected Lie groups with  $G_1$  simply connected, and let  $\varphi \colon \mathfrak{g}_1 \to \mathfrak{g}_2$  be a Lie algebra homomorphism. Then there is a unique homomorphism  $\psi \colon G_1 \to G_2$  with  $d_e\psi = \varphi \colon \mathfrak{g}_1 \to \mathfrak{g}_2$ .

**Theorem 1.3.** Let  $G_1$  and  $G_2$  be simply connected Lie groups. Suppose that  $\varphi \colon \mathfrak{g}_1 \to \mathfrak{g}_2$  is an isomorphism then there is a unique Lie group isomorphism  $G_1 \to G_2$  that induces  $\varphi$  on their Lie algebras.

Proof. (Theorem 1.2 impies Theorem 1.3) Applying Theorem 1.2, there is a map of Lie groups  $\psi \colon G_1 \to G_2$  whose differential at the identity is  $\varphi$ . In particular  $\psi$  is local diffeomorphism at the identity. This implies that the kernel of  $\psi$  is a discrete normal subgroup K and  $\psi$  factors to give an injective Lie group map  $\overline{\psi} \colon G_1/K \to G_2$  that is onto a neighborhood of the identity in  $G_2$ . It follows immediately that he image of  $\overline{\psi}$  is an open subset. If x is in the closure of the image of  $\overline{\psi}$ , then there is a sequence  $g_n \in G_1/K$  with  $\overline{\psi}(g_n) \mapsto x$ . Hence  $x\overline{\psi}(g_n)^{-1}$  converges to  $e \in G_1$ . Thus,

for all n sufficiently large,  $x\overline{\psi}(g_n^{-1}) \in \operatorname{Im}(\overline{\psi})$  and consequently, so is x. Thus, the image of  $\overline{\psi}$  is also closed. Since  $G_2$  is connected, it follows that  $\overline{\psi}$  is onto and hence a bijection. The map  $\overline{\psi}$  is a diffeomorphism since a bijective local diffeomorphism is a diffeomorphism. Since  $|bar\psi|$  is also a group homomorphsm it is a Lie group isomorphism. The last thing to note is that  $\pi_1(G_1/K) \cong K$  and  $\pi_1(G_2) = \{e\}$ . Since  $\overline{\psi} \colon G_1/K \to G_2$  is a diffeomorphism, this implies that  $K = \{1\}$ . This proves the existence of a map of Lie groups as required.

We turn to uniqueness. If  $\rho \colon \mathbb{R} \to G_1$  is a one-parameter subgroup tangent to  $X \in \mathfrak{g}_1$ , then  $\psi \circ \rho$  is the one-parameter subgroup in  $G_2$  tangent to  $\varphi(X)$ . Thus,  $\psi$  is determined by  $\varphi$  on the image of the exponential map of  $G_1$ . This image generates  $G_1$ , and hence  $\psi$  is determined by  $\varphi$ .

### 2 Distributions and Foliations

Before proving Theorem 1.1 we need to discuss distributions and foliations.

**Definition 2.1.** A distribution of dimension k in a smooth manifold M is a smoothly varying family of tangent k-planes a  $D^k(x) \subset T_x M$  for every  $x \in M$ . Smooth variation means that in a neighborhood U each  $x \in M$  there are local vector fields  $\chi_1, \dots, \chi_k$  such that for each  $y \in U$  the  $\chi_i(y)$  are contained in  $D^k(y)$  and are linearly independent implying that they generate  $D^k(y)$ . An integral submanifold for a distribution is a k-dimensional submanifold  $P \subset M$  such that  $T_p P = D^k(p)$  for every  $p \in P$ . Not every distribution has integral submanifolds. There is an obvious necessary condition. Namely, the distribution must be what is called involutive.

