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1 The Main Result

Here is the main result we shall establish.

Theorem 1.1. Let g be a finite dimensional complex Lie algebra. The
following are equivalent.

• The radical of g is trivial.

• The Killing form B : g⊗g→ C given by B(X,Y ) = Tr(ad(X)◦ad(Y ))
is non-degenerate.

• g is semi-simple.

Corollary 1.2. If g is a finite dimensional, complex Lie algebra and r is it
sradical, then g/r is semi-simple

Proof. (that the theorem implies the corollary) If L is a finite dimensional
Lie algebra with a solvable ideal I with the property that L/I is a solvable
Lie algebra then L is solvable. From this it follows that the radical of g/r is
trivial. According to the theorem this means g/r is semi-simple.

Since a simple algebra has no non-trivial ideals and a semi-simple algebra
is a commuting direct sum of simple algebras, the only ideals of a semi-simple
algebra are themselves semi-simple algebras. If g has a non-trivial, solvable
ideal, then either that ideal is abelian or its commutator sub algebra is a
non-zero nilpotent ideal. In that case the center of that nilpotent ideal is
a non-zero commutative ideal. Thus, if the radical of g is non-zero, then g
has a non-zero commutative ideal. Since a non-zero commutative algebra is
a direct sum of one-dimensional algebras it is not semi-simple. This shows
that the third item of Theorem 1.1 implies the first.
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According to Corollary 4.3 of Lecture VIB, the null space of the Killing
form is a solvable ideal of g. Thus, the first item of the theorem implies the
second.

To complete the proof of the theorem itt remains to show that if the
Killing form is non-degenerate then g is semi simple. That is the content of
the next two sections.

2 the Casimir Operator

In this subsection we study a Lie algebra g and a finite dimensional g-module
V with the property that BV (X,Y ) = TrV (XY ) is a non-degenerate pairing.
Fundamental to this study is the notion of a Casimir operator.

2.1 Casimir operators CV

Definition 2.1. Let g ⊂ gl(V ) be a Lie algebra. We define a right action
of g on the linear dual g∗.

g∗ ⊗ g→ g∗

by (ϕ⊗X)(Y ) = ϕ(ad(X)Y ). Direct computation shows that this is a right
action.

The non-degenerate pairing BV induces an isomorphism Ψ: g→ g∗ send-
ing X to BV (X, ·).

Claim 2.2. For X,Y ∈ g we have Ψ(X) · Y = Ψ · (ad(X)(Y )).

Proof. Ψ(X) · Y is the homomorphiusm BV (X, [Y, ·]) : g→ C. On the other
hand, Ψ · (ad(X)(Y )) is the homomoprhism BV ([X,Y ], ·). As we have seen
before, these homomorphisms are equal.

Now we view BV as an element in g∗⊗g∗. The equation BV ([X,Y ], Z)+
BV (Y, [X,Z]) = 0 is the statement that under the right action of g on
g∗ ⊗ g∗ given by (f ⊗ g) ·X = (f ·X)⊗ g + f ⊗ (g ·X), the element BV is
invariant under the g action. We obtain an element (Ψ⊗Ψ)−1(BV ) ∈ g⊗ g
that is invariant under the usual action of g on g ⊗ g; namely the action
X · (Y ⊗ Z) = [X,Y ]⊗ Z + Y ⊗ [X,Z].

Next, let us write an expression for (Ψ⊗Ψ)−1(BV ). Fix. basis {Xi}i for
g and let {Yi}i be the basis dual to the first one under BV ; that is to say
BV (Xi, YJ) = δ(i, j). Then we have the algebraically dual bases {X∗i }i and
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{Yi}∗ of g∗. Clearly, Ψ(Xi) = Y ∗i and Ψ(Yi) = X∗i , and BV =
∑

iX
∗
i ⊗ Y ∗i .

Consequently,

(Ψ⊗Ψ)−1(BV ) =
∑
i

Xi ⊗ Yi.

