Lie Groups: Fall, 2022 Lecture VIC: Killing Form and Semi-simplicity

December 11, 2022

1 The Main Result

Here is the main result we shall establish.

Theorem 1.1. Let \mathfrak{g} be a finite dimensional complex Lie algebra. The following are equivalent.

- The radical of g is trivial.
- The Killing form $B: \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{C}$ given by $B(X,Y) = Tr(ad(X) \circ ad(Y))$ is non-degenerate.
- g is semi-simple.

Corollary 1.2. If \mathfrak{g} is a finite dimensional, complex Lie algebra and \mathfrak{r} is it stadical, then $\mathfrak{g}/\mathfrak{r}$ is semi-simple

Proof. (that the theorem implies the corollary) If L is a finite dimensional Lie algebra with a solvable ideal I with the property that L/I is a solvable Lie algebra then L is solvable. From this it follows that the radical of $\mathfrak{g}/\mathfrak{r}$ is trivial. According to the theorem this means $\mathfrak{g}/\mathfrak{r}$ is semi-simple.

Since a simple algebra has no non-trivial ideals and a semi-simple algebra is a commuting direct sum of simple algebras, the only ideals of a semi-simple algebra are themselves semi-simple algebras. If \mathfrak{g} has a non-trivial, solvable ideal, then either that ideal is abelian or its commutator sub algebra is a non-zero nilpotent ideal. In that case the center of that nilpotent ideal is a non-zero commutative ideal. Thus, if the radical of \mathfrak{g} is non-zero, then \mathfrak{g} has a non-zero commutative ideal. Since a non-zero commutative algebra is a direct sum of one-dimensional algebras it is not semi-simple. This shows that the third item of Theorem 1.1 implies the first.

According to Corollary 4.3 of Lecture VIB, the null space of the Killing form is a solvable ideal of \mathfrak{g} . Thus, the first item of the theorem implies the second.

To complete the proof of the theorem itt remains to show that if the Killing form is non-degenerate then \mathfrak{g} is semi-simple. That is the content of the next two sections.

2 the Casimir Operator

In this subsection we study a Lie algebra \mathfrak{g} and a finite dimensional \mathfrak{g} -module V with the property that $B_V(X,Y) = Tr_V(XY)$ is a non-degenerate pairing. Fundamental to this study is the notion of a Casimir operator.

2.1 Casimir operators C_V

Definition 2.1. Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a Lie algebra. We define a right action of \mathfrak{g} on the linear dual \mathfrak{g}^* .

$$\mathfrak{g}^*\otimes\mathfrak{g}
ightarrow\mathfrak{g}^*$$

by $(\varphi \otimes X)(Y) = \varphi(ad(X)Y)$. Direct computation shows that this is a right action.

The non-degenerate pairing B_V induces an isomorphism $\Psi \colon \mathfrak{g} \to \mathfrak{g}^*$ sending X to $B_V(X, \cdot)$.

Claim 2.2. For $X, Y \in \mathfrak{g}$ we have $\Psi(X) \cdot Y = \Psi \cdot (ad(X)(Y))$.

Proof. $\Psi(X) \cdot Y$ is the homomorphiusm $B_V(X, [Y, \cdot]) \colon \mathfrak{g} \to \mathbb{C}$. On the other hand, $\Psi \cdot (ad(X)(Y))$ is the homomorphism $B_V([X, Y], \cdot)$. As we have seen before, these homomorphisms are equal.

Now we view B_V as an element in $\mathfrak{g}^* \otimes \mathfrak{g}^*$. The equation $B_V([X, Y], Z) + B_V(Y, [X, Z]) = 0$ is the statement that under the right action of \mathfrak{g} on $\mathfrak{g}^* \otimes \mathfrak{g}^*$ given by $(f \otimes g) \cdot X = (f \cdot X) \otimes g + f \otimes (g \cdot X)$, the element B_V is invariant under the \mathfrak{g} action. We obtain an element $(\Psi \otimes \Psi)^{-1}(B_V) \in \mathfrak{g} \otimes \mathfrak{g}$ that is invariant under the usual action of \mathfrak{g} on $\mathfrak{g} \otimes \mathfrak{g}$; namely the action $X \cdot (Y \otimes Z) = [X, Y] \otimes Z + Y \otimes [X, Z]$.