**Definition 2.2.** A distribution  $D^k$  is *involutive* if for every pair of vector fields  $\xi, \zeta$  tangent to the distribution meaning that  $\xi(x), \zeta(x)$  are contained. in  $D^k(x)$  for every x, the Lie bracket  $[\xi, \zeta]$  must be contained in  $D^k$ .

If P is an integral submanifold and  $\xi$  and  $\zeta$  are vector fields tangent to P, then since Lie bracket of vector fields is natural under smooth maps, it follows that  $[\xi,\zeta]$  is also tangent to P. Thus, for  $D^k$  to have integral submanifolds through each point, the distribution must be involutive. A theorem of Frobenius states the converse.

**Theorem 2.3.** (Frobenius) If  $\mathcal{D}^k$  is a k-dimensional involution, then near each point point there is a coordinate system  $(x^1, \ldots, x^k, y^1, \ldots y^{n-k})$  such that the distribution in this neighborhood at each point is the tangent space spanned by  $\{\partial/\partial x^1, \ldots \partial/\partial x^k\}$ . Thus, a distribution  $\mathcal{D}$  in M has a (local)

integral submanifold through every point of  $p \in M$  if and only if it is involutive; i.e., if and only if the space of vector fields tangent to  $\mathcal{D}$  is a Lie subalgebra of the space of all vector fields on M. In this case any two integral submanifolds through x coincide in a neighborhood of x.

Theorems 2.3 is. not a deep theorem. The problems associated to this lecture lead you through the proof of this result (with some hints along the way).

#### 2.1 Flow Boxes and Foliations

**Definition 2.4.** (Flow Box Condition) A k-dimensional flow box for M is a smooth embedding of a manifold  $F = U^k \times V^\ell$  where U is an open subset of  $\mathbb{R}^k$  and V is an open subset of  $\mathbb{R}^\ell$  onto an open subset of M. The subspaces of M that are images of subspace of  $U \times V$  of he form  $U \times \{v\}$  are the horizontal subspaces or local leaves of the flow box.

The local distribution determined by a flow box  $U \times V \cong F \subset M$  is the image of the distribution on  $U \times V$  that is tangent to the horizontal subspaces.

Two flow boxes are *compatible* if their horizontal distributions agree on the intersection.

Suppose that the flow box  $F = U \times V$  has coordinates  $(\overline{u}, \overline{v})$  and the flow box  $F' = X \times Y$ . By this we mean  $\overline{u}$  is the coordinates for U, etc. Then the condition that F and F' are compatible is that  $\partial \overline{y}/\partial \overline{u} = 0$  at all points of the intersection; i.e., that the Jacobian matrix of the overlap function be block upper triangular.

One can formulate this geometrically as well: For each a local leaf  $U \times \{v\}$  of F, each connected component of  $U \times \{v\} \cap F'$  lies in a local leaf of F' and this component is an open subset of that local leaf.

**Definition 2.5.** An atlas of k-dimensional flow boxes for M is a covering of M by a family of compatible k-dimensional flow boxes. A k-dimensional foliation of M is a covering of M by a maximal family of compatible flow boxes. (Maximal in the sense that any flow box compatible with every flow box in the collection is already in the collection.)

Given a k-dimensional foliation of M at each point  $x \in M$  there is a well-defined notion of a horizontal k-plane in  $T_xM$ . This collection of horizontal is a k-dimensional distribution called the *horizontal distribution* of the foliation..

**Lemma 2.6.** 1. An atlas of k-dimensional flow boxes for M determines a k-dimensional foliation on M.

- 2. The horizontal distribution of a foliation of is an involutive distribution.
- 3. An involutive k-dimensional distribution determines a unique k-dimensional foliation of which it is the horizontal distribution.

The first item is a simple application of Zorn's lemma. The second and third are direct and left to the reader.

