
Lie Groups: Fall, 2025

Lecture I

September 9, 2025

This section starts with the basic definitions of the course – real and
complex Lie groups and then gives a series of basic examples. We then study
two important technical results that are used repeatedly in the subject: the
existence of left-invariant metrics on a Lie group and the smooth manifold
structure of the space of cosets of a sub-Lie group H of G and the quotient
map G→ H\G.

1 The Basic Definitions

Definition 1.1. A Lie group is a smooth finite dimensional manifold G with
two structure maps, which are required to be smooth maps, m : G×G→ G
and ι : G→ G, together with an element e ∈ G. These structure maps define
a group structure on G with m as a product, e as the identity element, and
ι as the map g 7→ g−1. A map φ : G → H of Lie groups is a smooth map
from the manifold underlying G to that underlying H that is also a group
homomorphism

If G is a complex manifold and the structure maps m and ι are holomor-
phic, then G is a complex Lie Group. A map between complex Lie groups
is a holomorphic map that is a group homomorhism.

Obviously, these definitions define the category of Lie groups and a cat-
egory of complex Lie groups.

There is one technical issue in the definition of Lie groups and complex
Lie groups; namely what we mean by a manifold. There are two condi-
tions that are optional in the definition of a manifold: Hausdorff and 2nd

countable (which means that there is a countable basis for the topology).
Usually, manifolds are assumed to be Hausdorff and second countable. We
shall always require that the manifolds underlying Lie groups be Hausdorff.
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Normally, we shall implicitly assume that they are second countable as well,
but it is not essential as the following lemma shows.

Lemma 1.2. Let G be a connected Lie group. Then G is second countable.

Proof. We shall see later in this lecture that G is metrizable. It is a general
theorem in topology that a metrizable space is second countable if and only
if it has a countable dense subset. [Homework problem.]

Since G is a manifold, there is a neighborhood U of e in G diffeomorphic
to an open subset of Rn for some n <∞. We take U to be invariant under
g 7→ g−1. The points of U with rational coordinate values form a dense open
subset Q ⊂ U . Consider now

∏k
i=1 U → G given by (g1, . . . , gk) 7→ g1 · · · gk.

The domain of this map is an open subset of a Euclidean space and hence
has a countable dense subset. The same is true of its image Uk ⊂ G. It
follows that U∞ = ∪∞

i=1Ui also has a countable dense subset. The proof is
completed by the following claim.

Claim 1.3. G = U∞.

Proof. Clearly, U∞ is a non-empty, open subset of G. Since G is connected,
we need only show that U∞ is closed subset. Let z ∈ G be a limit point
of U∞. Then gU is an open subset about z and hence gU ∩ U∞ ̸= ∅. Let
h ∈ gU ∩ U∞. Since h ∈ U∞, it follows that h ∈ Uk for some k < ∞.
Also, h = gu for some u ∈ U and hence g = hu−1 with u−1 ∈ U . Hence,
g ∈ Uk+1 ⊂ U∞.

Since U∞ contains all its limit points and G is a metric space, U∞ is a
closed subset of G.

Corollary 1.4. A Lie group is second countable if and only if it has at most
countably many connected components.

1.1 Submanifolds and sub Lie groups

Definition 1.5. Let M be a smooth manifold. A smooth submanifold is
a subset N ⊂M with the property that for each m ∈ M there is a local
coordinate system (x1, . . . , xk) defined on an open set U containing the point
m such that N ∩U is given by the subset of U where the equations {xr+1 =
· · · = xk = 0} hold. Then N inherits a unique smooth structure such that
the inclusion N → M is a smooth map. Such a map is called a smooth
embedding. [Since we are working exclusively in the smooth category we
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shall drop the adjective smooth from the terminology both for submanifolds
and embedding. It is implicit.]

