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1 Introduction

1.1 Semi-simple matrices

Let us begin by review some of the standard factors about complex matri-
ces, facts that will be useful later on. A complex matrix is semi-simple if
it is diagonalizable, i.e., conjugate to a diagonal matrix. (Notice that the
image under the exponential mapping of s semi-simple element is an (auto-
matically semi-simple) action of C∗ on Cn.) A matrix is nilpotent if some
positive power of it is zero. Notice both of these notions are invariant under
conjugation.

The Jordan canonical form of a complex matrix X is a decomposition
X = Xss + Xn where Xss is semi-simple and Xn is nilpotent and Xss and
Xn commute. It is easy to see that this decomposition is unique.

Lemma 1.1. For X ∈ gl(n,C) both Xss and Xn are given by polynomial
expressions. in X, s(X) and n(X) respectively, where each of s(X) and
n(X) has zero constant term.

Proof. Let X ∈ End(V ) for a finite dimensional complex vector space V .
Let p[T ] ∈ C[T ] be the minimal polynomial for X. Then p(X) : V → V is
the zero map, so that V is a module over C[T ]/p(T ) where T acts on V as
X.

We write
p(T ) =

∏
λi∈Λ

(T − λi)m(λi).

Recall that C[T ] is a p.i.d. and the ideals generated by (T − λi)m(λi) are
relatively prime for different λi.
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Case 1. p(T ) = T k for some k ≥ 1. In this case X is nilpotent and
the polynomials in questions are s(X) = 0 and n(X) = X.

Case 2. p(T ) = (T − λ)n for some λ 6= 0. In this case, Xss is the
diagonal matrix with λ down the diagonal; i.e., Xss acts by multiplication
by λ on V . Since (T − λ)n and (T ) are relatively prime ideals, we can write

1 = TA(T ) + (T − λ)nB(T ).

Since V is a module over C[T ]/(T −λ)n with T acting by X, the polynomial
XA(X) is multiplication by 1 on V . Hence, λXA(X) = Xss, and X(1 −
λA(X)) = Xn.

Case 3. There is more than one eigenvalue. In this case

p(T ) =
∏
λi∈Λ

(T − λi)m(λi)

where #Λ ≥ 2. Since the ideals (T −λi)m(λi) are relatively prime, it follows
that for each i there are polynomials Ai(T ) and Bi(T ) such that

1 = Ai(T )(T − λi)m(λi) +Bi(T )
∏
j 6=i

(T − λj)m(λj).

This proves that

V = Ker((T − λi)ni)⊕Ker(
∏
j 6=i

(T − λj)nj ).

Set Pi(T ) = Bi(T )
∏
j 6=i(T − λj)m(λj)(v). Then

Pi(X)(v) = v for any v ∈ Ker((X − λi)m(λi))

and
Pi(X)(v) = 0 for any v ∈ Ker(

∏
j 6=i

(X − λj)m(λj)).

Thus Xss =
∑

i λiPi(X) and Xn = X −
∑

i λiPi(X) are the polynomial
expressions for Xss and Xn in terms of X. Since each Pi is contained in a
maximal ideal of the form (T − λj), these polynomials have zero constant
term, as does their sum.
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1.2 Joint Eigenspaces for commuting semi-simple elements

Suppose that we have a linear space M of commuting complex matrices of
size n × n, say generated by M1, . . . ,Mk. Suppose that each Mi is semi-
simple. Then any eigenspace Ei(α) for Mi is left invariant under Mj for all
j. It follows easily from this that there is a basis {e1, . . . , en} for Cn in which
all the matrices ofM are diagonal. The one-dimensional linear subspace Li
spanned by the basis element ei is a joint eigenspace for all the matrices of
M and its joint eigenvalue is a linear map λi : M→ C giving the action of
the family on Li.

1.3 Plan for this Lecture

In this lecture we shall prove results for about presentations of sl(n,C) and
discuss how these result generalize to a broad class of complex Lie Algebras,
namely semi-simple complex Lie Algebras.

Definition 1.2. A (real or complex) Lie algebra is simple if it of dimension
> 1 and if it contains no non-trivial ideal. A Lie group is semi-simple if it is a
direct sum of commuting simple Lie algebras. For a semi-simple Lie algebra
g a Cartan subalgebra h is a maximal abelian subalgebra of g each element
of which maps to a semi-simple element under the adjoint representation of
g.