**Definition 2.7.** Let  $\mathcal{F}$  be a k-dimensional foliation of M determined by an atlas of flow boxes  $\{F_{\alpha}\}_{\alpha}$ . We introduce an equivalence relation on the points of M. There is an elementary equivalence of x to y if there is a flow box containing both of them and there is a path in a local leaf of the flow box connecting them. (Or we could require that the horizontal spaces U of the flow boxes be connected and simply require that x and y lie on the same local leaf of a flow box.) This relation is symmetric so it generates an equivalence relation. Each equivalence class is a (global) leaf of the foliation.

It is easier to work with connected flow boxes. This is no restriction since the connected component of a flow box inherits a flow box structure so that each flow box is a union of connected flow boxes.

**Lemma 2.8.** Fix a atlas of connected flow boxes for a foliation. A leaf is a union of local leaves of flow boxes in the atlas. If local leaves A and A' from two different flow boxes are contained in a leaf and intersect each other, then their intersection is an open subset of each and the overlap function from  $A \subset F$  to  $A' \subset F'$  is a diffeomorphism.

*Proof.* By the definition of an equivalence relation if a leaf contains a point (u,v) if a flow box  $F=U\times V$  then it contains  $U\times\{v\}$ . This proves the first statement in the lemma. If the local leaves  $U\times\{v\}$  and  $X\times\{y\}$  from different flow boxes meet then we have seen that for every point of the intersection there is a neighborhood in the intersection that is an open subset in both  $U\times\{v\}$  and  $X\times\{y\}$ . Since  $U\times\{x\}$  and  $X\times\{y\}$  are smooth submanifolds of M, the overlap function between them is smooth.

### 2.2 The Leaf Topology

The local leaf topology on a flow box  $U \times V$  is the product of the usual topology on U and the discrete topology on V. This topology makes the flow box a (non-second countable) Hausdorff k-dimensional manifold.

By what we have seen above, if F and F' are compatible flow boxes then the leaf topolgies on F and F' are compatible in the sense that they give the same topology on  $F \cap F'$ . Thus, the local leaf topologies on an atlas determine a new topology, the *local leaf topology*, on M. In this topology M is a smooth k-dimensional manifold.

**Proposition 2.9.** A leaf of the foliation is a connected component of the local leaf topology on M.

Proof. Again it suffices to work with an atlas of connected flow boxes. Suppose that  $\mathcal{L} = A \coprod B$  with A and B open and  $A \neq \emptyset$ . Then since each local leaf is connected each local leaf in  $\mathcal{L}$  is contained in either A or B. Fix  $x \in A$  and suppose that  $y \in \mathcal{L}$ . Then there is a chain  $x = x_1, \ldots, x_n = y$  such that  $x_i$  and  $x_{i+1}$  and a chain of local leaves in flow boxes  $U_1, \ldots, U_{n-1}$  with  $x_i, x_{i+1} \in U_i$  for all  $1 \leq i \leq n-1$ . Then inductively we see that all the  $U_i$  are in A and hence  $y \in A$ . Thus, the entire local leaf is contained in A, and  $B = \emptyset$ . This proves that the restriction of the leaf topology to  $\mathcal{L}$  makes it a connected space.

Conversely, suppose that there is a connected subspace of the leaf topology on M that contains  $\mathcal{L}$  and a point x not in  $\mathcal{L}$ . Since the leaf topology on M is locally path connected, there is path in the leaf topology from a point of  $y \in \mathcal{L}$ . Since the path components of local leaf topology are the leaves, any path from y to x is contained in a finite union of local leafs. This implies that  $y \sim x$  and hence  $x \in \mathcal{L}$ , which is a contradiction, showing that  $\mathcal{L}$  is a connected component of the local leaf topology on M

**Definition 2.10.** The local leaf topology on M restricts to  $\mathcal{L}$  to give the leaf topology on  $\mathcal{L}$ 

**Proposition 2.11.** A global leaf with the leaf topology is a Hausdorff smooth k-dimensional manifold that is smoothly one-to-one immersed in M with its usual topology.