Notice that if N is a submanifold of M then it is a closed subset of
M . There is a converse to this. Suppose that φ : N → M is an immersion
(injective differential at every point) and is a one-to-one map. Then the
image φ(N) is a submanifold of M if and only if it is a closed subset. An
example showing that the image is not automatically closed is given by the
map

R1 f→ R2 → R2/Z2

where f(t) = (t, πt).

Definition 1.6. Let G be a Lie group. A Lie subgroup H ⊂ G is a smooth
submanifold H of G that is closed under the product and inverses and con-
tains the identity element1.

The terminology is justified by the following lemma.

Proposition 1.7. If H ⊂ G is a sub-Lie group, then the restriction of the
product and inverse of G to H give H the structure of a Lie group and the
inclusion H ⊂ G is a morphism of Lie groups.

Proof. We consider the case when G is connected, and leave the general-
ization to non-connected groups to the reader. Since H is closed under
product and inverses and contains the identity, the restriction of the group
structure maps from G to H define the structure of a group on H. We need
only see that the product and the inverse are smooth maps of H. But they
are smooth maps of G and H is a smooth submanifold invariant under the
maps. Hence, the restriction of the maps to H are smooth. This establishes
that H with the induced structures is a Lie group. The inclusion H ⊂ G
is a smooth map and a group homomorphism and hence, by definition is a
morphism of Lie groups.

There is an analogue of the first part of Lemma 1.7 for one-to-one im-
mersed subgroups.

Lemma 1.8. Let G be a Lie group. Suppose that H is a smooth manifold
and φ : H → G is a one-to one smooth immersion whose image is a subgroup
of G. Then there is a unique Lie group structure on H so that φ is a
homomorphism of Lie groups.

1In the literature one sometimes finds the more general notion of sub Lie group where
the submanifold is not required to be closed, just to be one-to-one immersed.
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Proof. Since H is a smooth manifold and a group, we need only show that
group multiplication and inverse are smooth maps. Let (h, h′) ∈ H × H.
There there are neighborhoods U,U ′ and V of h, h′ and hh′, respectively,
such that φ : U → G and φ : U ′ → G and φ : V → G are embeddings onto
smooth (locally closed) submanifolds. Taking U and U ′ sufficiently small
we can arrange that the product in G maps U × U ′ → V . Since the group
multiplication of G is smooth the composition U × U ′ → V ⊂ G is smooth,
and since V is a locally closed smooth submanifold of G, this implies that
U × U ′ → V is smooth.

The argument for the inverse map is analogous.

2 Examples

2.1 Real Lie Groups

Groups naturally arise as symmetry groups of some mathematical structure,
so they come with their defining action. Most Lie groups, complex Lie
groups, or linear algebraic groups arise in this way.

Any discrete group is a Lie group. If we require, as one often does, that a
manifold must be second countable, then only the countable discrete groups
are Lie groups. Of particular interest are the finite groups.

Example 1. The symmetries of a square in the plane, meaning a Euclidean
isometry of the square onto itself consists of rotations through multiples of
π/2 around the central point of the square, together with flips, either about
a line bisecting two opposite sides or a line passing through two opposite
vertices. These form a group of order 8 with a normal subgroup being the
group of 4 rotations. Similarly, the Euclidean symmetries of a regular n-gon
in the plane is a group of order 2n with a normal subgroup being the cyclic
group consisting of the n rotational symmetries.

Example 2. The real line R with m being addition and ι(x) = −x is a
Lie Group, the additive group over R. The non-zero real numbers R∗ under
multiplication form a Lie group. Similarly, the additive group of complex
numbers C and the multiplicative group of non-zero complex numbers C∗ are
complex Le groups. The unit circle in the complex plane with product being
product of complex numbers and ι being inverse of complex numbers is a
Lie group. Indeed, it is a real Lie subgroup of the real Lie group underlying
the complex Lie group C∗.