Next, let us write an expression for $(\Psi \otimes \Psi)^{-1}(B_V)$. Fix. basis $\{X_i\}_i$ for \mathfrak{g} and let $\{Y_i\}_i$ be the basis dual to the first one under B_V ; that is to say $B_V(X_i, Y_J) = \delta(i, j)$. Then we have the algebraically dual bases $\{X_i^*\}_i$ and

 $\{Y_i\}^*$ of \mathfrak{g}^* . Clearly, $\Psi(X_i) = Y_i^*$ and $\Psi(Y_i) = X_i^*$, and $B_V = \sum_i X_i^* \otimes Y_i^*$. Consequently,

$$(\Psi \otimes \Psi)^{-1}(B_V) = \sum_i X_i \otimes Y_i.$$

We can also view C_V as an element in the universal enveloping algebra $U(\mathfrak{g})$; namely $C_V = \sum_i X_i Y_i$. This element is invariant under the natural adjoint action of the Lie \mathfrak{g} on $U(\mathfrak{g})$, given by $X \cdot a = Xa - aX$ for any $a \in U(\mathfrak{g})$ and any $X \in \mathfrak{g}$

Corollary 2.3. Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a subalgebra with the property that $B_V \colon \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{C}$ is non-degenerate. Then $C_V \colon V \to V$ is a homomorphism of \mathfrak{g} -modules and its trace is dim(\mathfrak{g}).

Proof. Since C_V is invariant under the action of \mathfrak{g} , for all $X \in \mathfrak{g}$ we have $XC_V = C_V X$. That is to say $X(C_V(v)) = C_V(Xv)$, or equivalently that $C_V \colon V \to V$ is a morphism of \mathfrak{g} -modules. Since $B_V(X_i, Y_i) = 1$, it follows that for each i, $Tr_V(X_iY_i) = 1$, and hence $Tr_V(\sum_i X_iY_i) = \dim(\mathfrak{g})$. \Box

3 Complete reducibility of g-modules V with B_V non-degenerate

Theorem 3.1. Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a sub Lie algebra. Suppose that B_V is non degenerate. Then V is completely reducible as a \mathfrak{g} -module.

Proof. It suffices to prove that every \mathfrak{g} -submodule of V has a complementary \mathfrak{g} -submodule. If $\mathfrak{g} \subset \mathfrak{gl}(V)$ is the trivial algebra, then this is clear. We assume from now on that $\mathfrak{g} \subset \mathfrak{gl}(V)$ is a non-zero.

Case 1. The g-submodule is of codimension 1. We argue by induction on the dimension of V. When V has dimension 1 the result is trivial. Suppose that we know the result for all g-modules V' of dimension less than V and let $W \subset V$ be a g-submodule of codimension 1. Suppose that W is not simple. That is to say, W has a g-submodule W' different from W and $\{0\}$. Then $W/W' \subset V/W'$ is of codimension 1 and since $W' \neq \{0\}$, the dimension of V/W" is less than that of V. By induction, there is a complementary g-submodule $L \subset V/W'$ to W/W'. The pre-image, \tilde{L} of L in V is a g-submodule that contains W' as a codimension 1 submodule. Furthermore, since $W' \neq W$, the dimension of \tilde{L} is less than that of V. Hence, by induction there is a complementary g-module $L' \subset \tilde{L}$ to W'. It remains to consider the case when $W \subset V$ is a simple \mathfrak{g} -module. The Casimir map $C_V \colon V \to V$ is a \mathfrak{g} -module map and it maps W to W and is trivial on the one-dimensional quotient V/W. Since W is a simple \mathfrak{g} -module, $(C_V)|_W$ is multiplication by a constant. Thus, $Tr(C_V) = Tr((C_V)|_W)$. Since the dimension of $\mathfrak{g} \subset \mathfrak{gl}(V)$ is positive, it follows from Corollary 2.3 that $Tr((C_V)|_W)$ is positive and hence $C_V|_W$ is multiplication by a positive constant and hence an isomorphism. Since C_V induces the zero map from $V/W \to V/W$, it follows that $Ker(C_V)$ is a complementary linear subspace to W. Since C_V is a \mathfrak{g} -module map its kernel is a \mathfrak{g} -module. This produces the complementary \mathfrak{g} -module to W. This completes the proof when for submodules of codimension 1.

Case 2. The g-submodule is of codimension > 1. Now we consider a general submodule $W \subset V$ of codimension k. If W is not simple as a g-module, then dividing pout by a proper submodule and arguing by induction on the dimension of V we see that, similarly to the argument in the codiemsnion 1 case, W has a complementary g-module.

It remains to consider the case when W is simple. Then $\operatorname{Hom}_{\mathfrak{g}}(W, W)$ is one dimensional consisting only of scalar multiplication. For \mathfrak{g} -modules A and B, we define a \mathfrak{g} -module structure on $\operatorname{Hom}_{\mathbb{C}}(A, B)$ by

$$X \cdot f(a) = X(f(a)) - f(Xa).$$

Then the restriction map

$$\rho \colon \operatorname{Hom}_{\mathbb{C}}(V, W) \to \operatorname{Hom}_{\mathbb{C}}(W, W)$$

is a surjective \mathfrak{g} -module map. In $\operatorname{Hom}_{\mathbb{C}}(W, W)$ there is the one-dimensional \mathfrak{g} -submodule $\operatorname{Hom}_{\mathfrak{g}}(W, W)$. The pre image $U = \rho^{-1}(\operatorname{Hom}_{\mathfrak{g}}(W, W))$ is a \mathfrak{g} -submodule of $\operatorname{Hom}_{\mathbb{C}}(V, W)$ mapping onto the trivial 1-dimensional module $\operatorname{Hom}_{\mathfrak{g}}(W, W)$. The kernel of ρ is a \mathfrak{g} -submaodule of U of codimension 1.