Here is the basic result, which we shall establish for sl(n,C) but which
holds for any complex semi-simple Lie Algebra.

Theorem 1.3. Let g be a semi-simple complex Lie Algebra. Then any finite
dimension complex representation of g is completely reducible.

Assuming this let us show that the (finite dimensional) representation
theory of semi-simple Lie algebras is determined by the representation theory
of their simple factors.

Proposition 1.4. Let L be a semi-simple complex Lie algebra and L =
L1 ⊕ L2 ⊕ Lk a decomposition into simple factors.

(i) Suppose that V1, . . . , Vk are irreducible representations of L1, . . . , Lk.
Form V = ⊗iVi and define an action of L on V by

(X1, . . . , Xn) · (v1 ⊗ · · · ⊗ vn) =
∑
i

v1 ⊗ · · · ⊗Xi(vi)⊗ · · · ⊗ vk.

This is an irreducible representation of L.
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(ii) Two irreducible representations of L as in (i) are isomorphic if and
only if the irreducible representations of the factors Li out of which
they are built are isomorphic.

(iii) Every irreducible representation of L is of the form given in (i).

Proof. Let’s start by proving (iii). The proof is by induction on the number
of simple factors. The statement is tautological if L has only one simple
factor. Suppose that we know the result for semi-simple algebras with fewer
that k simple factors and let L = L1 ⊕ · · · ⊕ Lk be semi-simple with the Li
as its simple factors. We write L = L1 ⊕ L′ where L1 is simple and L′ is
semi-simple with (k − 1) simple factors. Suppose that V is an irreducible
representation of L. Consider the decomposition of V as an L1-module into
irreducible L1 representations, grouped into isomorphism classes

V = W1 ⊕ · · · ⊕ ⊕Wj ,

with each Wi being a direct sum of isomorphic L1-modules and with the
irreducible components of Wi and Wj being non-isomorphic for i 6= j. Since
L′ commutes with L1, the action of L′ preserves the L1 structure on V and
hence preserves the isomorphism types of the L1-module factors W1, . . . ,Wj .
By irreducibility of the L-module this implies that there is only one isomor-
phism class of irreducible L1 representation occurring in this decomposition.
Thus, we have an isomorphism of L1-modules V = ⊕i∈IW where W is an
irreducible L1 module.

We fix such a direct sum decomposition, and let W1, . . . ,Wn be the direct
sum factors and πj the projection of the direct sum onto the jth-factor. By

Shur’s lemma, the composition of Wi ⊂ V
πj−→ Wj is given by a scalar λi,j .

That is to say using the direct sum decomposition to write V = W ⊗ Cn
the elements of L′ are given by IdW ⊗ α for α ∈ gl(n,C). This gives a
representation of L′ into gl(n,C) so that the action of L on W ⊗Cn is given
by (X1, X

′)(w ⊗ v) = X1(w) ⊗ v + w ⊗X ′(v), and an L-module map from
this tensor product to V . Since V is simple and the map is non-trivial, it
must be surjective. On the other hand the dimension of both V and the
tensor product are the product of the dimensions of the representations of
L1 and L′. Hence the map is an isomorphism of L representations.

By induction the irreducible representation of L′ is a tensor product of
irreducible representations of the Li for 2 ≤ i ≤ j. This proves Item (iii).

Let us consider the first item. Again we argue by induction on the
number of simple summands. When there is only one such, the result is
immediate. Using the notation and assumption as in the proof of (iii),
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suppose W is an irreducible L1 representation and U is an L′ module that
is tensor product of irreducible representations of its simple summands and
the the representation of L⊗(W⊗U)→ (W⊗U) is the tensor product of the
L1 and L′ representations. By induction U an irreducible L′ representation.
Then it is clear that any non-zero L1-module of W ⊗U is of the form W ⊗U ′
where U ′ is a non-zero linear subspace of U ′. Analogously, any non-zero L′-
module of W ⊗ U is of the form W ′ ⊗ U where W ′ is a non-zero linear
subspace of W . Any non-zero L-submodule must be described in both these
ways, and hence is W ⊗ U , proving that this representation is irreducible.