Proof. Let  $\mathcal{L}$  be a leaf of the foliation. Let F be a flow box with connected horizontal space. Consider all the local leaves of F that are contained in |mathcalL|. Each of these gives a topological embedding of a smooth manifold into  $\mathcal{L}$ . As we vary over all flow boxes with connected horizontal spaces we get a covering of  $\mathcal{L}$  by local smooth k-dimensional manifolds, whose differential structures are compatible on the overlaps. This determines the smooth structure on  $\mathcal{L}$ . The inclusion of  $\mathcal{L} \to M$  is a smooth immersion from this differential structure on  $\mathcal{L}$  to M with its usual differential structure. Since set underlying  $\mathcal{L}$  is a subset of M and the smooth map is the inclusion of the subset into M, this immersion is one-to-one.

We have not shown that the leaves are  $2^{nd}$  countable. Assuming that M is  $2^{nd}$  countable, this is true but requires a slightly intricate argument. I will not discuss this. In the applications to Lie groups, the second countability is automatic since connected Lie groups are  $2^{nd}$  countable.

We have shown:

Corollary 2.12. Let  $\mathcal{D}^k$  be a k-dimensional distribution in  $M^n$  that is involutive. Then there is a foliation all of whose leaves are maximal integral submaifolds of  $\mathcal{D}$ .

### 3 Proof of Theorem 1.1

*Proof.* (of Theorem 1.1) Now we apply the theory of foliations and involutive distributions to the case of a sub Lie algebra  $\mathfrak{h} \subset \mathfrak{g}$  of the Lie algebra of a group G. The distribution we take is the left invariant distribution whose value at e is  $\mathfrak{h} \subset \mathfrak{g}$ . Let us denoted it by  $\mathcal{D}(\mathfrak{h})$ 

Take a basis for  $\{X_1, \ldots, X_k\}$  for  $\mathfrak{h}$ . They generate left invariant vector fields  $\xi_1, \ldots, \xi_k$  that are a basis at each point for  $\mathcal{D}(\mathfrak{h})$  at every point. The bracket of  $[\xi_i, \xi_j]$  is a left invariant vector field, and its value at the origin is  $[X_i, X_j]$ . Since  $X_i, X_j \in \mathfrak{h}$  and  $\mathfrak{h}$  is a sub Lie algebra,  $[X_i.X_j] \in \mathfrak{h}$  and hence  $[\xi_i, \xi_j]$  is tangent to  $\mathcal{D}(\mathfrak{h})$ . The general vector fields tangent to this distribution are of the form  $\sum_i f_i \xi_i$  for some smooth functions  $f_1, \ldots, f_k$ . Then

$$[\sum_{i} f_{i}\xi_{i}, \sum_{j} g_{j}\xi_{k}j] = \sum_{i,j} f_{i}\xi_{i}(g_{j})\xi_{j} - g_{j}\xi_{j}(f_{i})\xi_{i} + f_{i}g_{j}[\xi_{i}, \xi_{j}].$$

The first two terms are visibly in  $\mathcal{D}(\mathfrak{h})$ , being functions times the  $\xi_i$  and the last term is in  $\mathcal{D}(\mathfrak{h})$  by what we just showed above.

Thus, according to Theorem 2.3, the distribution  $\mathcal{D}(\mathfrak{h})$  integrates to a foliation. Let H be the (global) leaf of this foliation containing the origin. With its leaf topology, H is a k-dimensional manifold smoothly one-one immersed in G. Its tangent space at the origin in  $\mathfrak{h}$ .

Since the foliation is invariant under left multiplication, for any  $g \in G$ ,  $g \cdot H$  is a leaf of the foliation. In particular  $g \cdot H \cap H \neq \emptyset$  if and only if  $g \cdot H = H$ .