By the previous case, there is a one-dimensional \mathfrak{g} -submodule L of U complementary to $\operatorname{Ker}(\rho)$. This \mathfrak{g} -module has the trivial \mathfrak{g} -action, meaning that every element in L is a \mathfrak{g} -module homomorphism from $V \to W$. The element of L that maps to Id_W then has as kernel a \mathfrak{g} -module complementary to W.

3.1 Completion of the Proof of Theorem 1.1

Corollary 3.2. Let \mathfrak{g} be afinite dimensional, complex Lie algebra. If the Killing form B for \mathfrak{g} is non-degnerate, then \mathfrak{g} is semi-simple.

Proof. By Theorem 3.1 as a \mathfrak{g} -module under the adjoint action \mathfrak{g} decomposes as a direct sun of simple \mathfrak{g} -modules:

$$\mathfrak{g}=\oplus_{i\in I}V_i.$$

Since each V_i is a \mathfrak{g} -module and hence an ideal of \mathfrak{g} and consequently a subalgebra. Similarly, for $i \neq j$, we have $[V_i, V_j] = 0$, so that the V_i are commuting subalgebras. Since ad(X)ad(Y) = 0 if X and Y lie in different simple factors, the bilinear form B_V is an orthogonal direct sum of the forms B_{V_i} and in particular in B_{V_i} is non-degenerater..

Lastly, since V_i is a simple \mathfrak{g} -module and $[V_j, V_i] = 0$ for $j \neq i$, it follows that V_i is a simple V_i -module. Thus, it has no non-trivial V_i -submodules, and hence each V_i is either a simple algebra or of dimension 1. But if V_i is of dimension 1, then B_{V_i} is the zero bilinear form. This contradicts the noon-degeneracy of B_{V_i} .

Thus, $\mathfrak{g} = \oplus V_i$ is a decomposition of \mathfrak{g} as a direct sum of commuting simple Lie subalgebras, each of which is an ideal. This proves that \mathfrak{g} is a semi-simple algebra.

This completes the proof of Theorem 1.1.

4 Texchnical Results

Here we establish the technical results we needed in the study of semisimple algebras. about semi-simple Lie algebras:: (i) the existence of a Cartan subalgebra, (ii) that a Cartan is its own centralizer. In addition, we establish that for any root α there is a subalgebra, which we denote $\mathfrak{sl}(2)_{\alpha}$ isomorphic to $\mathfrak{sl}(2,\mathbb{C})$ and containing $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$ as the root spaces of this semi-simple subalgebra.

4.1 x_{ss} and x_n for x in a semi-simple Lie algebra

Let $x \in \mathfrak{gl}(V)$ (with V a finite dimensional complex vector space). Then the Jordan-Holder decomposition is $x = x_{ss} + x_n$ where x_{ss} is semi-simple and x_n is nilpotent and $[x_{ss}, x_n] = 0$. There is a unique such decomposition.

Claim 4.1. Consider $ad(x) \in \mathfrak{gl}(\mathfrak{gl}(V))$. Its Jordan-Holder decomposition is

$$ad(x) = ad(x_{ss}) + ad(x_n),$$

i.e. as elements in $\mathfrak{gl}(\mathfrak{gl}(V))$ we have $(ad(x))_{ss} = ad(x_{ss})$ and $(ad(x))_n = ad(x_n)$.

Proof. $ad(x) = ad(x_{ss}) + ad(x_n)$ and $[ad(x_{ss}), ad(x_n)] = ad([x_{ss}, x_n]) = 0$. Since x_{ss} is semi-simple, choosing a basis in which it is diagonal, we see that $ad(x_{ss})$ is semi-simple with invariant spaces being the one-dimensional subspaces $\{E_{i,j}\}_{1 \le i,j \le n}$ with non-zero entry only in the $(i, j)^{th}$ -position. As we have seen before, the fact that x_n is nilpotent implies that $ad(x_n)$ is nilpotent. Since the Jordan Holder decomposition of ad(x) is unique, this completes the proof.

We proved in Lemma 1.1 of Lecture VI that for $x \in \mathfrak{gl}(V)$ there are polynomials p(T) and q(T) with zero constant term such that $x_{ss} = p(x)$ and $x_n = q(x)$. Applying this to ad(x) yields the following.

Corollary 4.2. Given $x \in \mathfrak{gl}(V)$ there are polynomials p(T) and q(T) with zero constant term such that $ad(x_{ss}) = p(ad(x))$ and $ad(x_n) = q(ad(x))$.