If W ⊗ U and W ′ ⊗ U ′ are isomorphic irreducible L-modules, then the
L1 structure is a direct sum of copies of W and the L′ structure is a direct
sum of copies of U ′. Item (ii) follows immediately. by induction.

2 Simple and Semi-Simple Lie Algebras

Let us see turn now to the proto-typical simple Lie algebra.

Lemma 2.1. (i) For any n ≥ 2 the Lie algebra sl(n,C) is a simple complex
Lie algebra. A Cartan subalgera consists of the space of matrices in sl(n,C)
whose off-diagonal entries are all 0.

(ii) The Lie algebra gl(n,C) for n ≥ 2 is not a simple Lie algebra.

Proof. (ii): The diagonal matrices are in the center of gl(n,C) and hence
are a non-trivial ideal.

(i): Let h ⊂ sl(n,C) be the abelian subalgebra of matrices (of trace 0)
that have all off diagonal entries equal to zero.

Claim 2.2. There is a basis for sl(n,C) such that in this basis the restriction
of the adjoint representation of sl(n,C) to h is diagonal

Proof. For any i 6= j with 1 ≤ i, j ≤ n let Ei,j be the matrix in sl(n) whose
only non-zero entry is in the (i, j) place and is 1. Let Li,j be the subspace
spanned by Ei,j . There is a direct sum decomposition

sl(nC) = h⊕i,j Li,j .

The restriction of the adjoint action of sl(n,C) to h preserves this decom-
position and the action of h on itself is trivial. Let z1, . . . , zn : h→ C record
the diagonal entries of elements in h. Of course,

∑n
i=1 zi = 0. Then the

adjoint action of H ∈ h on Li,j is scalar multiplication by zi(H) − zj(H).
The required basis is any basis of the form a basis for h union {Ei,j} where,
as before the indexing set is 1 ≤ i, j ≤ n; i 6= j.
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The space h is the eigenspace with joint eigenvalues 0 for the adjoint ac-
tion of h, and as we have just seen Li,j is the one-dimensional joint eigenspace
with joint eigenvalue zi − zj : h→ C.

So it is clear that h is an abelian subalgebra and the image of h under the
adjoint representation are diagonalizable. Also, it is clear from the adjoint
action of h on the Li,j that h is a maximal abelian subalgebra. This proves
that it is a Cartan subalgebra.

Lastly, we need to see that there are no non-trivial ideals in sl(n,C). Let
I 6= 0 be an ideal of sl(n,C).

Definition 2.3. We let Hi,i be the matrix with 1 in the (i, i) place and zero
elsewhere. (Notice that Hi,i is not an element of sl(n,C).)

Claim 2.4. There is a pair (i, j) with i 6= j such that Ei,j ∈ I.

Proof. If there is a non-zero element H ∈ h contained in I, then for some i
we have zi+1(H) − zi(H) 6= 0. Since H ∈ I, the bracket [Ei.i+1, H] ∈ I. It
is a non-zero multiple of Ei,i+1. Scaling proves that Ei,i+1 ∈ I.

Otherwise there is an element X ∈ I and (i, j), with i 6= j such that
the (i, j) entry in X is non-zero. Fix a non-zero element H ∈ h such that
zk(H) = z`(H) for all k, ` 6= i. Then [H,X] ∈ I and [H,X] consists of a
matrix made of the sum of a multiple of the ith-row of X minus the same
multiple of its ith column. Now let H ′ be a non-zero element in h such that
zk(H

′) = z`(H
′) for all k, ` 6= j. Then [H ′, [H,X]] ∈ I and consists of a

matrix whose (i, j) entry is ai,j 6= 0 and whose only other possible non-zero
entry is the j, i entry with coefficient aj,i. Then twice this element plus the
bracket of Hi,i −Hj,j with it is contained in I and has only the (i, j) entry
non-zero.

At this point we have shown that there is (i, j) such that Ei,j ∈ I. Since
[Ei,j , Ej,k] = Ei,k for k 6= i shows that Ei,k ∈ I for every k 6= i. Since
[Ei,k, E`,i] = −E`,k for ` 6= k shows that for all i 6= j the matrix Ei,j ∈ I.
Lastly, [Ei,i+1, Ei+1,i] = Hi,i − Hi+1,i+1 ∈ h. As i ranges from 1 to n − 1
hese elements form a basis for h. This proves that a C-basis for sl(n,C) is
contained in I and hence I = sl(n,C).