**Claim 3.1.**  $g \cdot H = H$  if and only if  $g \in H$ . Also, H is a subgroup of G.

*Proof.* If  $g \cdot H = H$  then  $g = g \cdot e \in H$ . Conversely, if  $g \in H$ , then  $g \cdot e \in H$  so that  $g \cdot H \cap H \neq \emptyset$  and hence,  $g \cdot H = H$ . This shows that H is closed

under multiplication. On the other hand if  $g \in H$  then  $g \cdot H = H$ , and hence  $H = g^{-1} \cdot H$  so that  $g^{-1} \in H$ , showing that H is closed under taking inverses.

The inclusion  $H \to G$ , viewed as a map from H with the leaf topology to G with its usual topology, is a smooth map and a group homomorphism. Thus, it is a morphism of Lie groups.

The uniqueness statement follows from the uniqueness in Frobenius's theorem.  $\hfill\Box$ 

### 4 Proof of Theorem 1.2

Let  $G_1$  and  $G_2$  be groups with  $G_1$  simply connected, and let  $\varphi \colon \mathfrak{g}_1 \to \mathfrak{g}_2$  be a Lie algebra homomorphism. Consider the product Lie group  $G_1 \times G_2$ . Its Lie algebra is  $\mathfrak{g}_1 \oplus \mathfrak{g}_2$  with the direct sum bracket. The graph of  $\varphi$  is a linear subspace  $V \subset \mathfrak{g}_1 \oplus \mathfrak{g}_2$  whose projection onto the first factor is a linear isomorphism. Since  $\varphi$  is a Lie algebra homomorphism  $V \subset \mathfrak{g}_1 \oplus \mathfrak{g}_2$  is a Lie subalgebra.

According to Theorem 1.1 the left-invariant distribution  $\mathcal{D}(V)$  on  $G_1 \times G_2$  is tangent to a foliation. Furthermore, letting H be the leaf of that foliation through e with the leaf topology, the inclusion map of  $i: H \subset G_1 \times G_2$ , viewed as a map from H with the leaf topology to  $G_1 \times G_2$ , is a smooth on-to-one immersion of Lie groups. Since the differential of the projection  $G_1 \times G_2 \to G_1$  sends V isomorphically onto  $T_eG_1$ , by equivariance, the projection  $G_1 \times G_2 \to G_1$  maps the tangent plane to H at each point onto the tangent pane to  $G_1$ . That is to say the composition of i followed by the projection to  $G_1$  is a local diffeomorphism  $\rho: H \to G_1$ .

Since  $G_1$  is connected, it is generated by an open neighborhood of the identity. This implies that the local diffeomorphism  $\rho \colon H \to G_1$  is surjective. Similarly, the kernel of  $\rho$  is discrete. Since  $G_1$  is simply connected and H is connected, the kernel of  $\rho$  is trivial. That is to say  $\rho = \pi_1 \circ i \colon H \to G_1$  is an isomorphism of Lie groups. Hence, the composite,  $\psi = \pi_2 \circ \rho^{-1} \colon G_1 \to G_2$ , is a Lie group homomorphism whose graph is  $i(H) \subset G_1 \times G_2$ . This implies that the graph of  $d_e(\psi)$  in  $\mathfrak{g}_1 \times \mathfrak{g}_2$  is V which, recall, is the graph of  $\varphi \colon \mathfrak{g}_1 \to \mathfrak{g}_2$ . It follows that  $d_e(\psi) = \varphi$ .

This completes the proof of Theorem 1.2.

## 5 Isogeny of Lie Groups

We begin by discussing covering groups of connected Lie groups.

**Definition 5.1.** A map of connected Lie groups  $\varphi \colon G_1 \to G_2$  is a *covering Lie group* if the map is a covering projection and a homomorphism of Lie groups.

As an example, suppose that G is a connected Lie group and  $K \subset G$  is a discrete, normal subgroup. Then  $G \to G/K$  is a covering group.