Theorem 4.3. Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a semi-simple subalgebra and let $x \in \mathfrak{g}$. Let $x = x_{ss} + x_n$ be the Jordan-Holder decomposition of $x \in \mathfrak{gl}(V)$ into commuting semi-simple and nilpotent elements of $\mathfrak{gl}(V)$. Then x_{ss} and x_n are contained in \mathfrak{g} .

Proof.

Claim 4.4. Consider the sub Lie algebra of $\mathfrak{gl}(V)$ consisting of all $X \in \mathfrak{gl}(V)$ with the following properties:

- For each \mathfrak{g} -submodule $W \subset V$, $X \cdot W \subset W$ and $Tr_W(X) = 0$.
- $[X,\mathfrak{g}] \subset \mathfrak{g}.$

This subset is a sub Lie algebra $\mathfrak{g}' \subset \mathfrak{gl}(V)$ that contains \mathfrak{g} as an ideal.

Proof. (of claim) Fixing a \mathfrak{g} -submodule W, the set of X that stabilize W is a sub Lie algebra of $\mathfrak{gl}(V)$, and since Tr([X, Y]) = 0 for all X, Y, the X that stabilize W and have trace 0 when restricted to W is a sub Lie algebra. Also the set of X with $[X, \mathfrak{g}] \subset \mathfrak{g}$ is a sub Lie algebra. Hence, the intersection of all these sub Lie algebras is a sub Lie algebra. Since \mathfrak{g} is semi-simple, $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$, thus the trace of $X \in \mathfrak{g}$ on any \mathfrak{g} -module is trivial. From this it follows immediately that $\mathfrak{g} \subset \mathfrak{g}'$. Since $[\mathfrak{g}', \mathfrak{g}] \subset \mathfrak{g}$, we have that \mathfrak{g} is an ideal in \mathfrak{g}' .

Now let us turn to the proof of the theorem. Let \mathfrak{g}' be as in the claim. Since \mathfrak{g} is an ideal in \mathfrak{g}' , it follows that \mathfrak{g}' is a \mathfrak{g} -module. By Theorem 3.1, there is a \mathfrak{g} -submodule $U \subset \mathfrak{g}'$ with $\mathfrak{g}' = \mathfrak{g} \oplus U$. Since U is a \mathfrak{g} -submodule $[\mathfrak{g}, U] \subset U$. But since \mathfrak{g} is an ideal in $\mathfrak{g}', [U, \mathfrak{g}] \subset \mathfrak{g}$. This implies that $[\mathfrak{g}, U] = 0$, i.e., that all $X \in U$ commute with \mathfrak{g} . This means that for every $X \in U$ the linear map $X \colon V \to V$ is a \mathfrak{g} -module homomorphism. Since $U \subset \mathfrak{g}'$, for $W \subset V$ a simple \mathfrak{g} -submodule X maps W to W and its restriction to W has zero trace. Since X is a \mathfrak{g} -module map and W is a simple \mathfrak{g} -module $X|_W$ is multiplication by a constant. Since the trace of this map is zero, that constant is 0. Hence, the restriction of X to any simple \mathfrak{g} -submodule of V is trivial. On the other hand, by complete reducibility of \mathfrak{g} -modules, the \mathfrak{g} -module V is a direct sum of simple \mathfrak{g} -modules and X acts trivially on each of these summands. Hence, X = 0. Since X was an arbitrary element of U, this shows that U = 0 and hence $\mathfrak{g} = \mathfrak{g}'$.

Now we have seen (Lemma 1.1 in Lecture VI) that both x_{ss} and x_n are given by polynomials in x with zero constant term. Fix a \mathfrak{g} -submodule Wof V. Since $x \in \mathfrak{g}$, it follows that $x \cdot W \subset W$. Thus, for any polynomial p(x)we have $p(x) \cdot W \subset W$. This shows that $x_{ss} \cdot W \subset W$ and $x_n \cdot W \subset W$. Since x_n is nilpotent, its restriction to W is nilpotent and hence has zero trace. Since $x_{ss} = x - x_n$ and both x and x_n have zero trace on W, the same is true of s_{ss} . Lastly, we must show that $[x_{ss}, \mathfrak{g}] \subset \mathfrak{g}$, and similarly for x_n . But $ad(x_{ss})$ is a polynomial in ad(x) with zero constant term since $ad(x)(\mathfrak{g}) \subset \mathfrak{g}$, we also have $ad(x_{ss})(\mathfrak{g}) \subset \mathfrak{g}$. An analogous argument shows $ad(x_n)(\mathfrak{g}) \subset \mathfrak{g}$. This shows that x_{ss} and x_n are elements of $\mathfrak{g}' = \mathfrak{g}$, completing the proof. \Box

Definition 4.5. Since the adjoint representation, $ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$, is injective, for any $x \in \mathfrak{g}$ it is natural to define x_{ss} and x_n in \mathfrak{g} so that $ad(x_{ss}) = ad(x)_{ss}$ and $ad(x_n) = ad(x)_n$. Since ad is an injection and $ad(x)_{ss}$ and $ad(x)_n$ are both contained in the image of the adjoint representation, this does indeed produce elements x_{ss} and x_n in \mathfrak{g} .

