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Lecture III: Lie’s Theorems

September 22, 2025

1 Lie sub algebras to Lie subgroups: The State-
ments

The first result is that a sub Lie algebra of the Lie algebra of a Lie group
G integrates to a unique Lie group (up to isomorphism) with an one-to-one
immersion into G.

Theorem 1.1. Let G be a Lie group and h ⊂ g a sub Lie algebra. Then
there is a connected Lie group H, a Lie group map H → G that is a one-to-
one immersion whose differential at the identity identifies the Lie algebra of
H with h. The image of H is G is the subgroup generated by the restriction
of the exponential map to h.

Theorem 1.2. Let G1 and G2 be connected Lie groups with G1 simply
connected, and let φ : g1 → g2 be a Lie algebra homomorphism. Then there
is a unique homomorphism ψ : G1 → G2 with deψ = φ : g1 → g2.

Theorem 1.3. Let G1 and G2 be simply connected Lie groups. Suppose that
φ : g1 → g2 is an isomorphism then there is a unique Lie group isomorphism
G1 → G2 that induces φ on their Lie algebras.

Proof. (Theorem 1.2 impies Theorem 1.3) Applying Theorem 1.2, there is
a map of Lie groups ψ : G1 → G2 whose differential at the identity is φ.
In particular ψ is local diffeomorphism at the identity. This implies that
the kernel of ψ is a discrete normal subgroup K and ψ factors to give an
injective Lie group map ψ : G1/K → G2 that is onto a neighborhood of
the identity in G2. It follows immediately that he image of ψ is an open
subset. If x is in the closure of the image of ψ, then there is a sequence
gn ∈ G1/K with ψ(gn) 7→ x. Hence xψ(gn)

−1 converges to e ∈ G1. Thus,
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for all n sufficiently large, xψ(g−1
n ) ∈ Im(ψ) and consequently, so is x. Thus,

the image of ψ is also closed. Since G2 is connected, it follows that ψ
is onto and hence a bijection. The map ψ is a diffeomorphism since a
bijective local diffeomorphism is a diffeomorphism. Since |barψ is also a
group homomorphsm it is a Lie group isomorphism. The last thing to note
is that π1(G1/K) ∼= K and π1(G2) = {e}. Since ψ : G1/K → G2 is a
diffeomorphism, this implies that K = {1}. This proves the existence of a
map of Lie groups as required.

We turn to uniqueness. If ρ : R → G1 is a one-parameter subgroup
tangent to X ∈ g1, then ψ ◦ ρ is the one-parameter subgroup in G2 tangent
to φ(X). Thus, ψ is determined by φ on the image of the exponential map
of G1. This image generates G1, and hence ψ is determined by φ.

2 Distributions and Foliations

Before proving Theorem 1.1 we need to discuss distributions and foliations.

Definition 2.1. A distribution of dimension k in a smooth manifoldM is a
smoothly varying family of tangent k-planes a Dk(x) ⊂ TxM for every x ∈
M . Smooth variation means that in a neighborhood U each x ∈M there are
local vector fields χ1, · · · , χk such that for each y ∈ U the χi(y) are contained
in Dk(y) and are linearly independent implying that they generate Dk(y).
An integral submanifold for a distribution is a k-dimensional submanifold
P ⊂M such that TpP = Dk(p) for every p ∈ P . Not every distribution has
integral submanifolds. There is an obvious necessary condition. Namely,
the distribution must be what is called involutive.

Definition 2.2. A distribution Dk is involutive if for every pair of vector
fields ξ, ζ tangent to the distribution meaning that ξ(x), ζ(x) are contained.
in Dk(x) for every x, the Lie bracket [ξ, ζ] must be contained in Dk.

If P is an integral submanifold and ξ and ζ are vector fields tangent
to P , then since Lie bracket of vector fields is natural under smooth maps,
it follows that [ξ, ζ] is also tangent to P . Thus, for Dk to have integral
submanifolds through each point, the distribution must be involutive. A
theorem of Frobenius states the converse.

