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1 Intorduction

In this section we introduce the notion of a Lie algebra. Then we turn
the adjoint action of a Lie group on itself and on its Lie algebra and show
how these determine the Lie algebra of a Lie group. Then we study the
exponential mapping from the Lie algebra of a Lie group, a map that is a
diffeomorphism into on an open subset of the origin in the Lie algebra.

We show the power of the exponential mapping by showing that a map
between Lie groups is determined by the induced map on Lie algebras and
that any topologically closed subgroup of a Lie group is in fact a sub-Lie

group.

2 Lie Algebras

2.1 The Basics

Definition 2.1. Fix a field K of characteristic 0. A Lie algebra over K is
a K-vector space V together with a linear map V ®x V — V denoted by
X ®Y — [X,Y], called the bracket or the Lie bracket, required to satisfy
the following two axioms:

1. [X,Y] = —[v, X].

2. [[X,Y], 2] + [[Z, X, Y] +[[Y, 2], X] = 0.



The second equation is called the Jacobi Identity. It can also be interpreted
as saying that [A, -] is a derivation with respect to [, ], i.e.,

[A’ [BaCH = HA’ B],C] + [B7 [Aa CH

Clearly, these algebraic equations make sense for vector spaces over any
field K, though one often needs K to be of characteristic zero in many of
the arguments. (Indeed, one can work with modules over a ring, defining
what are called Lie rings, but this is beyond the scope of these lectures.) We
are primarily interested in the case of real and complex Lie algebras that
are finite dimensional.

We will explain in more detail how Lie groups and Lie Algebras are
related and where the Jacobi identity comes from, but for now we content
ourselves with giving some examples of Lie algebras.

Lemma 2.2. Fiz a field K. Suppose that (L,[-,-]) is a Lie algebra over K
and L' C L is a linear K -subspace that is closed under the bracket. Then L’
with the induced bracket is a Lie algebra over K.

Proof. Exercise. O

Definition 2.3. With L’ C L as in the previous lemma, L’ is a sub Lie
algebra of L.

Example 4. The space M (nxn, K) of n x n matrices with entries in K is a
Lie algebra where the Lie bracket is given by [A, B] = AB — BA. Obviously,
this bilinear map is skew-symmetric. To establish the Jacobi identity, we
compute:

[A,[B,C]] = A(BC — CB) — (BC — CB)A
[C,[A, B]] = C(AB — BA) — (AB — BA)C
[B,[C, A]] = B(CA — AC) — (CA— AC)B.

Using the associativity of matrix multiplication we cancel these terms in
pairs.

Example 5. Let A be an associative algebra over K. Then the computation
in Example 4, is valid in A and shows that defining [A, B] = AB — BA for
all A, B € A defines a Lie algebra structure on A. This is the Lie algebra
determined by the associative algebra. In fact, we shall show in the next
lecture the Poincaré-Birkhoff-Witt Theorem which says that associated to
a Lie algebra L there is an associative algebra U(L) called the universal



enveloping algebra of L. There is a injective linear map from L — U(L)
compatible with the Lie bracket of L and the AB — BA bracket on U(L).
That is to say, the general Lie algebra L is a sub Lie algebra of the Lie
algebra determined by an associate algebra. (The proof works over any
field of characteristic 0.) There is one disadvantage to this construction:
Generally, U(L) is infinite dimensional.

Example 6. Let M be a smooth manifold and denote by Vect(M) the
vector space of smooth vector fields on M. The action of Vect(M) on
C° (M) identifies this space with the space of R-linear maps D: C*°(M) —
C>°(M) that are derivations in the sense that D(fg) = D(f)g + fD(g).
This space of first-order operators generates an associative algebra D(M) of
differential operators on C*°(M), with product being composition. The Lie
bracket of vector fields is then induced from the AB — BA bracket on D(M )
making it a Lie algebra over R. For vector fields X and Y, the composition
XY is asecond order operator (and hence is not a vector field). Nevertheless,
XY — Y X is a derivation (because the second-order terms cancel because
of the equality of cross partial derivatives). Hence, XY — Y X is a vector
field. This shows that the subspace of vector fields on M is a sub Lie algebra
of the Lie algebra on D(M) defined from the associative multiplication on
D(M). Indeed, D(M) is the universal enveloping algebra of the Lie algebra
of vector fields.