**Lemma 5.2.** A morphism of connected Lie groups  $\varphi \colon G_1 \to G_2$  is a covering Lie group if and only if it induces an isomorphism of Lie algebras.

*Proof.* If  $\varphi$  is a covering Lie group, then it is a local diffeomorphism and  $d_e \varphi$  is a linear isomorphism. Since  $\varphi$  is a Lie group map,  $d_e \varphi$  is a homomorphism of Lie algebras and hence an isomorphism of Lie algebras.

Conversely, if  $d_e\varphi$  is an isomorphism, then  $\varphi$  is a local diffeomorphism at the identity. That is to say, there is a neighborhood  $U_1$  of the identity in  $G_1$  such that  $\varphi|_{U_1}$  is a diffeomorphism onto an open subset  $U_2$  of the identity in  $G_2$ . Since  $G_2$  is connected it is generated by  $U_2$ . Thus,  $\varphi$  is onto.

Let  $K \subset G_1$  be the kernel of  $\varphi$ . It is a normal subgroup. Since  $\varphi|_{U_1}$  is injective,  $K \cap U_1 = \{e\}$ . Let  $W \subset U_1$  be a smaller open neighborhood of the identity with the property that  $W = W^{-1}$  and  $W^2 \subset U$ . We claim that  $kW \cap k'W = \emptyset$  for all  $k \neq k'$  elements of K. For if  $w_0 \in kW \cap k'W$  then we have kw = k'w' for some  $w, w' \in W$ . This implies that  $k^{-1}k' = w(w')^{-1} \in W^2 \subset U$ . Since  $k^{-1}k' \in K$  and  $K \cap U = \{e\}$ , it follows that k = k'. This shows that K is a discrete subgroup of  $G_1$ .

Since  $K \subset G_1$  is a normal group we have a Lie group homomorphism  $\pi \colon G_1 \to G_1/K$ . The above argument shows that  $\pi$  evenly covers the image,  $\overline{W} \subset G_1/K$ , of W. Clearly,  $\overline{W}$  is an open neighborhood of the identity in  $G_1/K$  Now consider  $\overline{g} \in G_1/K$ . Left translation by  $\overline{g}$  maps the image of  $\overline{W}$  isomorphically to  $\overline{g}\overline{W}$  a neighborhood of  $\overline{g}$  in  $G_1/K$ . Multiplication by a lift  $g \in G_1$  of  $\overline{g}$  and maps  $\pi^{-1}(\overline{W})$  isomorphically to  $\pi^{-1}(\overline{g}\overline{W}) = \coprod_{k \in K} gkW$ . This shows that  $\varphi$  is also a covering map on  $\overline{g}\overline{W}$  for every  $\overline{g} \in G_1/K$ . Thus,  $G_1 \to G_1/K$  is a covering projection.

Since  $K = \ker(\varphi)$ , the map  $\varphi$  factors through  $\pi \colon G_1 \to G_1/K$  to give a map  $\overline{\varphi} \colon G_1/K \to G_2$ . This map is a group homomorphism and smooth so it is a map of Lie groups with trivial kernel. Since  $G_2$  is connected, it is generated by the neighborhood  $\overline{\varphi}(\overline{W})$  of the identity. Hence  $\overline{\varphi}$  is surjective. Thus,  $\overline{\varphi}$  is a bijective, local diffeomorphism and hence a diffeomorphism. It is also a homomorphism of Lie groups, and hence an isomorphism of Lie groups. Hence,  $\varphi \colon G_1 \to G_2$  is also a covering Lie group.

### 5.1 The Universal Covering Group

**Proposition 5.3.** Let G be a connected Lie group and let  $\widetilde{G}$  be the universal covering of G and fix  $\widetilde{e} \in \widetilde{G}$  a point above  $e \in G$ . Then there is a unique Lie group structure on  $\widetilde{G}$  with the properties that (i)  $\widetilde{e}$  is the identity element and (ii) the projection  $\widetilde{G} \to G$  is a Lie group homomorphism. The kernel of this homomorphism is a discrete subgroup  $K \subset \widetilde{G}$  and the covering projection induces a Lie group isomorphism  $\widetilde{G}/K \to G$ . In particular, the Lie algebras of  $\widetilde{G}$  and G are canonically identified.