Theorem 2.3. (Frobenius) If Dk is a k-dimensional involution, then near
each point point there is a coordinate system (x1, . . . , xk, y1, . . . yn−k) such
that the distribution in this neighborhood at each point is the tangent space
spanned by {∂/∂x1, . . . ∂/∂xk}. Thus, a distribution D in M has a (local)
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integral submanifold through every point of p ∈ M if and only if it is in-
volutive; i.e., if and only if the space of vector fields tangent to D is a Lie
subalgebra of the space of all vector fields onM . In this case any two integral
submanifolds through x coincide in a neighborhood of x.

Theorems 2.3 is. not a deep theorem. The problems associated to this
lecture lead you through the proof of this result (with some hints along the
way).

2.1 Flow Boxes and Foliations

Definition 2.4. (Flow Box Condition) A k-dimensional flow box for M is a
smooth embedding of a manifold F = Uk×V ℓ where U is an open subset of
Rk and V is an open subset of Rℓ onto an open subset of M . The subspaces
of M that are images of subspace of U × V of he form U × {v} are the
horizontal subspaces or local leaves of the flow box.

The local distribution determined by a flow box U × V ∼= F ⊂ M is
the image of the distribution on U × V that is tangent to the horizontal
subspaces.

Two flow boxes are compatible if their horizontal distributions agree on
the intersection.

Suppose that the flow box F = U×V has coordinates (u, v) and the flow
box F ′ = X × Y . By this we mean u is the coordinates for U , etc. Then
the condition that F and F ′ are compatible is that ∂y/∂u = 0 at all points
of the intersection; i.e., that the Jacobian matrix of the overlap function be
block upper triangular.

One can formulate this geometrically as well: For each a local leaf U×{v}
of F , each connected component of U ×{v}∩F ′ lies in a local leaf of F ′ and
this component is an open subset of that local leaf.

Definition 2.5. An atlas of k-dimensional flow boxes for M is a covering
of M by a family of compatible k-dimensional flow boxes. A k-dimensional
foliation of M is a covering of M by a maximal family of compatible flow
boxes. (Maximal in the sense that any flow box compatible with every flow
box in the collection is already in the collection.)

Given a k-dimensional foliation of M at each point x ∈ M there is
a well-defined notion of a horizontal k-plane in TxM . This collection of
horizontal is a k-dimensional distribution called the horizontal distribution
of the foliation..
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Lemma 2.6. 1. An atlas of k-dimensional flow boxes for M determines
a k-dimensional foliation on M .

2. The horizontal distribution of a foliation of is an involutive distribu-
tion.

3. An involutive k-dimensional distribution determines a unique k-dimensional
foliation of which it is the horizontal distribution.

The first item is a simple application of Zorn’s lemma. The second and
third are direct and left to the reader.

Definition 2.7. Let F be a k-dimensional foliation of M determined by
an atlas of flow boxes {Fα}α. We introduce an equivalence relation on the
points of M . There is an elementary equivalence of x to y if there is a flow
box containing both of them and there is a path in a local leaf of the flow
box connecting them. (Or we could require that the horizontal spaces U
of the flow boxes be connected and simply require that x and y lie on the
same local leaf of a flow box.) This relation is symmetric so it generates an
equivalence relation. Each equivalence class is a (global) leaf of the foliation.

It is easier to work with connected flow boxes. This is no restriction
since the connected component of a flow box inherits a flow box structure
so that each flow box is a union of connected flow boxes.

Lemma 2.8. Fix a atlas of connected flow boxes for a foliation. A leaf is a
union of local leaves of flow boxes in the atlas. If local leaves A and A′ from
two different flow boxes are contained in a leaf and intersect each other, then
their intersection is an open subset of each and the overlap function from
A ⊂ F to A′ ⊂ F ′ is a diffeomorphhism.

Proof. By the definition of an equivalence relation if a leaf contains a point
(u, v) if a flow box F = U × V then it contains U × {v}. This proves
the first statement in the lemma. If the local leaves U × {v} and X × {y}
from different flow boxes meet then we have seen that for every point of
the intersection there is a neighborhood in the intersection that is an open
subset in both U ×{v} and X×{y}. Since U ×{x} and X×{y} are smooth
submanifolds of M , the overlap function between them is smooth.