3 The Adjoint Action and the Lie Algebra of a Lie
Group

Let G be a real Lie Group. There is a natural action of G (the first copy)
on itself (the second copy) by conjugation:

Adg: GxG—=G

defined by Adg(g,9") = gg'g~!. Clearly, adg is a smooth map and is a
smooth map G — Diff(G), whose image lies in the subgroup of Lie group
automorphisms of G.

This is a left action of G on itself, called the adjoint action. When G
is clear from the context we denote this adjoint map simply as Ad. In the
case of a complex Lie group, the action is holomorphic.

The adjoint action fixes e € G and hence differentiating at the identity
of the second variable gives an induced linear action Adg: G x T.G — T.G.
We use the standard notation and denote T.G by g. The adjoint action of



G on g is a representation of G as linear automorphisms of g. That is to say
we have a linear representation which is a morphism of Lie groups

G 298 GL(g).

In the case of a complex Lie group this is a complex linear representation
of G on the complex vector space g, i.e., it determines a holomorphic map
G — GLc(g).

In either case, we can differentiate this Lie group morphism at the iden-
tity of G and obtain a (real or complex) linear map from g to the endomor-
phism ring of g

adg: g — End(g),

or equivalently a linear map
adg: gRr g — 9.
Let us specialize this to G = GL(n,R).

Proposition 3.1. The adjoint action
a'dGL(n,R) : gl(n7 R) ® gl(na R) - gl(nv R)

defines a Lie algebra structure on gl(n,R). Furthermore, identifying gl(n,R)
with M (n x n,R) we have

adgrmp) (X)(Y) = XY —YX.

Proof. Since GL(n,R) is an open subset of the vector space M(n x n,R),
the tangent space to GL(n,R) at the identity is canonically identified with
M(n xn,R). Explicitly, if g(¢) is a smooth curve in GL(n,R) with g(0) = e,
then view g(t) as a curve of matrices and form (dg/dt)|;=o € M(n x n,R).

Let u(t) be a curve in GL(n,R) with 1(0) = e and p/(0) = B € M(n x
n,R). Then for any fixed g € GL(n,R), we have (d/dt)|i=o(gu(t)g~') =
gBg~!, the usual conjugation action of GL(n,R) on gl(n,R) = M(n xn,R).
We compute the differential of this action at e € GL(n,R). Let ~(t) be
a one-parameter family in GL(n,R) with v(0) = Id and denote by A €
M(n x n,R) the derivative of this family at ¢ = 0. Then (v~ 1) (0) = —A.
Fix B € M(n x n,R). Then we have

d(y(t)By(t)!
dt

) ’t:O = ’7/(0)‘8 - B’Y,(O) = AB — BA.



Corollary 3.2. The map
adgrnpr): 8l(n,R) @ gl(n,R) — gl(n,R)
determines a Lie algebra over R. Analogously, the map
adgr(n,c): 8l(n,C) ® gl(n,C) — gl(n,C)

determines a Lie algebra over C. In both cases, the identification of the
Lie algebra with n x n matrices (over R or C) identifies the Lie bracket of
gl(n,R) or gl(n,C) coming from the adjoint representation with the usual
bracket of matrices, i.e., the AB — BA bracket.

Definition 3.3. The Lie algebra structure on gl(n,R) (or gi(n,C)) given
by adgrnr) (or adgr(n,c)) is THE Lie algebra of GL(n,R) (or GL(n,C)).