Lemma 4.6. Let \mathfrak{g} be a semi-simple Lie algebra and fix $x \in \mathfrak{g}$. Suppose $x = x_{ss} + x_n$ is as in Definition 4.5. Then x_{ss} is ad-semi-simple, x_n is ad nilpotent, and $[x_{ss}, x_n] = 0$. Furthermore, x_{ss} and x_n are the unique pair of elements summing to x with these three properties.

Proof. This is obvious from the definition, the fact that the adjoint representation is injective, and the uniqueness of the Jordan-Holder decomposition for any element in the endomorphism algebra of a finite dimensional complex vector space. \Box

Now let us show that the decomposition $x = x_{ss} + x_n$ continues to hold under the image of any representation of \mathfrak{g} . **Proposition 4.7.** Let \mathfrak{g} be a semi-simple Lie algebra and let $x \in \mathfrak{g}$. Suppose that $\rho: \mathfrak{g} \otimes V \to V$ is a finite dimensional \mathfrak{g} -module. Then $(\rho(x))_{ss} = \rho(x_{ss})$ and $(\rho(x))_n = \rho(x_n)$

Proof. Let $\mathfrak{g} = \bigoplus_i \mathfrak{g}_i$ be the decomposition of \mathfrak{g} into its simple (commuting) factors. Suppose $x \in \mathfrak{g}$. We write $x = \sum_i x_i$ with $x_i \in \mathfrak{g}_i$. Since $ad_{\mathfrak{g}} = \sum_i ad_{\mathfrak{g}_i}$, we see that $x_{ss} = \sum_i (x_i)_{ss}$ and $x_n = \sum_i (x_i)_n$. Thus, it suffices to prove the proposition when \mathfrak{g} is a simple Lie algebra. Assuming that \mathfrak{g} is simple, any $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V)$ is either 0 or an embedding. If ρ is zero the result is obvious.

Now suppose that \mathfrak{g} is simple and ρ is an embedding. According to Proposition 4.3, the elements $(\rho(x))_{ss}$ and $(\rho(x))_n$ in $\mathfrak{gl}(V)$ are contained in $\rho(\mathfrak{g})$. Let x_{ss}^V and x_n^V be the elements in \mathfrak{g} with $\rho(x_{ss}^V) = (\rho(x))_{ss}$ and $\rho(x_n^V) = (\rho(x))_n$. The element $ad(\rho(x_{ss}^V))$ is semi-simple on $\mathfrak{gl}(V)$ and the element $ad(\rho(x_n^V))$ is nilpotent on $\mathfrak{gl}(V)$. Thus, $ad(\rho(x_{ss}^V))$ is semi-simple on $\rho(\mathfrak{g})$ and $ad(\rho(x_n^V))$ is nilpotent on $\rho(\mathfrak{g})$. Since $\rho(x_{ss}^V)$ and $\rho(x_n^V)$ commute, the same is true of $ad(\rho(x_{ss}^V))$ and $ad(\rho(x_n^V))$. This means that $ad(\rho(x_{ss}^V))$ and $ad(\rho(x_n^V))$ are the semi-simple and nilpotent terms in the Jordan-Holder decomposition of $ad(\rho(x))$ acting on \mathfrak{g} . This means that $ad(x_{ss}^V)$ and $ad(x_n^V)$ are the semi-simple and nilpotent terms in the Jordan-Holder decomposition of $ad(\rho(x))$ acting on \mathfrak{g} . This means that $ad(x_{ss}^V)$ and $ad(x_n^V)$ are the semi-simple and nilpotent terms in the Jordan-Holder decomposition of $ad(\rho(x))$ acting on \mathfrak{g} . This means that $ad(x_{ss}^V)$ and $ad(x_n^V)$ are the semi-simple and nilpotent terms in the Jordan-Holder decomposition of ad(x). By definition, this means $x_{ss}^V = x_{ss}$ and $x_n^V = x_n$. Thus, $\rho(x_{ss}) = (\rho(x))_{ss}$ and $\rho(x_n) = (\rho(x))_n$.

5 Existence of a Cartan subalgebra

Lemma 5.1. Let \mathfrak{g} be a complex semi-simple Lie algebra and suppose that L is a subalgebra with the property that for every $x \in L$ is ad(x) semi-simple. Then L is an abelian subalgebra.