2.2 The Leaf Topology

The local leaf topology on a flow box U × V is the product of the usual
topology on U and the discrete topology on V . This topology makes the
flow box a (non-second countable) Hausdorff k-dimensional manifold.
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By what we have seen above, if F and F ′ are compatible flow boxes then
the leaf topolgies on F and F ′ are compatible in the sense that they give
the same topology on F ∩ F ′. Thus, the local leaf topologies on an atlas
determine a new topology, the local leaf topology, on M . In this topology M
is a smooth k-dimensional manifold.

Proposition 2.9. A leaf of the foliation is a connected component of the
local leaf topology on M .

Proof. Again it suffices to work with an atlas of connected flow boxes. Sup-
pose that L = A

∐
B with A and B open and A ̸= ∅. Then since each

local leaf is connected each local leaf in L is contained in either A or B. Fix
x ∈ A and suppose that y ∈ L. Then there is a chain x = x1, . . . , xn = y
such that xi and xi+1 and a chain of local leaves in flow boxes U1, . . . , Un−1

with xi, xi+1 ∈ Ui for all 1 ≤ i ≤ n− 1. Then inductively we see that all the
Ui are in A and hence y ∈ A. Thus, the entire local leaf is contained in A,
and B = ∅. This proves that the restriction of the leaf topology to L makes
it a connected space.

Conversely, suppose that there is a connected subspace of the leaf topol-
ogy on M that contains L and a point x not in L. Since the leaf topology
on M is locally path connected, there is path in the leaf topology from a
point of y ∈ L. Since the path components of local leaf topology are the
leaves, any path from y to x is contained in a finite union of local leafs. This
implies that y ∼ x and hence x ∈ L, which is a contradiction, showing that
L is a connected component of the local leaf topology on M

Definition 2.10. The local leaf topology on M restricts to L to give the
leaf topology on L
Proposition 2.11. A global leaf with the leaf topology is a Hausdorff smooth
k-dimensional manifold that is smoothly one-to-one immersed in M with its
usual topoogy.

Proof. Let L be a leaf of the foliation. Let F be a flow box with connected
horizontal space. Consider all the local leaves of F that are contained in
|mathcalL. Each of these gives a topological embedding of a smooth mani-
fold into L. As we vary over all flow boxes with connected horizontal spaces
we get a covering of L by local smooth k-dimensional manifolds, whose dif-
ferential structures are compatible on the overlaps. This determines the
smooth structure on L. The inclusion of L → M is a smooth immersion
from this differential structure on L to M with its usual differential struc-
ture. Since set underlying L is a subset of M and the smooth map is the
inclusion of the subset into M , this immersion is one-to-one.
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We have not shown that the leaves are 2nd countable. Assuming that M
is 2nd countable, this is true but requires a slightly intricate argument. I will
not discuss this. In the applications to Lie groups, the second countability
is automatic since connected Lie groups are 2nd countable.

We have shown:

Corollary 2.12. Let Dk be a k-dimensional distribution in Mn that is in-
volutive. Then there is a foliation all of whose leaves are maximal integral
submaifolds of D.

3 Proof of Theorem 1.1

Proof. (of Theorem 1.1) Now we apply the theory of foliations and involutive
distributions to the case of a sub Lie algebra h ⊂ g of the Lie algebra of a
group G. The distribution we take is the left invariant distribution whose
value at e is h ⊂ g. Let us denoted it by D(h)

Take a basis for {X1, . . . , Xk} for h. They generate left invariant vector
fields ξ1, . . . , ξk that are a basis at each point for D(h) at every point. The
bracket of [ξi, ξj ] is a left invariant vector field, and its value at the origin
is [Xi, Xj ]. Since Xi, Xj ∈ h and h is a sub Lie algebra, [Xi.Xj ] ∈ h and
hence [ξi, ξj ] is tangent to D(h). The general vector fields tangent to this
distribution are of the form

∑
i fiξi for some smooth functions f1, . . . , fk.

Then

[
∑
i

fiξi,
∑
j

gjξkj] =
∑
i,j

fiξi(gj)ξj − gjξj(fi)ξi + figj [ξi, ξj ].