Corollary 3.4. Suppose that H C GL(n,R) is a sub-Lie group. Let b C
M(n x n,R) be the tangent space to H at the identity. Then b is closed
under Lie bracket of matrices; and

adg:Hhbh—=h

18 given by
adg(X)(Y)=XY -YX.

In particular, adg induces a Lie algebra structure on by. With this structure
b is a sub Lie algebra of gl(n,R).

Proof. The restriction of Adgrmr): GL(n,R) x gl(n,R) — gl(n,R) to H C
GL(n,R) is Adg: gl(n,R) — gl(n,R). This restriction leaves h C gl(n,R)
invariant and this restriction is Adg: H x h — b. Hence, the restriction of
adg(nr): 8l(n,R) x gl(n,R) — gl(n,R) to h x b is ady. O

Definition 3.5. The subspace ) C gi(n,R) together with the induced Lie
bracket is THE Lie algebra of H.

This shows that for Lie subgroups H C GL(n,R) the adjoint represen-
tation ady defines a Lie algebra structure on h. For a general Lie group G
the adjoint action of g on itself is defined a above. What remains to show
is that this defines a Lie algbra structure on g even if G is not a subgroup
of GL(n,R) for some n.



3.1 The Lie Algebra of a General Lie Group
3.1.1 Vector Fields

Recall that the (infinite dimensional) space of smooth vector fields on a
manifold has a Lie bracket. If X and Y are vector fields, then their bracket
[X,Y] is defined by giving its value on a general function f by [X,Y](f) =
XY (f)) —Y(X(f)). As we checked in the last lecture by direct computa-
tion, the second order derivative terms in X (Y (f)) cancel those of Y (X (f))
(basically this is equality of cross partials) so that the bracket is again a
vector field. Invoking the fact that the bracket is written XY — Y X in
the associative algebra of all differential operators, we conclude that this
bracket defines the structure of a Lie algebra on the (infinite dimensional)
vector space of vector fields.
Fix a Lie group G.

Definition 3.6. A vector field x on G is left-invariant if for each g, h € G,
D(g-)(x(h)) = x(gh).

Lemma 3.7. 1. Given X € g there is a unique left-invariant vector field
xx whose value at the identity is X.
2. If X andY are left-invariant vector fields, then so is [X,Y].

Proof. If x is a left-invariant vector field then x(g) = D(g-)x(e). This
proves the uniqueness of a left-invariant vector field with a given value at
the identity. Since the action G x TG — T'G given by defining the action of
g to be D(g-) is a smooth map, for any X € g, the formula x(g) = D(g-)X
defines a smooth vector field, proving the existence.

Suppose that X and Y are left-invariant vector fields. Since g- is a
diffeomorphism it commutes with the Lie bracket of vector fields. [Check
this.] Thus, D(¢-)[X,Y] = [D(g-)X, D(g)Y]. O

The left-invariant vector fields on a Lie group G form a finite dimensional
Lie algebra. Associating to each such vector field its value at the identity
element of the group gives a linear isomorphism between the left-invariant
vector fields and g. Transferring the Lie algebra structure from the space of
left invariant vector fields to g defines a Lie algebra structure on g. This is
THE Lie algebra of G. The symbol g denotes this Lie algebra structure on
T.G. If G is a complex Lie group this process defines a complex Lie algebra
structure on g.

It remains to show that Lie algebra structure on g just defined agrees
with the Lie algebra structure defined by adg. That is to say, we must
establish that [X,Y] = ad(X)(Y) for all X,Y € b.



Theorem 3.8. Let G be a Lie group with Lie algebra g as defined above.
For XY € g we have ad(X)(Y) = [X, Y], the bracket coming from the Lie
bracket of the left-invariant extensions of X and Y . In particular, X Y —
ad(X)(Y) defines the Lie algebra structure on g.

Proof. We compute the bracket using vector fields. Let X and Y be elements
of g. If X and Y are linearly dependent, say Y = aX then [X,Y] = 0 and
adg(X)(Y) = 0 since the one-parameter subgroups generated by X and Y
commute with each other. Thus, it suffices to assume that X and Y are
linearly independent in g.