Proof. Given  $g_1, g_2 \in \widetilde{G}$ , let  $\omega_1(t)$  and  $\omega_2(t)$  be paths defined on [0,1] in  $\widetilde{G}$ , each beginning at  $\widetilde{e}$  with  $\omega_i(1) = g_i$ . Let  $\overline{\omega}_1(t)$  and  $\overline{\omega}_2(t)$  be the images of these paths in G, and let  $\overline{\mu}(t) = \overline{\omega}_1(t)\overline{\omega}_2(t)$ . This is a path beginning at e. Using unique path lifting, lift  $\overline{\mu}$  to a path  $\mu(t)$  beginning at  $\widetilde{e}$ . We define  $g_1g_2 = \mu(1)$ .

A standard argument with covering spaces shows that if we choose different paths  $\omega_1'(t)$  and  $\omega_2'(t)$  from  $\widetilde{e}$  to  $g_1$  and  $g_2$ , respectively, the two definitions of  $g_1g_2$  agree. [Show that as we vary the paths, the notion of  $g_1g_2$  is locally constant. Since  $\widetilde{G}$  is simply connected two pairs of paths from  $\widetilde{e}$  to  $g_1$  and  $g_2$  came be joined by a connected family of such pairs of paths. This and the local constancy of the resulting product, show that the product  $g_1g_2$  is well defined.] It is direct to see that  $\widetilde{e}$  acts as a two-sided identity for this multiplication and that this multiplication is associative.

Given  $g \in \widetilde{G}$ , one defines  $g^{-1}$  by choosing a path  $\omega$  from  $\widetilde{e}$  to g, projecting  $\omega$  to a path  $\overline{\omega}$  in G, forming the path  $\overline{\omega}^{-1}(t) = (\overline{\omega}(t))^{-1}$  and lifting  $\overline{\omega}^{-1}$  to a path  $\mu$  beginning at  $\widetilde{e}$ . We define  $g^{-1} = \mu(1)$ . It is clear from the definitions that  $gg^{-1} = g^{-1}g = \widetilde{e}$ . Thus, we have defined a group structure on  $\widetilde{G}$  with  $\widetilde{e}$  as the identity element. Clearly, the projection mapping is a homomorphism of groups

One defines the smooth structure on  $\widetilde{G}$  by requiring the projection map to be a local diffeomorphism. One checks easily group multiplication and inverse are smooth mappings in this smooth structure. Thus, the projection is a smooth map and a group homomorphism; that is to say the projection is morphism of Lie groups.

### 5.2 All Covering Groups

**Lemma 5.4.** Any discrete, normal subgroup of a connected Lie group is abelian and central.

*Proof.* Let G be a connected Lie group and  $K \subset G$  a discrete normal subgroup. Since K is normal,  $gKg^{-1} = K$  for all  $g \in G$ . That is to say

conjugation by G induces a map  $G \to \operatorname{Auto}(K)$ . But since K is discrete, so is  $\operatorname{Auto}(K)$ . But G is connected, so any map  $G \to \operatorname{Auto}(K)$  is constant, meaning that the adjoint action of G on K is trivial. Thus, K is contained in the center of G and a fortiori is abelian.

**Corollary 5.5.** Let G be a connected Lie group and M a connected manifold. Suppose that  $\pi \colon M \to G$  is a covering projection. Then there is a Lie group structure on M such that  $\pi \colon M \to G$  is a covering Lie group.