The first two terms are visibly in D(h), being functions times the ξi and the
last term is in D(h) by what we just showed above.

Thus, according to Theorem 2.3, the distribution D(h) integrates to a
foliation. Let H be the (global) leaf of this foliation containing the origin.
With its leaf topology, H is a k-dimensional manifold smoothly one-one
immersed in G. Its tangent space at the origin in h.

Since the foliation is invariant under left multiplication, for any g ∈ G,
g · H is a leaf of the foliation. In particular g · H ∩ H ̸= ∅ if and only if
g ·H = H.

Claim 3.1. g ·H = H if and only if g ∈ H. Also, H is a subgroup of G.

Proof. If g ·H = H then g = g · e ∈ H. Conversely, if g ∈ H, then g · e ∈ H
so that g ·H ∩H ̸= ∅ and hence, g ·H = H. This shows that H is closed
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under multiplication. On the other hand if g ∈ H then g · H = H, and
hence H = g−1 ·H so that g−1 ∈ H, showing that H is closed under taking
inverses.

The inclusion H → G, viewed as a map from H with the leaf topology
to G with its usual topology, is a smooth map and a group homomorphism.
Thus, it is a morphism of Lie groups.

The uniqueness statement follows from the uniqueness in Frobenius’s
theorem.

4 Proof of Theorem 1.2

Let G1 and G2 be groups with G1 simply connected, and let φ : g1 → g2
be a Lie algebra homomorphism. Consider the product Lie group G1 ×G2.
Its Lie algebra is g1 ⊕ g2 with the direct sum bracket. The graph of φ is a
linear subspace V ⊂ g1⊕g2 whose projection onto the first factor is a linear
isomorphism. Since φ is a Lie algebra homomorphism V ⊂ g1 ⊕ g2 is a Lie
subalgebra.

According to Theorem 1.1 the left-invariant distributionD(V ) onG1×G2

is tangent to a foliation. Furthermore, letting H be the leaf of that foliation
through e with the leaf topology, the inclusion map of i : H ⊂ G1 × G2,
viewed as a map from H with the leaf topology to G1 × G2, is a smooth
on-to-one immersion of Lie groups. Since the differential of the projection
G1 × G2 → G1 sends V isomorphically onto TeG1, by equivariance, the
projection G1 ×G2 → G1 maps the tangent plane to H at each point onto
the tangent pane to G1. That is to say the composition of i followed by the
projection to G1 is a local diffeomorphism ρ : H → G1.

Since G1 is connected, it is generated by an open neighborhood of the
identity. This implies that the local diffeomorphism ρ : H → G1 is surjective.
Similarly, the kernel of ρ is discrete. Since G1 is simply connected and H is
connected, the kernel of ρ is trivial. That is to say ρ = π1 ◦ i : H → G1 is
an isomorphism of Lie groups. Hence, the composite, ψ = π2 ◦ ρ−1 : G1 →
G2, is a Lie group homomorphism whose graph is i(H) ⊂ G1 × G2. This
implies that the graph of de(ψ) in g1 × g2 is V which, recall, is the graph of
φ : g1 → g2. It follows that de(ψ) = φ.

This completes the proof of Theorem 1.2.
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5 Isogeny of Lie Groups

We begin by discussing covering groups of connected Lie groups.

Definition 5.1. A map of connected Lie groups φ : G1 → G2 is a covering
Lie group if the map is a covering projection and a homomorphism of Lie
groups.

As an example, suppose that G is a connected Lie group and K ⊂ G is
a discrete, normal subgroup. Then G→ G/K is a covering group.

Lemma 5.2. A morphism of connected Lie groups φ : G1 → G2 is a covering
Lie group if and only if it induces an isomorphism of Lie algebras.

Proof. If φ is a covering Lie group, then it is a local diffeomorphism and deφ
is a linear isomorphism. Since φ is a Lie group map, deφ is a homomorphism
of Lie algebras and hence an isomorphism of Lie algebras.

Conversely, if deφ is an isomorphism, then φ is a local diffeomorphism at
the identity. That is to say, there is a neighborhood U1 of the identity in G1

such that φ|U1 is a diffeomorphism onto an open subset U2 of the identity
in G2. Since G2 is connected it is generated by U2. Thus, φ is onto.

