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July 18, 2022

1 Basics of Group Theory

The following definitions and exercises should be well-known to you. If not,
work through them, consulting an elementary text on abstract group theory
as needed.

Definition 1.1. A group is a set G with a multiplication m : G × G → G,
written m(g1, g2) = g1g2, that:

1. is associative ((g1g2)g3) = (g1(g2g3)), for all g1, g2, g3 ∈ G,

2. has a unit e ∈ G such that eg = ge = g for all g ∈ G, and

3. has inverses, for every g ∈ G, there is g−1 ∈ G with gg−1 = g−1g = e.

A subgroup of a group G is a subset of the underlying set of G that contains
the identity element of G and is closed under multiplication and taking
inverses. If H ⊂ G is a subgroup then we define the set or left cosets of H
to be the set of equivalence classes of elements of G where g ∼= g′ if there is
h ∈ H with gh = g′. Similarly, define the right cosets of H.

Given two groupsG andH there is a product groupG×H. Its underlying
set is the set-theoretic product of the underlying sets of G and H. The
multiplication is given by (g1, h1)(g2, h2) = (g1g1, h1h2).

Exercise 1. Show that the identity element is unique, and show that for
each g ∈ G its inverse is unique.
Exercise 2. Show that this multiplication defines a group structure. Iden-
tity the identity element and the inverse of (g, h).
3. Extend this to an arbitrary product of any set of groups.
4. Let S be a set. Show the set of bijective functions forms a group under
composition: namely g1g2 is the composition of first applying the bijection
g2 and then applying the bijection g1. This group is denoted Aut(S). Show
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that if S is a set of n elements then its group of bijections Aut(S) is a finite
group of order n.

Definition 1.2. If G and H are groups a homomorphhism ψ : G → H is
a set function from the underlying set of G to that of H that preseves the
multiplication and identities. Show that the kernel of a homorphism (the
elements sent to the idenity) is a subgroup of G.

An action of a group on a set S is a homomorphism from G→ Aut(S).
That is to say there is a function G× S → S written (g, s) 7→ gs such that
g1(g2s) = (g1g2)s and es = s for all s ∈ S.

Let G be a group. An automorphism of G is an automorphism of the
underlying set that is a homomorphism of the group to itself.
Exercise 5. Show that if ψ : G→ G is an automorphism, then the inverse
function ψ−1 : G → G is also an automorphism of G. Conclude that the
set of automorphisms of G forms a group under composition. This group is
denoted Aut(G).
Exercise 6. Show that there is a natural homomorphism G → Aut(G)
given by sending g ∈ G to the automorphism that sends g′ ∈ G to gg′g−1.
Show that the kernel of this action is the center of G, i.e., the element
z ∈ G, that commute with eery element of G, in the sense that zg = gz for
all g ∈ G.

A subgroup H ⊂ G is normal if the conjugation action of G on itself
stabilizes H, i.e., maps H to itself. Show that the center of G is a normal
subgroup.
Exercise 7. Show that the kernel of a homomorphism ψ : G → K is a
normal subgroup. Conversely, show that if H ⊂ G is a normal subgroup then
there is an induced multiplication on the set of left cosets G/H producing
a group structure on G/H with the property that the natural quotient map
G→ G/H is a surjective homomorphism with kernel H.

A group is abelian if g1g2 = g2g1 for all elements g1, g2 ∈ G.
Exercise. 8 Show that every subgroup of an abelian group is normal.

A group N is nilpotent if there is a series of normal subgroups of N

{e} ⊂ Nk ⊂ Nk−1 ⊂ · · · ⊂ N1 = N

with the property that for each j, Nj/Nj+1 is contained in the center of
N/Nj+1.

Example. Strictly upper triangular integral n × n matrices form a
nilpoint group under matrix multiplication.
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2 Basics of Algebraic Geometry

Fix a field K.. Then K[x1, . . . , xn] of polynomial functions in n-variables
is the ring of algebraic functions on Kn. A subvariety of Kn (also called
an affine algebraic variety) is the locus of vanishing of a given collection of
polynomials. It is an easy exercise to show that any subvariety of Kn is the
locus of vanishing of a finite set of polynomials. Hence, the sub-varieties
are the closed subsets of a topology on Kn, called the Zariski topology. If
V is a sub-variety of Kn and I(V ) ⊂ K[x1, . . . , xn] is the ideal of functions
vanishing identically on V , then we define the ring of algebraic functions on
V to be K[x1, . . . , xn]/I(V ). Thus, the algebraic functions on V are exactly
the restrictions of algebraic functions on all of Kn to V . The inclusion of an
affine sub-variety into Kn is then an algebraic mapping (i.e., one that pulls
algebraic functions on Kn bak to algebraic functions on V ).