Extend them to left-invariant vector fields on G, denoted X and }7,
respectively. Let £(s) be the integral curve for X though e and let o(t) be
the integral curve for Y through e. Let U C R? be an open neighborhood
of the origin and define T: U — ¥ by T'(s,t) = ¢(t)&(s). By the implicit
function theorem, if U is sufficiently small, T" is an embedding onto a smooth,
locally closed surface > C G. Implicitly, we use T" to impose local coordinates
(s,t) on X. Then ¢'(t) = p(t)Y and &'(s) = £(s)X. This means that the
restriction to the line {t = 0} of X is the unit tangent vector in the s-
direction; i.e., 9/ds, and the restriction to the line {s = 0} of ¥ is the unit
tangent vector in the ¢-direction; i.e., 9/9t. More is true.

Claim 3.9. On the entire surface ¥ we have:
(i) X = 0/0s. N
(ii) For all s, we have Ad(§(s)((0/01)(s0)) = Y(s,0)-

Proof. The first statement in the claim is equivalent to the statement

(0/0)(2(1)E(5)) = P(DE()X = X(ap),

which is clear.

To see the second statement in the claim, we compute (9/9t)(p(t)é(s)) =
@(t)Y€(s). Thus, along {t = 0} we have (0/0t)(s0) = Y{(s), or equivalently,
(0/0t)(5,06(s) ™ =Y. Hence, Ad(£(s)((9/0)(5,0)) = §(5)Y = Y(50)- O

It follows immediately from (i) in Claim 3.9 that
2070))?(07” = 82/8t88

It follows from (ii) in the same claim that

X(O,O)Y(s,o) = (8/33>(Ad(§(3)<8/3t)(s,0))
= ad(X)((9/0t)(0,0)) + 0% /950t = ad(X)(Y) + 0°/0s0t



Subtracting the first equation from the second and cancelling the cross
partials proves that the bracket defined using vector fields agrees with the
bracket defined using the adjoint representation O

For a complex Lie group G, its Lie algebra g is a complex vector space
and Adg: G X g — g is a holomorphic map. The same arguments show
that adg: g x g — g is a complex bilinear pairing producing a complex Lie
algebra structure on g and in the case when G C gl(n,C) this complex Lie
algebra structure agrees with the one coming from Lie bracket of complex
matrices.

3.2 Naturality of Lie Algebra of a Lie Group

Proposition 3.10. Let p: H — G be a Lie group homomorphism. Then
its differential at the identity do.: h — g is a map of Lie algebras, i.e., a
linear map commuting with the Lie bracket operations.

Proof. We have a commutative diagram

HxH 24, g

ox | |¢

Gxq 2oy g

Differentiating at e € H and at e € G in the second factor produces a
commutative diagram

Hxph 24,y

thdwel J/d‘#’e

Gxg 2o, o

Lastly, differentiating at the identity in the first variable gives a commutative
diagram
) ad_H> h

dpe Xdpe l lds%

adg
gxg — 6
This diagram says that for X,Y € b, we have

d@e(adH (X)(Y)) = adG(dQPe(X)ﬂ dSDe(Y))’



By definition of the bracket, this translates to

d@e([Xv Y]) = [dgoe(X% d‘Pe(Y)]'
O

Proposition 3.11. Let ¢: H — G be a homomorphism of complex Lie
groups. The dp.: h — g is a morphism of complex Lie algebras.

Corollary 3.12. Let V' be a finite dimensional complex vector space, let G
be a complex Lie group and let GXV — V be a complex linear representation
in the sense that p: G — GL(V) is a map of complex Lie groups. Then the
differential of p at the identity, dp.: g — gl(V) is a complex linear map
sending the Lie bracket of g to the bracket of complex linear endomorphisms
given by [A, B] = AB — BA.