Example 3. Let V be a finite dimensional real vector space. Then the
general linear group of V , denoted GL(V ), is a Lie group under matrix
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multiplication and matrix inverse. Let V have a volume form vol(V ) ∈
ΛtopV . Then SL(V ) the subgroup of GL(V ) of matrices that preserve this
form is a subgroup. Check that SL(V ) is a smooth submanifold of GLV ).
Let Rn have its usual coordinates and volume form, Then GL(Rn) is the
group of n × n matrices of real numbers with non-zero determinant and
SL(Rn) is the subgroup of matrices of determinant one.

Example 4. Let Q be a non-degenerate quadratic form on a finite dimen-
sional real vector space V . W define O(Q), the orthogonal group of Q, to be
the subgroup of GL(V ) that leaves Q invariant in the sense that A ∈ GL(V )
is in O(Q) if and only if Q(Av) = Q(v) for all v ∈ V . Check that O(Q) is
a smooth submanifold of GL(V ) that closed under the product and taking
inverses and contains the identity. Applying the above lemma, we see that
it is a sub-Lie group of GL(V ) and hence is a Lie Group in its own right.

The example O(n) is the orthogonal group of the standard positive def-
inite Euclidean inner product on Rn. The group SO(n) is the subgroup of
O(n) of matrices of determinant 1. Show that SO(n) is the component of
the identity of O(n).

Example 5. Let V be a finite dimensional real vector space and ω ·V ⊗V →
R be a non-degenrate skew-symmetric form. Then the subgroup of GL(V )
that preserves this form, Symp(V ) is called a symplectic group. Check that
this is a Lie subgroup of GL(V ). In the special case when V = R2n with
symplectic form

ω
( 2n∑
i=1

sie
i,

2n∑
i=1

tie
i
)
=

n∑
i=−1

s2i−1t2i − s2it2i−1

this is the symplectic group Symp(2n).

Example 6. IfG1 andG2 are Lie groups, then the product smooth manifold
G1 ×G2 is naturally a Lie group under the product operations. Notice that
G1×{e} and {e}×G2 are sub Lie groups of G1×G2, and this is a categorical
product in the category of Lie Groups.

2.1.1 Some Counter-Examples

Consider the torus T 2 = R2/Z2. The translation structure on R2 induces
an Abelian group structure on T 2 that makes it a compact Lie group. Any
sub-Lie group H ⊂ T 2 is a closed subset of T 2 and hence is compact. As
a result every connected sub Lie groups of T 2 is isomorphic to one of T 2,
S1,{e}. If R ⊂ R2 is a line through the origin in an irrational direction, then
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it induces an injective map R1 → T 2 map of Lie groups whose image is not
compact and hence not a sub Lie group.

Notice that there is a quotient space T 2/R1 inherits a group structure
and also is is locally isomorphic to R1 with local coordinates in which the
group structure is smooth. But the quotient is not a Lie group since it is
not Hausdorff.

There are similar examples in higher dimensional tori of all possible
codimensions ≥ 1.

The examples show that in general if ρ : H → G is a map of Lie groups,
then the image is not necessarily a sub Lie group of G.

2.2 Examples of Complex Lie groups

As in the real case, we have:

Example 7. If G is a complex Lie Group and H ⊂ G is a complex sub-
manifold containing the identity element of G and closed under the product
operation and the inverse map, then H together with the restriction to H
of these structure maps is a complex Lie Group.

Example 8. A complex linear algebraic group is a complex algebraic sub
variety of M(n × n,C) contained in the Zariski open subset GL(n,C) and
closed under matrix multiplication and inverses.