Proof. Let $x \in L$ and we prove the result by showing that all the eigenvalues of $ad_L(x)$ are zero. Arguing by contradiction, suppose that there is $y \in L$ an eigenvector for $ad_L(x)$ with non-zero eigenvalue a, $ad_L(x)(y) = ay$. Now $ad_L(y)(x)$ is a sum of eigenvectors of $ad_L(y)$ with non-zero eigenvalue. But $ad_L(y)(x) = -ad_L(x)y = -ay$, and this is an eigenvector of $ad_L(y)$ with zero eigenvalue. This is a contradiction, and hence all eigenvalues of $ad_L(x)$ are zero.

Lemma 5.2. If \mathfrak{g} is a semi-simple complex Lie algebra, then there is a semi-simple element in \mathfrak{g} .

Proof. If $x \in \mathfrak{g}$ has a Jordan decomposition $x = x_{ss} + x_n$ then both x_{ss} and x_n are contained in \mathfrak{g} . Thus, either every element of \mathfrak{g} is nilpotent or there is a semi-simple element in \mathfrak{g} . But by Corollary 2.4 of Lecture VIB, if every element of \mathfrak{g} is nilpotent then \mathfrak{g} is a nilpotent Lie algebra. Since every non-zero nilpotent algebra has a non-trivial center, and hence has a one-dimensional ideal. Either this is a proper ideal or the dimension of the Lie algebra is one. In both cases the Lie algebra is not semi-simple.

Corollary 5.3. There are subalgebras $\mathfrak{h} \subset \mathfrak{g}$ consisting of only semi-simple elements. A maximal such one is a Cartan subalgebra of \mathfrak{g}

5.1 \mathfrak{h} is its own Centralizer \mathfrak{g}

For this subsection we fix a semi-simple Lie algebra ${\mathfrak g}$ and a Cartan subalgebra ${\mathfrak h}.$

Now we write

$$\mathfrak{g} = C \oplus_{\alpha} \mathfrak{g}_{\alpha}$$

where C is the subspace that commutes with \mathfrak{h} (the 0 eigenspace), where α ranges over non-zero elements in \mathfrak{h}^* , and where \mathfrak{g}_{α} is the α -eigenspace for \mathfrak{h} .

Claim 5.4. If $a, b \in \mathfrak{h}^*$ are eigenvalues for the action of \mathfrak{h} on \mathfrak{g} and $a+b \neq 0$, then $B(\mathfrak{g}_a, \mathfrak{g}_b) = 0$

Proof. Since $ad(\mathfrak{g}_a)(\mathfrak{g}_c) \subset \mathfrak{g}_{a+c}$, the composition $ad(\mathfrak{g}_a) \circ ad(\mathfrak{g}_b)$ sends \mathfrak{g}_c to \mathfrak{g}_{a+b+c} and as long as $a+b \neq 0$ the trace of such a map is zero. \Box

Corollary 5.5. The restriction of B to $C \otimes C$ is non-degenerate.

Proposition 5.6. $C = \mathfrak{h}$. That is to say \mathfrak{h} is its own centralizer.

Proof. Step 1. The semi-simple part of every element of C is contained in \mathfrak{h} .

Let $x \in C$ and we write the Jordan decomposition $x = x_{ss} + x_n$. Since $ad(x_{ss})$ is a polynomial with zero constant term in ad(x) and $\mathfrak{h} \subset \text{Ker}(ad((x), \text{ it follows that } \mathfrak{h} \in \text{Ker}(ad(x_{ss})))$. The maximality of \mathfrak{h} among subalgebras consisting only of semi-simple elements means that $x_{ss} \in \mathfrak{h}$.

Step 2. The Killing form restricted to \mathfrak{h} is non-degenerate.

Suppose that $h \in \mathfrak{h}$ and $B(h, \mathfrak{h}) = 0$. To establish the statement we show that this implies that h = 0. Let $x \in C$ with Jordan decomposition $x = x_{ss} + x_n$. By Step 1 the element $x_{ss} \in \mathfrak{h}$ so that $B(h, x_{ss}) = 0$. Since x_n is nilpotent, by Lemma 1.3 of Lecture VIB, $ad(x_n)$ is nilpotent. Since $[h, x_n] = 0$ the elements $ad(x_n)$ and ad(h) commute. But the composition

of commuting elements, one of which is nilpotent, is nilpotent. This implies that the composition $ad(h)ad(x_n)$ is nilpotent and hence has zero trace. This shows that B(h, C) = 0. By Corollary 5.5 the restriction of B to $C \otimes C$ is non-degenerate, so h = 0, proving that the restriction of B to $\mathfrak{h} \otimes \mathfrak{h}$ is non-degenerate.

Step 3. C is nilpotent.

For any $x \in C$ with $x = x_{ss} + x_n$ as above, we know that $x_{ss} \in \mathfrak{h}$ and thus $ad_C(x_{ss}) = 0$. On the other hand, by Lemma 1.3 of Lecture VIB, since x_n is nilpotent $ad_C(x_n)$ is also nilpotent. This shows that $ad_C(x)$ is nilpotent for every $x \in C$. From this it follows by Corollary 2.4 of Lecture VIB that C is a nilpotent Lie algebra.