*Proof.* Every connected covering of G corresponds to a subgroup of  $\pi_1(G, e)$ . The universal covering Lie group  $\widetilde{G} \to G$  corresponds to the trivial subgroup The kernel of the projection mapping  $\widetilde{G} \to G$  is a discrete normal subgroup K of  $\widetilde{G}$  isomorphic to  $\pi_1(G)$ . By the previous lemma K is central in  $\widetilde{G}$ .

All other connected covering spaces of G are isomorphic to  $\widetilde{G}/K'$  where K' is a subgroup of K. Since K is central, K' is also central, and a fortiori is a normal subgroup. Thus,  $\widetilde{G}/K$  inherits the structure of a Lie group from  $\widetilde{G}$ . Clearly, then he projection  $G/K \to G$  is a covering Lie group.

**Definition 5.6.** Two connected Lie groups  $G_1$  and  $G_2$  are *isogenous* if there is a Lie group G and Lie group maps  $\varphi_i \colon G \to G_i$ , for i = 1, 2, that are covering Lie groups.

Corollary 5.7. Let  $G_1$  and  $G_2$  be connected Lie groups. Then the following are equivalent:

- $G_1$  and  $G_2$  are isogenous.
- The Lie algebras  $\mathfrak{g}_1$  and  $\mathfrak{g}_2$  are isomorphic.
- The universal covering groups of  $G_1$  and  $G_2$  are isomorphic as Lie groups.

*Proof.* If G is a covering group of both  $G_1$  and  $G_2$ , then the universal covering group of G is also the universal covering group of  $G_1$  and  $G_2$ . This shows the first item implies the third. The third obviously implies the first and second. The second implies the third by Theorem 1.2.

### 6 Ado's Theorem

To complete the picture of the general theory of Lie groups we need a non-trivial result from the theory of Lie algebras.

**Theorem 6.1.** (Ado's Theorem) Every finite dimensional real Lie algebra has a faithful finite dimension linear representation

The proof of this theorem requires a detour through some of the more detailed parts of general Lie algebra theory. I will not prove it in this course. Nevertheless, I will use the following consequence.

### 6.1 Consequences of Ado's Theorem

**Theorem 6.2.** Let G be a connected Lie group. Then there is an isogenous Lie group G' that admits a faithful finite dimensional representation; i.e., for some n there is a Lie group homomorphism  $G' \to GL(n,\mathbb{R})$  that is a one-one immersion.

*Proof.* (Assumping Ado's Theorem) By Ado's theorem, there is n > 0 and an embedding  $\iota \colon \mathfrak{g} \subset \mathfrak{gl}(n,\mathbb{R})$  of Lie algebras. By Theorem 1.2 there is a group G' and a Lie group homomorphism  $\psi \colon G' \to GL(n,\mathbb{R})$  that is a one-one immersion and whose differential  $d_e\psi \colon \mathfrak{g}' \to \mathfrak{gl}(n,\mathbb{R})$  maps  $\mathfrak{g}'$  isomorphically onto  $\iota(\mathfrak{g})$ . Since G and G' have the isomorphic Lie algebras by Corollary 5.7 they are isogenous.

Remark 6.3. It is not true that every Lie group has a faithful finite dimensional representation. In fact  $\pi_1(SL(2,\mathbb{R})) \cong \mathbb{Z}$  and the universal covering group of  $\widetilde{SL(2,\mathbb{R})}$  does not have a faithful finite dimensional representation.

**Theorem 6.4.** Every finite dimensional Lie algebra is (up to isomorphism) the Lie algebra of a group, indeed of a simply connected group.

*Proof.* (Assuming Ado's Theorem) Let L be a finite dimensional real Lie algebra. Then according to Ado's Theorem, there is an embedding  $L \subset \mathfrak{gl}(n,\mathbb{R})$  for some n. Applying Theorem 1.1 there is a Lie group H and a one-one immersion  $H \to GL(n,\mathbb{R})$  so that L is the Lie algebra of H. The universal covering group of H is a simply connected Lie group with Lie algebra L.