Example 9. If V is a finite dimensional complex vector space then its
complex linear automorphisms form a complex Lie Group. Of course, we
can assume that V is isomorphic to Cn for some n ≥ 0. Thus, for some
n ≥ 0 the complex Lie group GL(V ) is isomorphic to the complex Lie Group
GL(n,C), the group of invertible n × n complex matrices. The product is
matrix multiplication and the inverse is the matrix inverse. The group is
an open subset of the complex vector space M(n × n,C) of complex n × n
matrices. In fact, being the complement of the divisor where {det = 0},
GL(n,C) is a Zariski open set and is a linear algebraic group over C. We
also have SL(n,C) ⊂ GL(n,C) of matrices of determinant 1 also a linear
algebraic group over C, and hence a complex Lie Group. For any non-
degenerate complex quadratic form Q on Cn we have its complex orthogonal
group, defined as in the real case. This also is a linear algebraic group over
C and hence a complex Lie group.

Example 10. For a on-degenerate symmetric complex bilinear form Q on
Cn we have the complex orthogonal group G(Q) of linear automorphisms
preserving Q. Simiilarly, for a non-degenerate, skew symmetric, complex
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bilinear form on Cn we have the complex symplectic group, again a linear
algebraic group over C, and hence a complex Lie group.

Exmple 11. Consider a maximal lattice Λ ⊂ C. By definition Λ is gen-
erated by two elements that are linearly independent over R. The quotient
C/Λ is a compact complex curve diffeomorphic to S1 × S1. Addition on C
induces a group structure on C/Λ that makes it a complex Lie group. This
is an elliptic curve. Show that it is not a complex linear algebraic group.

Example 12. More generally, if Λ ⊂ Cn is a lattice, meaning an integral
basis for Λ is an R-basis fior Cn, then addition on Cn descends to a complex
Lie group structure on the quotient Cn/Λ. Such groups are complex tori.

3 Invariant metrics on G

Recall that a Riemannian metric g on a smooth manifold M is a smoothly
varying positive definite inner product on the tangent spaces of M . In local
coordinates (x1, . . . , xn) for M , the metric is written as g =

∑
i,j gijdx

i ⊗
dxj where the gi,j are smooth functions of (x1, . . . , xn) and the matrix
gi,j(x

1, . . . , xn) is symmetric and positive definite for every (x1, . . . , xn) in
the coordinate patch.

Suppose that M is connected and g is a Riemannian metric.

Theorem 3.1. Define a distance function d : M ×M → R≥0 by

d(p, q) = infL(ω)

as ω ranges over all piecewise smooth curves from p to q and the length of
a smooth curve γ : [a, b] → M is

∫ b
a

√
g(γ′(t), γ′(t))dt and the length of a

piecewise smooth curve is the sum of the lengths of its smooth pieces. Then
d is a distance function

Proof. Being the infimum of non-negative functions, d(p, q) ≥ 0 for all
p, q ∈M . It is clearly satisfies the triangle inequality [Adjoin paths.] and is
symmetric. [Reverse the path.] It is more subtle to show that d(p, q) > 0
for p ̸= q.

Fix p ∈ M and fix an orthonormal basis {e1, . . . , en} for TpM . Take
coordinates near p so that p is the origin and ei = (∂/∂xi)(p). Let |v|2
denote the Euclidean norm in these coordinates. Then g(v, v) = |v|2 for
every tangent vector at p. There is 0 < ϵ < 1/2 such that for all q in the
ϵ-ball about 0 in these coordinates the metric |gq(v, v)− |v|2 < ϵ|v|2. Thus,
for any piecewise curve γ in this neighborhood the g-length of γ is at least
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(1−ϵ) times the - Euclidean length of γ, and for any piecewise curve starting
at p and leaving the ball has length at least ϵ(1 − ϵ). This shows that if q
is in the ϵ-ball then the distance from p to q is at least (1 − ϵ) times the
Euclidean distance from p to q, and if q is not in this ball then the distance
from p to q is at least ϵ(1− ϵ).

Corollary 3.2. Let G be a Lie group. There is a Riemannian metric on G
on G that is invariant under left multiplication by every element g ∈ G. The
associated metric is also invariant under left multiplication by every g ∈ G
in the sense that for every p, q, g ∈ G we have d(gp, gq) = d(p, q).