For any non-zero function f ∈ K[x1, . . . , xn], letDf be the divisor defined
by f , meaning the locus where f vanishes. Without loss of generality it
suffices to assume that f is not a power greater than 1 of another polynomial.
Then the complement Kn\Df is itself an affine variety under the embedding
U ⊂ Kn×K where the map on the first factor is the inclusion and the map
on the second factor is 1/f . Under this embedding the ring of polynomial
functions on U is the ring generated by the restrictions of the xi and f−1 to
U .

It is not true that every Zariski open subset of Kn is an affine variety.
For example K2 \ {(0, 0)} is not an affine algebraic variety. The point is
that any mapping K2 \ {(0, 0)} → K that is algebraic is the restriction of
a polynomial of two variables, so any algebraic map K2 \ {(0, 0)} → Kn

extends over K2. [To make this argument rigorous, one must introduce the
notion of more general varieties as ringed spaces.]

3 Basics of Differential Topology

Two central theorems from Calculus are:

Theorem 3.1. (Inverse Function Theorem) Let U ⊂ Rn be an open subset
and Φ: U → Rn a smooth function. If for some x ∈ U we have DΦx : Rn →
Rn is a linear isomorphism, then there is a neighborhood V ⊂ U of x so that
Φ|V : V → Rn is a diffeomorphism of V onto an open subset of Rn.

A direct application of the Inverse Function Theorem is the following:
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Theorem 3.2. (The Implicit Function Theorem) Let U ⊂ Rn be an open
subset and M ⊂ U a closed subset of U given by the vanishing of a smooth
funcion Φ: U → Rk. If at a point x ∈ M , the differential DΦx : Rn →
Rk is surjective, then after re-numbering the coordinates of Rn, we have
Rn = Rn−k × Rk with x = (x1, x2), a neighborhood V1 of x1 in Rn−k, a
neighborhood V2 of x2 ∈ Rk, and a smooth function ψ : V1 → V2 so that
M ∩ (V1 × V2) is the graph of ψ. In particular, projection of M → Rn−k is
a local diffeomorphism near x.

Now suppose that U ⊂ Rn is an open set and Φ: U → Rk is a smooth
function whose differential is of rank k at every x ∈ M . Then the inverses
of the local projections from the implicit function theorem given smooth
maps from open subsets of Rn−k to M , homeomorphisms whose images
cover M and with the property that on the overlap of two of these maps the
composition of one followed by the inverse of the other is a diffeomorphism
between open subsets of Rn−k.

This leads us to the abstract definition of a smooth manifold of dimension
r. It has a covering by open subsets each equipped with a homeomorphism
to an open subset of Rr so that on the overlaps the composition of the inverse
of one followed by the other is a diffeomorphism between open subsets of Rr.
Two such coordinate atlases define the same smooth structure on the space
if the overlaps between the two sets of charts satisfy the same condition (i.e.,
if the union of the two sets of smooth charts is another set of smooth charts.

Smooth manifolds are the objects of a category, the smooth category.
The morphisms are smooth maps, i.e., maps which with respect to the local
smooth coordinate systems on domain and range are smooth (i.e., C∞) in
the usual sense.

This category has finite products and sums (disjoint unions)
Associated to any smooth manifold is its tangent bundle. The fiber over

x ∈ M is the tangent space to M at x. This can be thought of as the dual
space to the quotient of the ideal functions on M vanishing at x modulo
the square of this ideal. It can also be thought of equivalence classes of
curves passing through x at parameter value 0, where two such curves are
equivalent if they agree to first order at x. Given such a curve γ(t) and a
function ϕ vanishing at x the pairing is

〈γ, ϕ〉 =
dϕ ◦ γ(t)

dt
|t=0.

Using local coordinates (x1, . . . , xn) a basis for the tangent space at x
is {(∂/∂xi)|x}. Thus, using local coordinate systems we give a product
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structure to the union over a coordinate patch of the tangent spaces at the
various points The product structure identifies the standard basis of Rn

with {(∂/∂xi)|x}. Of course, if we change the local coordinates this product
structure changes but it changes by a smooth vary automorphism, i.e., a
smooth map from the overlap of the two coordinate systems to GL(n,R).

Thus, these local trivializations fit together to define the structure of
a smooth vector bundle over the manifold, called its tangent bundle, and
denoted TM . Its fiber at x ∈ M is TxM .. A smooth map f : M → N lifts
to a map of vector bundles Df : TM → TN .
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