Let K ⊂ G1 be the kernel of φ. It is a normal subgroup. Since φ|U1 is
injective, K ∩ U1 = {e}. Let W ⊂ U1 be a smaller open neighborhood of
the identity with the property that W =W−1 and W 2 ⊂ U . We claim that
kW ∩ k′W = ∅ for all k ̸= k′ elements of K. For if w0 ∈ kW ∩ k′W then we
have kw = k′w′ for some w,w′ ∈ W . This implies that k−1k′ = w(w′)−1 ∈
W 2 ⊂ U . Since k−1k′ ∈ K and K ∩ U = {e}, it follows that k = k′. This
shows that K is a discrete subgroup of G1.

Since K ⊂ G1 is a normal group we have a Lie group homomorphism
π : G1 → G1/K. The above argument shows that π evenly covers the image,
W ⊂ G1/K, of W . Clearly, W is an open neighborhood of the identity in
G1/K Now consider g ∈ G1/K. Left translation by g maps the image of W
isomorphically to gW a neighborhood of g in G1/K. Multiplication by a lift
g ∈ G1 of g and maps π−1(W ) isomorphically to π−1(gW ) =

∐
k∈K gkW .

This shows that φ is also a covering map on gW for every g ∈ G1/K. Thus,
G1 → G1/K is a covering projection.

Since K = ker(φ), the map φ factors through π : G1 → G1/K to give
a map φ : G1/K → G2. This map is a group homomorphism and smooth
so it is a map of Lie groups with trivial kernel. Since G2 is connected, it is
generated by the neighborhood φ(W ) of the identity. Hence φ is surjective.
Thus, φ is a bijective, local diffeomorphsim and hence a diffeomorphism. It
is also a homomorphism of Lie groups, and hence an isomorphism of Lie
groups. Hence, φ : G1 → G2 is also a covering Lie group.
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5.1 The Universal Covering Group

Proposition 5.3. Let G be a connected Lie group and let G̃ be the universal
covering of G and fix ẽ ∈ G̃ a point above e ∈ G. Then there is a unique Lie
group structure on G̃ with the properties that (i) ẽ is the identity element and
(ii) the projection G̃→ G is a Lie group homomorphism. The kernel of this
homomorphism is a discrete subgroup K ⊂ G̃ and the covering projection
induces a Lie group isomorphism G̃/K → G. In particular, the Lie algebras
of G̃ and G are canonically identified.

Proof. Given g1, g2 ∈ G̃, let ω1(t) and ω2(t) be paths defined on [0, 1] in G̃,
each beginning at ẽ with ωi(1) = gi. Let ω1(t) and ω2(t) be the images of
these paths in G, and let µ(t) = ω1(t)ω2(t). This is a path beginning at e.
Using unique path lifting, lift µ to a path µ(t) beginning at ẽ. We define
g1g2 = µ(1).

A standard argument with covering spaces shows that if we choose differ-
ent paths ω′

1(t) and ω
′
2(t) from ẽ to g1 and g2, respectively, the two definitions

of g1g2 agree. [Show that as we vary the paths, the notion of g1g2 is locally
constant. Since G̃ is simply connected two pairs of paths from ẽ to g1 and
g2 came be joined by a connected family of such pairs of paths. This and
the local constancy of the resulting product, show that the product g1g2 is
well defined.] It is direct to see that ẽ acts as a two-sided identity for this
multiplication and that this multiplication is associative.

Given g ∈ G̃, one defines g−1 by choosing a path ω from ẽ to g, projecting
ω to a path ω in G, forming the path ω−1(t) = (ω(t))−1 and lifting ω−1 to a
path µ beginning at ẽ. We define g−1 = µ(1). It is clear from the definitions
that gg−1 = g−1g = ẽ. Thus, we have defined a group structure on G̃ with ẽ
as the identity element. Clearly, the projection mapping is a homomorphism
of groups

One defines the smooth structure on G̃ by requiring the projection map
to be a local diffeomorphism. One checks easily group multiplication and
inverse are smooth mappings in this smooth structure. Thus, the projection
is a smooth map and a group homomorphism; that is to say the projection
is morphism of Lie groups.