4 The Exponential Mapping.

We have shown how to pass from a Lie group to its Lie algebra by differen-
tiating at the identity element (twice) the conjugation map of G on itself.
The basic construction passing from a Lie algebra g to G is the exponential
mapping. This mapping identifies a neighborhood of the origin in g with a
neighborhood of the identity in G.

4.1 The case of GL,(R)

Since GL(n,R) is an open subset of M (nxn,R), any A € M(nxn,R) deter-
mines a tangent vector to GL(n,R) at the identity element. This identifies
M(n x n,R) with gi(n,R). The power series

2 A
exp(tA) = Z n'
n=0 ’

converges absolutely for all ¢ € R and hence defines a smooth curve v4(t) in
M (nxn,R). By construction it satisfies y4(0) = Id and 4/;(0) = A. Since all
powers of A commute with each other, the usual power series manipulations
show that for all 1,2 € R we have y4(t1)va(t2) = va(t1+t2). It follows that,
for all ¢ € R, the matrix y4(t) is contained in GL(n,R), and furthermore,
74 is a homomorphism of Lie groups (R,+) — GL(n,R). We define the
exponential map

exp: M(n x n,R) = GL(n,R)



by
exp(A) = ya(1) = e,

This is a smooth map from M(n x n,R) — GL(n,R) whose differential
at the origin is the identity. By the inverse function theorem there is a
neighborhood U of 0 € M(n x n,R) that maps diffeomorphically onto an
open subset exp(U) of the identity in GL(n,R). The inverse map is the
logarithm log: exp(U) — U.

In the case of GL(n,C) the exponential map (given by the same power
series) associates to each A € M(n x n,C) a homomorphism of Lie groups
va: (C,+) = GL(n,C) with v, (0): C — M(n x n,C) the complex linear
map sending 1 € C to A. We define a holomorphic map exp: gi(n,C) —
GL(n,C) to send A to e?. Analogously, the differential of this map at
0 € gl(n,C) is the identity so that it is a local holomorphic isomorphism
from some neighborhood of 0 in gi(n,C) to an open neighborhood of the
identity in GL(n,C).

4.2 The Exponential Map for a General Lie Group

Theorem 4.1. Let G be a Lie group. Then for every A € g there is a unique
morphsim of Lie groups ya: (R,+) — G with the property that v',(0) = A.

Proof. Fix A € g. Let xa be the left-invariant vector field whose value at
g € Gis g- A. By the existence and uniqueness results for ODEs, for some
e > 0, there is a unique integral curve y4: (—¢,€) — G for this vector field
whose value at 0 is e.

Claim 4.2. The mazimal interval of definition for the integral curve v4 is
the entire real line.

Proof. By the existence theorem for solutions to ODEs, there is € > 0 such
that 74 is defined on (—¢, €). By uniqueness of solutions to ODEs, if I and J
are intervals of definition for an integral curve of x 4, both containing 0, then
the integral curves defined on these two intervals agree on the intersection
of the intervals and hence the two curves define an integral curve on I U J.
From this it is easy to see that there is a maximal interval of definition for
the integral curve v4. We must show that this is R.

Let I C R be the maximal interval of definition for v4 and suppose
that I is bounded above. Fix ¢y within €¢/2 of the least upper bound of I.
Consider the curve p(to+t) = va(to)ya(t) for t € (—e,€). Then p'(tg+1t) =
va(to)ys(t) = va(to)ya(t) - A. This shows that p is an integral curve for
XxA. Since it and 4 agree at tg, they agree on their common domain of

10



definition. This is a contradiction since it allows us to extend the domain
of definition beyond the least upper bound of I and I was assumed to be
the maximal interval of definition for the integral curve. Consequently, the
interval I has no upper bound. Symmetrically, I has no lower bound. The
only interval with no upper and no lower bound is R. ]

Fix t and let s be variable. Consider the integral curve for y 4 given by
p(s) =va(t)va(s). The curve y4(t+s) also is an integral curve for 4. Both
these integral curves take the value v4(¢) at s = 0. Thus, v(t)v(s) = u(s) =
va(t+ s) for all s. Since this true for all ¢ and all s and since v4(0) = e, the
map v4: R — G is a homomorphism from the additive Lie group of reals to

G.