Step 4. $\mathfrak{h} \cap [C, C] = 0$.

For $h \in \mathfrak{h}$ and $x, y \in C$ we have B(h, [x, y]) = B([h, x], y) = B(0, y) = 0. Since the restriction of B to $\mathfrak{h} \otimes \mathfrak{h}$ is non-degenerate the statement follows. **Step 5.** [C, C] = 0.

Claim 5.7. If N is a nilpotent Lie algebra and if $I \subset N$ is a non-zero ideal, then the intersection of I and the center of N is non-zero.

Proof. I is an N-module via the adjoint representation. According to Proposition 2.3 of Lecture VIB for every $x \in N$ the adjoint representation ad(x) is nilpotent. Thus, the action of N on I consists of nilpotent transformations. Therefore by Lemma 1.4 of Lecture VJB, there is a flag $0 \subset I_1 \subset I_2 \subset \cdots \subset I_k = I$ of N submodules of I with the property that $[N, I_j] \subset I_{j-1}$. In particular, $[N, I_1] = 0$ and hence I_1 is contained in the center of N.

Since we know that C is nilpotent, if $[C, C] \neq 0$ then by the claim there is $0 \neq z \in [C, C]$ that is in the center of C. It cannot be the case that $z \in \mathfrak{h}$ since we have already seen that $\mathfrak{h} \cap [C, C] = 0$. Thus, $z = z_{ss} + z_n$ and since $z_{ss} \in \mathfrak{h}$, we have $z_n \neq 0$. Since $z_{ss} \in \mathfrak{h}$ is contained in the center of C, we have that z_n is contained in the center of C. By Lemma 1.3 of Lecture VIB, since z_n is nilpotent, $ad_{\mathfrak{g}}(z_n)$ is nilpotent. Since z_n commutes with every $c \in C$, $ad_{\mathfrak{g}}(z_n)$ commutes with $ad_{\mathfrak{g}}(c)$ for every $c \in C$. But the composition of commuting elements, one of which is nilpotent is nilpotent, so that $ad_{\mathfrak{g}}(z_n) \circ ad_{\mathfrak{g}}(c)$ is nilpotent. Thus, $B(z_n, c) = Tr(ad_{\mathfrak{g}}(z_n) \circ ad_{\mathfrak{g}}(c)) = 0$. Since this is true for all $c \in C$ and since by Corollary 5.5 the restriction of the Killing form to $C \otimes C$ is non-degenerate, this implies that $z_n = 0$. This proves that [C, C] = 0.

Step 6. $C = \mathfrak{h}$.

If $C \neq \mathfrak{h}$ let $z \in C \setminus \mathfrak{h}$ and as before write $z = z_{ss} + z_n$ with $z_{ss} \in \mathfrak{h}$. Thus, $z_n \in C \setminus \mathfrak{h}$. Since C is abelian $ad_{\mathfrak{g}}(z_n)$ commutes with $ad_{\mathfrak{g}}(c)$ for every $c \in C$. But $ad_{\mathfrak{g}}(z_n)$ is nilpotent, thus so is $ad_{\mathfrak{g}}(z_n) \circ ad_{\mathfrak{g}}(c)$. This shows that $B(z_n, c) = 0$ for all $c \in C$. By the non-degeneracy of the restriction of B to $C \otimes C$, we conclude that $z_n = 0$, which is a contradiction. \Box

5.2 Summary

Now we have established the basic facts: (i) existence of a Cartan subalgebra, (ii) the fact that a Cartan is it is its own centralizer, and (iii) the Killing form is non-degenerate. The one other result result we used in Lecture VI was that any element of the derived sub algebra of a solvable Lie algebra \mathfrak{g} acts in a nilpotent way on any \mathfrak{g} -module. This follows from the facts that (i) the nilradical of a solvable algebra is its derived subalgebra (Theorem 3.3 of Lecture VIB), (ii) that the nilradical of a Lie algebra \mathfrak{g} is contained in the nilpotent ideal of any \mathfrak{g} -module (Theorem 2.12 of Lecture VIB), and (iii) that every element in the nilpotent ideal of a \mathfrak{g} -module V acts by a nilpotent transformation on V (Corollary 2.8 and Definition 2.9 of Lecture VIB).

Here we recap what we have now established. Fix a semi-simple Lie algebra $\mathfrak{g}.$

- (i) g has a Cartan subalgebra; i.e., a maximal abelian subalgebra all of whose elements are semi-simple.
- (ii) The centralizer of any Cartan subalgebra \mathfrak{h} is itself.
- (iii) \mathfrak{g} is an \mathfrak{h} -module by the restriction to \mathfrak{h} of the adjoint representation. This module decomposes as

$$\mathfrak{g} = \mathfrak{h} \oplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$$

where Φ is a finite subset of $\mathfrak{h}^* \setminus \{0\}$. The $\alpha \in \Phi$ are the *roots* and the \mathfrak{g}_{α} are the *root spaces*.