We list here some of its important properties of sl(n,C), and their ana-
logues for general semi-simple algebras.

(•) There is a Cartan subalgebra h ⊂ sl(n,C). Every semi-simple algebra
has a Cartan subalgebra and it is unique up to the adjoint action.
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(•) The action of the Cartan subalgebra decomposes sl(n,C) into h plus
a collection of 1-dimension subspaces Li,j . For a general semi-simple Lie
algebra g, the adjoint action of h on g decomposes it as g = h⊕αLα with the
Lα being a one-dimensional joint eigenspace for h with eigenvalue α : h→ C.
The linear map α is the root and Lα is the root space associated to the root
α.

(•) In the case of sl(n,C) the subspace h is the zero eigenspace for the h
action, and each Li,j corresponds to a 1-dimensional eigenspace with joint
eigenvalue αi,j = zi − zj : h → C. Of course αj,i = −αi,j . In general the
roots α are distinct and non-zero and th set of roots is invariant under
multiplication by −1.

(•) For i, j, k distinct, we have [Ei,j , Ej,k] = Ei,k, [Ei,j , Ek,i] = −Ek,j ,
and [Ei,j , Ej,i] ∈ h. For all other pairs [Ei,j , Er,s] = 0. The statement for a
pairs of roots in a general semi-simple Lie algebra is that if α, α′, and α+α′

are roots then [Lα, Lα′ ] = Lα+α′ . Also, if α′ = −α, then [Lα, Lα′ ] is nonzero
and contained in h. If neither of these conditions holds for the roots α and
α′, then [Lα, Lα′] = 0.

(•) The bracket [Li,j , Lj,i] ∈ h and these elements span h. Also, we
have[[Li,j , Lj,i], Li,j ] 6= 0. The statement for a general semi-simple Lie alge-
bra is [Lα, L−α] is a one-dimensional subspace of h and as α varies over all
roots, these subspaces generate h and [[Lα, L−α], Lα] 6= 0.

(•) The 3-dimensional Lie algebra Li,j⊕Lj,i⊕[Li,j , Lj,i] is the Lie algebra
of sl(2,C) and is the Lie algebra of SL(2,C) ⊂ SL(n,C) by the embedding
induced by the inclusion of C2 → Cn whose image is the sum of the ith and
jth coordinate axes. For a general semi-simple Lie algebra, for any root α,
the subspace Lα⊕L−α⊕ [Lα, L−α] is a Lie subalgebra isomorphic to sl(2,C)

2.1 Split Real Form of sl(n,C) and general Semi-Simple Lie
Algebras

By a real structure for a complex Lie algebra g we mean a real Lie algebra
gR togther with an isomorphism of gR ⊗R C ∼= g. Another way to say this
is we have a complex anti-linear involution X 7→ X that commutes with
the bracket. Then setting gR equal to the fixed points of this involution
produces a real Lie subalgebra of gR witjh gR ⊗R C = g.

In the standard presentation of sl(n,C) it comes equipped with a ‘natu-
ral’ real structure where the anti-involution is simply the usual conjugation
of complex matrices. It is clear that the brackets are real with respect to this
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structure (i.e., commute with conjugation). Of course the real Lie algebra
is sl(n,R) ⊂ sl(n,C).

This real form sl(n,R) is called the split real form of sl(n,C). Real split
forms are characterized by the fact that (i) the Cartan subalgebra h of the
complex Lie group is real (i.e., invariant under conjugation) and (ii) the
eigenvalues of the conjugation action of the real subspace hR on gC are real,
i.e. the roots α : h → C are real, that is to say commute with conjugation.
The real Lie group then decomposes under the adjoint action of hR as

gR = hR ⊕α LR,α

with LR,α = Lα ∩ gR.

Theorem 2.5. Every complex semi-simple Lie algebra has a real split form.

We shall not prove this result (I imagine Peter Woit will talk about it
next semester). It is not deep but it does require a study of the way the
roots are related to each other.