Claim 4.3. Suppose that v: (R,+) — G is a homomorphism of Lie groups
and suppose that v'(0) = A. Then y(t) = va(t) for all t € R.

Proof. Since v is a homomorphism, it follows that /() = ~(¢)7/(0), and
thus « is an integral curve for xy 4 whose value at ¢ = 0 is the identity. There
is only one such integral curve and it is 4. O

This completes the proof of Theorem 4.1 O

Definition 4.4. We define the exponential map, exps: g — G by sending
A € g to y4(1) where 4 is the one-parameter subgroup whose tangent
vector at the identity is A.

The following is clear from the definition.

Proposition 4.5. The exponential mapping is a smooth map whose differ-
ential at 0 € g is the identity. Hence, there is a neighborhood U C g of 0 such
that expg is a diffeomorphism from U to an open neighborhood expgs(U) of
the identity in G. We denote the inverse by log: exp(U) — U.

Proof. The exponential is a smooth map since integral curves of a smooth
family of vector fields with a smooth family of initial conditions vary smoothly.
To compute the differential of exp, first note that v4(st) = v:4(s) since they
are both integral curves for tx4 and take the value e at s = 0. Thus,

Dlexp)e(4) = () li=o(wa(1)) = (lemo(ra(8)) = 4.

The local diffeomorphism then follows from the Inverse Function Theorem.
O

11



Corollary 4.6. If H C G is a Lie subgroup with Lie algebra b C g, then
expgly = expy. Any particular, any one-parameter subgroup tangent to H
at the origin is contained in H.

More generally, if p: H — G is a map of Lie groups, then for any A € b
the map of the additive one-parameter subgroup v4: (R,+) — H tangent to
A has image in G that is the map of the additive one-parameter subgroup
tangent to dpe(A).

Proof. For H C G, for any A € b the left-invariant vector field gA is tangent
to H. Hence the integral curve v4 that passes through e at ¢ = 0 lies in H.
The second statement is left as an exercise. O

5 Consequences of Existence of the Exponential
Mapping

5.1 A Map Between Lie Groups is Determined by its In-
duced Map on the Lie Algebras

Theorem 5.1. Let G and H be connected Lie groups and o, 3: G — H two
Lie group homomorphisms. Then o = 8 if and only if o and B induce the
same map g — b.

Proof. The ‘only if’; direction of the implication is clear. We establish the
‘if” direction. Suppose D.(a) = D.(8): ¢ — bh. Fix A € g and consider
the one-parameter subgroup exp(tA) C G. Its image under « is the one-
parameter subgroup exp(tD.(«)) and analogously for . It follows that «
and 3 agree on all the images of all these one-parameter subgroups, i.e., on
the image of exp. Since the exponential map is onto a neighborhood U of
the identity, it follows that o|y = Bly.

The subset of G on which o = 3 is closed. Suppose that for some g € G,
a(g) = B(g). Then for all u € U we have a(gu) = a(g)a(u) = B(g)B(u) =
B(gu). this shows that the subset where a = f is also open. Since G is
connected and a(e) = B(e), it follows that o = . O

Remark 5.2. Given Lie groups G and H and a map between their Lie
algebras 1: g — b there may not be a map G — H extending the map ¢ on
the Lie algebras. For example, an isomorphism from the Lie algebra of S*
to the Lie algebra of R does not extend to a map of Lie groups. In a later
lecture we shall show that in the special case when G is simply connected
any map of Lie algebras g — b extends (uniquely) to a map of Lie groups
G — H.
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5.2 Topologically Closed Subgroups of a Lie group are Sub-
Lie Groups

Theorem 5.3. Let G be a Lie group and suppose that H C G is a topolog-
ically closed subgroup. Then H is a sub Lie group,

Proof.