- (iv) The root spaces \mathfrak{g}_{α} are one-dimensional.
- (v) The bracket $[\mathfrak{h}, \mathfrak{g}_{\alpha}]$ is given by $[h, X] = \alpha(h)X$.
- (vi) $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}.$
- (vii) The restriction of the Killing form B to \mathfrak{h} is non-degenerate and hence identifies \mathfrak{h} and \mathfrak{h}^* .
- (viii) For each root α , setting $t_{\alpha} \in \mathfrak{h}$ equal to the element corresponding to $\alpha \in \mathfrak{h}^*$ under the isomorphism in (vii) we have $\alpha(t_{\alpha}) \neq 0$.

- (ix) The subalgebra $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus \mathbb{C}(t_{\alpha})$ is isomorphic to $\mathfrak{sl}(2,\mathbb{C})$. It is denoted $\mathfrak{sl}(2)_{\alpha}$
- (x) The Killing form B induces a non-degenerate form on \mathfrak{h}^* which we denote by $\langle a, b \rangle$. For any root α we have

$$B(t_{\alpha}, t_{\alpha}) = \alpha(t_{\alpha}) = \langle \alpha, \alpha \rangle.$$

(xii) For a root α we define

$$h_{\alpha} = \frac{2t_{\alpha}}{B(t_{\alpha}, t_{\alpha})} = \frac{2t_{\alpha}}{\langle \alpha, \alpha \rangle}$$

Fixing $X \in \mathfrak{g}_{\alpha}$ and $Y \in \mathfrak{g}_{-\alpha}$ with $B(X,Y) = 2/B(t_{\alpha}.t_{\alpha})$, the three elements X, h_{α}, Y correspond under an isomorphism of $\mathfrak{sl}(2)_{\alpha}$ with $\mathfrak{sl}(2,\mathbb{C})$ with the standard generators

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

(xiii) For roots α and β we define the *Cartan integer* $n(\alpha, \beta)$ by

$$n(\alpha,\beta) = \frac{2\alpha(h_{\beta})}{\alpha(h_{\alpha})} = \frac{2\langle\alpha,\beta\rangle}{\langle\alpha,\alpha\rangle}.$$

Here are the properties of the root system of a semi-simple Lie algebra:

- (a) The roots span \mathfrak{h}^* .
- (b) The Cartan integers are indeed integers and for every root $n(\alpha, \alpha) = 2$.
- (c) Let $\mathfrak{h}^*_{\mathbb{Q}} \subset \mathfrak{h}^*$ be the rational subspace generated by all the roots. Then $\mathfrak{h}^*_{\mathbb{Q}}$ is a rational form of \mathfrak{h}^* in the sense that $\mathfrak{h}^*_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C} = \mathfrak{h}^*$.
- (d) The restriction of the dual to the Killing form to $\mathfrak{h}^*_{\mathbb{Q}}$ is a positive definite, rational bilinear form
- (e) The rational dual of $\mathfrak{h}^*_{\mathbb{Q}}$ is the rational subspace of \mathfrak{h} generated by the $\{h_{\alpha}\}_{\alpha\in\Phi}$.
- (f) If α is a root then $-\alpha$ is a root and $\pm \alpha$ are the only multiples of α that are roots.
- (g) For each root α , there is an involution I_{α} of \mathfrak{h} that preserves the Killing form, sends h_{α} to $-h_{\alpha}$.

(h) The formula for I_{α} is:

$$I_{\alpha}(h) = h - \frac{2\alpha(h)}{\langle \alpha, \alpha \rangle} h_{\alpha}.$$

The dual involution $I^*_{\alpha} \colon \mathfrak{h}^* \to \mathfrak{h}^*$ is given by

$$I_{\alpha}^{*}(a) = a - \frac{2\langle a, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

thus on a root β is given by the formula

$$I^*_{\alpha}(\beta) = \beta - n(\alpha, \beta)\alpha.$$

The involution I^*_{α} preserves the set of roots.

6 Axioms for Root Systmes

Definition 6.1. More generally, a *root system* consists of a triple (V, B, Φ) where V is a finite dimensional real vector space, B is a positive definite bilinear pairing on V, denoted $\langle \cdot, \cdot \rangle$, and Φ is a finite subset of V, the set of *roots*. These data are required to satisfy the following properties:

- The roots span V.
- If α is a root, then so is $-\alpha$ but no other multiple of α is a root.
- For α, β roots, the quantity $n(\alpha, \beta) = 2\langle \alpha, \beta \rangle / \langle \alpha, \beta \rangle$ is an integer.
- For each root α , there is an involution $I_{\alpha} \colon V \to V$ defined by

$$I_{\alpha}(v) = v - \frac{2\langle \alpha, v \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

This involution preserves the set Φ and the blinear form B.