3 The Compact form of sl(n,C) and other Semi-
Simple Lie Algebras

There is another real form of sl(n,C). Consider SU(n) ⊂ SLn(C). This is

a real subgroup. Its Lie algebra su(n) is A ∈ sl(n,C) satisfying A
tr

= −A.

This leads us to consider the anti-involution A 7→ −Atr. Clearly, this is
an involution and since A 7→ −Atr is complex linear, this involution is
complex anti-linear. Its fixed points are su(n). Not only is the fixed set (the
real subspace) a sub Lie algebra, but also the bracket commutes with this
involution since

[Atr, Btr] = AtrBtr −BtrAtr = (BA)tr − (AB)tr = −[A,B]tr

[−A,−B] = −(−[A,B])

and
[A,B] = [A,B].

Together these imply

[−Atr,−Btr
] = −[A,B]

tr
.

This real form has the property that it is the Lie algebra of a compact
Lie group, namely SU(2n).
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Theorem 3.1. Eery semi-simple Lie group g has a compact real form.

Proof. (sktech) We prove this assuming the existence of a split real form gR
for g. Let hR be the real points of h under the involution associated with
the real split form.

There is a general theorem about the roots of a semi-simple algebra.
Given a Cartan subalgebra and its roots. It is possible to divide the roots
into two sets: positive roots and negative roots so that each pair {α,−α}
has exactly one member that is ‘positive’ and one that is ‘negative’. Then
given any set of generators Xα ∈ Lα there is an automorphism of the Lie
algebra that is −1 on the Cartan and for every positive root α sends Xα to
X−α. (It does not necessarily send X−α to Xα.) Choosing the Xα to be in
the split real form gives a real automorphism ϕ : gR → gR. In the case of
sl(n,C) this involution is A 7→ −Atr.

Claim 3.2. ϕ is an involution.

Proof. Consider a Xα ∈ Lα and let Yα ∈ L−α = ϕ(Xα). Then set Hα =
[Xα, Yα] = H ∈ h. Since ϕ is an automorphism, we have

[ϕ(Xα), ϕ(Yα)] = ϕ(Hα) = −Hα.

We conclude that [ϕ(Yα), Yα] = Hα =]Xα, Yα]. Since ϕ(Yα) ∈ Lα, it follows
that ϕ(Yα) = Xα. This proves that on the root spaces ϕ2 = Id. Since
ϕ|h = −1, its square is also the identity on h.

Now consider the composition ϕ◦σ = σ ◦ϕ where σ is anti-linear involu-
tion determined by the split real form. This is an anti-linear involution. Let
gc be its fixed subspace. It is another real from for g. It has the property
that its intersection with h is ihR.

Now let us introduce the quadratic Casimir operator. This is a bilinear
form on g defined by

B(X,Y ) = Trace(ad(X) ◦ ad(Y )).

Clearly this is a symmetric complex bilinear form on g. If g0 is a real form
of g, then the restriction of B to g0 is a real symmetric bilinear form.

Claim 3.3. If gc is a compact real form for g then the restriction to gc of
B is negative definite.
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Proof. Let hc = h ∩ gc. Since hR is the split real form α : hR → R for each
root. From the fact that hc = ihR we see that α : hc → iR.

Trace(ad(h) ◦ ad(h)) =
∑
α

α(h)2.

Fix h ∈ hc. Then
B(h, h) =

∑
α

α(h)2 ≤ 0.

To see that B(h, h) < 0 we need only show that there is a root α with
α(h) 6= 0. But if α(h) = 0 for all roots α, then [h, Lα] = 0 for all root spaces
Lα. Of course [h, h] = 0. Together these prove that h is in the center of g.
But the center is an ideal of g and hence must be zero, showing that h = 0.
This proves that the Tr(h ◦ h) < 0 for all h ∈ h0.

Since any root vector Xα ∈ Lα maps the eigenspace with eigenvalue a
to one with eigenvalue a+ α 6= a, it follows that Trace(Xα ◦Xβ) = 0 unless
β = −α. Thus, under B the two-dimensional spaces Vα = Lα ⊕ L−α are
pairwise orthogonal and orthogonal to hR . Fix Xα ∈ Lα ∩ gR and let Yα =
ϕ(Xα) ∈ L−α∩gR. Then the basis for (Lα⊕L−α)∩gc is {Xα−Yα, iXα+iYα}.
We hav just seen that these two dimensional spaces are mutually orthogonal
under B and also each is orthogonal to ihR.