5.2 All Covering Groups

Lemma 5.4. Any discrete, normal subgroup of a connected Lie group is
abelian and central.

Proof. Let G be a connected Lie group and K ⊂ G a discrete normal sub-
group. Since K is normal, gKg−1 = K for all g ∈ G. That is to say
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conjugation by G induces a map G → Auto(K). But since K is discrete,
so is Auto(K). But G is connected, so any map G→ Auto(K) is constant,
meaning that the adjoint action of G on K is trivial. Thus, K is contained
in the center of G and a fortiori is abelian.

Corollary 5.5. Let G be a connected Lie group and M a connected mani-
fold. Suppose that π : M → G is a covering projection. Then there is a Lie
group structure on M such that π : M → G is a covering Lie group.

Proof. Every connected covering of G corresponds to a subgroup of π1(G, e).
The universal covering Lie group G̃→ G corresponds to the trivial subgroup
The kernel of the projection mapping G̃→ G is a discrete normal subgroup
K of G̃ isomorphic to π1(G). By the previous lemma K is central in G̃.

All other connected covering spaces of G are isomorphic to G̃/K ′ where
K ′ is a subgroup of K. Since K is central, K ′ is also central, and a fortiori
is a normal subgroup. Thus, G̃/K inherits the structure of a Lie group from
G̃. Clearly, then he projection G/K → G is a covering Lie group.

Definition 5.6. Two connected Lie groups G1 and G2 are isogenous if
there is a Lie group G and Lie group maps φi : G → Gi, for i = 1, 2, that
are covering Lie groups.

Corollary 5.7. Let G1 and G2 be connected Lie groups. Then the following
are equivalent:

• G1 and G2 are isogenous.

• The Lie algebras g1 and g2 are isomorphic.

• The universal covering groups of G1 and G2 are isomorphic as Lie
groups.

Proof. If G is a covering group of both G1 and G2, then the universal cov-
ering group of G is also the universal covering group of G1 and G2. This
shows the first item implies the third. The third obviously implies the first
and second. The second implies the third by Theorem 1.2.

6 Ado’s Theorem

To complete the picture of the general theory of Lie groups we need a non-
trivial result from the theory of Lie algebras.
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Theorem 6.1. (Ado’s Theorem) Every finite dimensional real Lie algebra
has a faithful finite dimension linear representation

The proof of this theorem requires a detour through some of the more
detailed parts of general Lie algebra theory. I will not prove it in this course.
Nevertheless, I will use the following consequence.

6.1 Consequences of Ado’s Theorem

Theorem 6.2. Let G be a connected Lie group. Then there is an isogenous
Lie group G′ that admits a faithful finite dimensional representation; i.e.,
for some n there is a Lie group homomorphism G′ → GL(n,R) that is a
one-one immersion.

Proof. (Assumping Ado’s Theorem) By Ado’s theorem, there is n > 0 and
an embedding ι : g ⊂ gl(n,R) of Lie algebras. By Theorem 1.2 there is
a group G′ and a Lie group homomorphism ψ : G′ → GL(n,R) that is
a one-one immersion and whose differential deψ : g′ → gl(n,R) maps g′

isomorphically onto ι(g). Since G and G′ have the isomorphic Lie algebras
by Corollary 5.7 they are isogenous.

Remark 6.3. It is not true that every Lie group has a faithful finite dimen-
sional representation. In fact π1(SL(2,R)) ∼= Z and the universal covering

group of ˜SL(2,R) does not have a faithful finite dimensional representation.

Theorem 6.4. Every finite dimensional Lie algebra is (up to isomorphism)
the Lie algebra of a group, indeed of a simply connected group.

Proof. (Assuming Ado’s Theorem) Let L be a finite dimensional real Lie
algebra. Then according to Ado’s Theorem, there is an embedding L ⊂
gl(n,R) for some n. Applying Theorem 1.1 there is a Lie group H and a
one-one immersion H → GL(n,R) so that L is the Lie algebra of H. The
universal covering group of H is a simply connected Lie group with Lie
algebra L.
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