Claim 5.4. Fiz a positive definite symmetric inner product on g. Denote by
|h| for h € g the associated norm on g. Suppose that h,, € g is a sequence of
elements converging to 0 with exp(hy,) € H for alln. Suppose that asn — oo
the sequence % converges to a unit vector v € g. Then exp(tv) € H for all
teR.

Proof. The result is clear for t = 0. Fix ¢ > 0 in R. Let m, be the
greatest integer less than t¢/|h,|. Then myh, — tv as n — oo. Since
exp(mphy) = exp(hy,)™ € H and H is closed (topologically), it follows
that for all ¢+ > 0 we have exp(tv) € H. Since exp(—tv) = exp(tv)~!, the
result follows for all ¢t € R. O]

Claim 5.5. Let W C g be the set of w for which exp(tw) € H for allt € R.
Then W is a real linear subspace of g.

Proof. By construction if w € W then tw € W for all ¢ € R. Thus, to show
that W is a real linear subspace, it suffices to show that if wy,ws € W with
wy + wa # 0, then (w1 +wy) € W. For all ¢ sufficient close to zero, we have
exp(tw )exp(twsz)) = exp(f(t)) for a smooth function f(¢) with f(0) = 0
and f'(0) = (exp(twy)exp(tws))’ (0) = wy + wa. In particular,

limy 0 f(t)/t = w1 + wa.

Because wy,ws € W, from the definition of W and the fact that H is a
group, exp(f(t)) € H for all ¢ sufficiently close to 0. The limit statement
above shows for n sufficiently large, f(1/n) = %(uu + wz) + o(1/n). For all

w1 +wa
Jw1+wa]

n sufficiently large, set h,, = f(1/n). We see that |Z—Z‘ converges to

as n +— oo. The Claim 5.4 now implies that wy +wy € W.

Claim 5.6. A neighborhood of 0 in W maps via the exponential mapping
isomorphically onto the intersection of H with a neighborhood U of e € G.

Proof. Let W/ C g be the orthogonal complement of W in g. We have
W e W' =g. Let ¢(w,w') = exp(w)exp(w’). The map p = ¢~ is a diffeo-
morphism from an open neighborhood V' C G of e to an open neighborhood
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p(V) of 0 € W W'. If there is no smaller neighborhood U C V of the iden-
tity as claimed, then there is a sequence (wy,,w;,) tending to (0,0) such that
for all n we have exp(wy,)exp(w),) € H and w], # 0. Since H is a group and
exp(wy,) € H, it follows that exp(w],) € H for all n. Choosing a subsequence,

we can assume that -2 converges to a unit vector in v € W’. Applying the

[wy |
first claim, we see that v € W. This contradiction shows that there is some
neighborhood U C G of e and a diffeomorphism U — p(U) C W & W’ onto
an open neighborhood of (0,0) such that p(H NU)) =W N p(U).

This shows that H N U is a smooth submanifold of U. O

Now for any h € H we see that h-U is an open neighborhood of 4 in G and
the intersection HNAU maps via poh~! isomorphically to WNp(U) C p(U).
Since this holds for every h € H and since H is a closed subset of G , it
follows that H is a smooth submanifold of G.

We have already seen that a subset of GG that is a subgroup and a sub-
manifold (in this strong sense) is a sub Lie group. O

Corollary 5.7. Any continuous group homomorphisms between Lie groups
H — G is a morphism of Lie groups.

Proof. Let ¢: H — G be a group homomorphism. Consider the graph
of I'(p) € H x G. Since ¢ is a homomorphism, the graph is a subgroup
of the product. Since ¢ is continuous it is a closed subspace. Hence, by
Theorem 5.3, it is a sub Lie group of the product. This projection of this
subgroup to G is then a homomorphism of Lie groups, and the composition
of the natural map H — I'(H) followed by the projection to G is . This
shows that ¢p: H — G is a map of Lie groups.

The result follows. ]
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