Since B is negative definite on ihR we need only see that B is negative
definite on each of these two dimensional spaces. We compute

Trace((a(ad(Xα)− ad(Yα)) + b(ad(iXα) + ad(iYα)))2) =

Trace(((a+ b)ad(Xα) + (−a+ ib)ad(Yα))2).

Since Trace(X2
α) = Trace(Y 2

α ) = 0, the above trace is

(a+ib)(−a+ib)(Trace(ad(Xα)◦ad(Yα)+ad(Yα)◦ad(Xα)) = −2(a2+b2)Trace(ad(Xα)◦ad(Yα)).

The computation of all finite dimensional sl(2,C) representations shows
that on any irreducible representation V we have TraceV (Xα ◦ Yα) ≥ 0 and
the trace is 0 only for the trivial representation. The adjoint representation
decomposes under the sl(2,C) generated by Xα and Yα as a sum of irre-
ducible representations, one of which is the two-dimensional representation.
It follows that Trace(ad(Xα) ◦ Yα) > 0.

This completes the proof that B is negative definite on the two dimen-
sional subspace associated with each pair ±α of roots, and hence is negative
definite on gc.

Next, we need to show that the adjoint action of gc preserves B:
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Claim 3.4.
B([X,Y ], Z) +B(Y, [X,Z]) = 0.

Proof. We compute:

Trace(ad([X,Y ] ◦ ad(Z)) = Trace(ad(X)ad(Y )ad(Z)− ad(Y )ad(X)ad(Z))

Trace(adY ◦ ad([X,Z])) = Trace(ad(Y )ad(X)ad(Z)− ad(X)ad(Z)ad(Y )).

The sum of these two terms is

Trace(ad(X)ad(Y )ad(Z))− Trace(ad(X)ad(Z)ad(Y )),

which vanishes since Trace(AB) = Trace(BA).

Let Gc be the adjoint form of gc; that is to say Gc ⊂ GL(gc) is a subgroup
Auto(gc) with Lie algebra the image under the adjoint representation of
gc → gl(gc). This implies that Gc is a subgroup of the orthogonal group
of B, which is a compact group. On the other hand Gc is the real form of
the complex group ad(G). It follows from the semi-simplicity of g that G is
the component of the identity in Aut(g). [We shall not prove this, it again
follows from a study of the structure of the roots of g.] Thus, that the adjoint
representation sends g isomorphically to End(g) preserving quadratic form
B. Hence, the image under the adjoint map of the real form, gc, is the Lie
subalgebra of End(gc) preserving the restriction of B to gc. Thus, Gc is the
component of the identity of the group of B-orthogonal transformations of
gc. Since B|gc is negative definite, this group is compact.

4 Complete reducibility of representations of sl(n,C)
and more general Semi-Simple Lie Algebras

Theorem 4.1. Any finite dimensional complex representation of sl(n,C) is
completely reducible,

Proof. Let V be a (complex) representation of sl(n,C) and suppose that
W ⊂ V is an sl(n,C)-invariant subspace. Restricting to the compact real
form gives us a representation of su(n) and by the exponential mapping
a complex linear representation SU(n) × V → V . Of course, SU(n) is
compact and W is an SU(n)-invariant subspace. Using a Haar measure and
integrating we introduce an SU(n)-invariant Hermitian inner product on V .
The orthogonal complement W⊥ is invariant under SU(n) and hence under
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su(n) which acts on it by complex linear endomorphisms. Since su(n)⊗RC =
sl(n,C), it follows that W⊥ is also invariant under sl(n,C).

Now the usual induction argument shows complete reducibility of the
sl(n,C).

Remark 4.2. Given the claim that all semi-simple complex Lie algebras
have compact real forms complete reducibility holds for representations of
these Lie algebras as well.

In fact, a wider class of complex Lie algebras, called reductive Lie algebras
have a compact form, and hence any finite dimensional representation of any
reductive group that induces a representation of the compact Lie group is
completely reducible. The simplest reductive group is C∗. Its compact form
is S1 and its split real form is R∗. Using the compact real form and arguing
as above gives another proof that any finite dimensional representation of
C∗ is completely reducible.