Proof. Fix a positive definite symmetric inner product ⟨·, ·⟩e on TeG. For
each g ∈ G and v1, v2 ∈ TgG, define ⟨v1, v2⟩g = ⟨g−1v1, g

−1v2⟩e. This is a
family of positive definite inner products on the tangent spaces of G. Since
left multiplication by g varies smoothly with g these inner products vary
smoothly and hence form a Riemannian metric. By definition it is invariant
under left multiplication by every g ∈ G. The associated metric is then also
invariant under left multiplication by every g ∈ G.

Definition 3.3. We call such Riemannian metrics and metrics left-invariant.

N.B. There is an analogous theory of right-invariant metrics.

4 The Space of Right Cosets of a Lie Subgroup

Theorem 4.1. Let G be a Lie group and H ⊂ G a Lie subgroup (including
that H is a closed subset). Consider the (left) action of H on G by left
multiplication H ×G→ G given by (h, g) 7→ hg. The orbit through g is Hg,
which is a right coset of H if G. Thus, the quotient space of this action is
the space of H\G of right cosets of H. This space has the structure of a
smooth (Hausdorff) manifold in such a way that the projection G→ H\G is
a submersion (i.e., has surjective differential at every point) and is a locally
trivial fiber bundle with fibers isomorphic to H.

Proof. Lt π : G → H\G be the quotient map sending g 7→ Hg. We give
H\G the quotient topology: a subset of U ⊂ H\G is open if and only if
π−1(U) is open.

Let n and k denote the dimensions of G and H, respectively. Since H is
a closed subspace of G, there is diffeomorphism µ : B → B′ where B is the
open unit ball in Rn centered at 0 and B′ is an open neighborhood of e ∈ G
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with the property that (i) µ(0) = e and (ii) setting U = H ∩ B′, µ−1(U) is
the subspace {xk+1 = · · · = xn = 0} ∩B. Let

S = B ∩ {x1 = . . . = xk = 0} and S′ = µ(S) ⊂ G.

The point of intersection H ∩ S′ is e ∈ G. Let ψ0 : U × S → G be the map
ψ0(h, s) = h · µ(s). The differential of ψ0(e, 0) is an isomorphism. Thus,
possibly after replacing S and U by smaller neighborhoods of 0, we can
assume that the product map ψ0 : U × S → G is a diffeomorphism onto an
open subset of B′.

We define ψ : H × S → G by ψ(h, s) = hµ(s). This map is a local
diffeomorphism ψ : H × S → G.

Claim 4.2. There is a neighborhood T of 0 in S such that the restriction
ψ : H × T → G is a one-one map.

Proof. If no such neighborhood T of 0 ∈ S exists, then there are sequences
(hn, sn) and (h′n, s

′
n) in H × S with sn 7→ 0 and s′n 7→ 0 such that for all

n, (hn, sn) ̸= (h′n, s
′
n) in H × S yet hnµ(sn) = h′nµ(s

′
n). It follows that

µ(sn) = h−1
n h′nµ(s

′
n) and hence that h−1

n h′n = µ(sn)µ(s
′
n)

−1. Thus, h−1
n h′n

converges to 0 as n 7→ ∞ and hence for all n sufficiently large h−1
n h′n ∈ U .

We have shown that for all n sufficiently large both (e, sn) and (h−1
n h′n, s

′
n)

lie in U×S and have the same image under ψ0. Since ψ0 is a diffeomorphism,
this implies that for all n sufficiently large we have (e, sn) = (h−1

n hn, s
′
n); i.e.,

for all n sufficiently large hn = h′n and sn = s′n. This contradicts the fact
that (hn, sn) ̸= (h′n, s

′
n) for all n and completes the proof of the claim.

Fix T with the property that ψ|H×T is one-to-one. Since ψ : H×T → G
is the restriction of a local diffeomorphism to an open subset of the domain,
it is a local diffeomorphism. We have just seen that it is one-to-one. Con-
sequently, it is a diffeomorphism onto an open subset of G. Obviously, this
open subset contains H and is invariant under the left action of H. It follows
easily from the definition of the quotient topology that the map T → H\G
given by t 7→ Ht is a homeomorphism from T onto an open subset of G
containing the right coset He.