5 From Compact Groups to Semi-Simple Lie al-
gebras

What is often presented in mathematical contexts is a compact Lie group,
e.g. the Orthogonal group. From this group we can directly produce a
reductive complex Lie algebra and then a sermi-simple Lie algebra.

Definition 5.1. Let g be a Lie algebra. Its adjoint form, ad(g), is the
subalgebra of gl(g) that is the image of the adjoint map ad : g→ gl(g). The
Adjoint form of g is the quotient of the simply connected Lie group G with
Lie algebra g by its center. The Lie algebra of the Adjoint form of g is the
adjoint form of g.

Theorem 5.2. Let g be a Lie algebra. Suppose the simply connected Lie
group G with Lie algebra g is compact and has finite center. Then:

• The adjoint action of gC is injective and completely reducible meaning
that there is a decomposition gC = ⊕i∈IVi where the Vi are irreducible
representations of gC under the adjoint action.

• The Vi are ideals in the Lie algebra gC.

• For i 6= j, the subalgebras Vi and Vj commute with each other in the
sense that [Vi, Vj ] = 0.

12



• Each Vi is a simple Lie algebra and gC is a semi-simple algebra.

• The Lie algebra of g is a compact real form of gC.

Proof.

Claim 5.3. The center of g is trivial.

Proof. Since the center of G is discrete, the Lie algebra of G and of its
adjoint form are the same. That is to say the adjoint for g is g itself, which
means that the center of g is trivial.

From this we see that the center of gC is trivial, and hence that the
adjiont representation of gC is injective. That is to say, gC is its own adjoint
form. A real form of gC is g and a real form of the adjoint representation
gC ⊗ gC → gC is g ⊗ g → g and the real form of the representation expo-
nentiates to give a linear representation of the adjoint form of G. Since this
group is compact, the standard argument shows that the adjoint represen-
tation of gC on itself is completely decomposable. That is to say gC ∼= ⊕iVi
where the Vi are irreducible sub-representations of gC acting by the adjoint
representation..

Claim 5.4. The Vi are ideals in gC and commute with each other.

Proof. The fact that Vi is a submodule for the adjoint representation means
for any X ∈ gC and any v ∈ Vi we have [X, v] ∈ Vi. That is the statement
that Vi is an ideal. Now suppose that vi ∈ Vi and vj ∈ Vj for i 6= j.
Then [vi, vj ] ∈ Vj and [vi, vj ] = −[vj , vi] ∈ Vi. This proves that [vi, vj ] = 0
and proves the various Vi are commuting ideals. In particular the Vi are
sub-algebas of gC.

Next suppose that Ji ⊂ Vi is an ideal for the adjoint action of Vi on
itself. Since [Vi, Vj ] = 0 for i 6= j and J is an ideal for Vi acting on itself, J
is an ideal for the action of gC. Since Vi is irreducible as a gC-module this
implies that either J = 0 or J = Vi. This shows that the Lie algebra Vi has
no non-trivial ideals, and hence provided that dim(Vi) > 1, Vi is a simple
algebra.

It remains only to show that none of the Vi are one-dimensional. If
dim(Vi) = 1, then [Vi, Vi] = 0, since we have already seen that [Vj , Vi] = 0
for all j 6= i, it follows that [Vi, gC] = 0, which means that Vi is in the center
of gC. But we have already shown that the center of gC is trivial. This
proves that gC is semi-simple.
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Corollary 5.5. Let g be a Lie algebra and suppose that the Adjoint form
of this Lie algebra is a compact group with finite fundamental group, e. g.,
so(n) or su(n). Then gC is semi-simple.

It turns out that there are four infinite series of simple Lie algebras and
5 exceptional Lie simple Lie algebras. The simply series are:

• sl(n,C) with compact form SU(n)

• so(2n)C with compact form SO(2n)

• so(2n+ 1)C with compact form SO(2n+ 1).

• The complex symplectic Lie algebras sp(2n)C with compact form the
intersection of SP (2n)C ∩ SU(2n).

For these four series we immediately have the complex group is semi-simple
and any representation is completely reducible.
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