Clearly by right G-equivariance, such local coordinates exist around
any orbit Hg. Suppose given two such diffeomorphisms onto open sub-
set ψ0 : H × T0 → G and ψ1 : H × T1 → G where µi(T ) is centered at
gi ∈ G. If the images of these two maps have non-empty intersection, say
ψ0(h0, t0) = ψ1(h1, t1), then for small a neighborhood V0 of t0 in T0 the
map ψ0 : {h0} × V0 → G is a smooth map whose image is contained in the
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image of ψ1. Hence, the composition of {h0} × V0
ψ0−→ G followed by ψ−1

1

and then projection to T1 is a smooth map. This is exactly the transition
function from the chart on T0 given by ψ0 and the chart on T1 given by ψ1

near the point Ht0 of H\G. This shows the transition functions are smooth
and hence they define a smooth structure on the quotient space.

Clearly, in this smooth structure, the quotient map is a smooth map
with surjective differential and kernel the tangent space to the orbits. Thus,
the quotient map is a locally trivial smooth fiber bundle.

It remains to show that H\G is Hausdorff. By Corollary 3.2 we impose
a left-invariant metric on G. Then we use this to define a distance function
on the orbit space: d(Hx,Hy) is defined to be the infinmum of the distances
between a ∈ Hx and b ∈ Hy.

Claim 4.3. This defines a metric on H\G.

Proof. Clearly, d(Hx,Hy) = d(Hy,Hx) ≥ 0 and the triangle inequality
holds. We need to show that if Hx ̸= Hy then d(Hx,Hy) > 0. Suppose
that Hx and Hy are distinct orbits. Since x and Hy are disjoint closed
subspaces of a metric space with {x} being compact, the distance between
them is positive. On the other hand, by invariance of the distance function
under left multiplication by G and a fortiori by H, for any h ∈ H the
distance between between hx and Hy is equal to the distance between x
and Hy. Thus, the distance between Hx an Hy is positive.

Since the quotient is a metric space, it is Hausdorff.

Definition 4.4. We call T as above a slice for the action of H on G at the
identity. For any g ∈ G a slice for the action of H on G at g is then the
image of a slice for the action at the identity under right multiplication by
g.

Definition 4.5. A sub Lie group K ⊂ G is said to be normal if K is a
normal subgroup of G in the usual group-theoretic sense.

Lemma 4.6. If K ⊂ G is a normal Lie subgroup, then the space of left cosets
K\G has the structure of a Lie group such that the projection G→ K\G is
a homomorphism of Lie groups.

Proof. Since K is a normal subgroup of G, the group structure on G induces
a group structure on K\G in such a way that the projection G→ K\G is a
group homomorphism. We have just seen that K\G is a smooth manifold
and that the projection G → K\G is a smooth map. It remains only to
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show that the structure maps for the group structure on K\G are smooth.
Let us consider the multiplication map µ : K\G×K\G→ K\G. Fix points
x, y ∈ K\G. Lift these to points x̃, ỹ ∈ G and let Sx̃, Sỹ be slices from the
projection mapping G → K\G at x̃ and ỹ, respectively. Let Sx̃ỹ be a slice
for the projection G → K\G at x̃ỹ. Choosing Sx̃ and Sỹ sufficiently small,
we can assume that the image of the product µ(Sx̃ × Sỹ) is contained in
K × Sx̃ỹ ⊂ G. It is a smooth map. Thus, the composition

Sx̃ × Sỹ
µ→ K × Sx̃ỹ

π2→ Sx̃ỹ

is also smooth. This is the restriction of the multiplication map for the
quotient to Sx̃ × Sỹ.

The argument for the inverse is similar.
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