We can also view CV as an element in the universal enveloping algebra
U(g); namely CV =

∑
iXiYi. This element is invariant under the natural

adjoint action of the Lie g on U(g), given by X · a = Xa − aX for any
a ∈ U(g) and any X ∈ g

Corollary 2.3. Let g ⊂ gl(V ) be a subalgebra with the property that BV : g⊗
g → C is non-degenerate. Then CV : V → V is a homomorphism of g-
modules and its trace is dim(g).

Proof. Since CV is invariant under the action of g, for all X ∈ g we have
XCV = CVX. That is to say X(CV (v)) = CV (Xv), or equivalently that
CV : V → V is a morphism of g-modules. Since BV (Xi, Yi) = 1, it follows
that for each i, TrV (XiYi) = 1, and hence TrV (

∑
iXiYi) = dim(g).

3 Complete reducibility of g-modules V with BV

non-degenerate

Theorem 3.1. Let g ⊂ gl(V ) be a sub Lie algebra. Suppose that BV is non
degenerate. Then V is completely reducible as a g-module.

Proof. It suffices to prove that every g-submodule of V has a complementary
g-submodule. If g ⊂ gl(V ) is the trivial algebra, then this is clear. We
assume from now on that g ⊂ gl(V ) is a non-zero.

Case 1. The g-submodule is of codimension 1. We argue by
induction on the dimension of V . When V has dimension 1 the result is
trivial. Suppose that we know the result for all g-modules V ′ of dimension
less than V and let W ⊂ V be a g-submodule of codimension 1. Suppose
that W is not simple. That is to say, W has a g-submodule W ′ different from
W and {0}. Then W/W ′ ⊂ V/W ′ is of codimension 1 and since W ′ 6= {0},
the dimension of V/W” is less than that of V . By induction, there is a
complementary g-submodule L ⊂ V/W ′ to W/W ′. The pre-image, L̃ of
L in V is a g-submodule that contains W ′ as a codimension 1 submodule.
Furthermore, since W ′ 6= W , the dimension of L̃ is less than that of V .
Hence, by induction there is a complementary g-module L′ ⊂ L̃ to W ′.
Clearly, L′ is a g-submodule of V complementary to W .

3



It remains to consider the case when W ⊂ V is a simple g-module. The
Casimir map CV : V → V is a g-module map and it maps W to W and is
trivial on the one-dimensional quotient V/W . Since W is a simple g-module,
(CV )|W is multiplication by a constant. Thus, Tr(CV ) = Tr((CV )|W ).
Since the dimension of g ⊂ gl(V ) is positive, it follows from Corollary 2.3
that Tr((CV )|W ) is positive and hence CV |W is multiplication by a positive
constant and hence an isomorphism. Since CV induces the zero map from
V/W → V/W , it follows that Ker(CV ) is a complementary linear subspace
to W . Since CV is a g-module map its kernel is a g-module. This produces
the complementary g-module to W . This completes the proof when for
submodules of codimension 1.

Case 2. The g-submodule is of codimension > 1. Now we consider
a general submodule W ⊂ V of codimension k. If W is not simple as
a g-module, then dividing pout by a proper submodule and arguing by
induction on the dimension of V we see that, similarly to the argument in
the codiemsnion 1 case, W has a complementary g-module.

It remains to consider the case when W is simple. Then Homg(W,W ) is
one dimensional consisting only of scalar multiplication. For g-modules A
and B, we define a g-module structure on HomC(A,B) by

X · f(a) = X(f(a))− f(Xa).

Then the restriction map

ρ : HomC(V,W )→ HomC(W,W )

is a surjective g-module map. In HomC(W,W ) there is the one-dimensional
g-submodule Homg(W,W ). The pre image U = ρ−1(Homg(W,W )) is a g-
submodule of HomC(V,W ) mapping onto the trivial 1-dimensional module
Homg(W,W ). The kernel of ρ is a g-submaodule of U of codimension 1.

By the previous case, there is a one-dimensional g-submodule L of U
complementary to Ker(ρ). This g-module has the trivial g-action, meaning
that every element in L is a g-module homomorphism from V → W . The
element of L that maps to IdW then has as kernel a g-module complementary
to W .

3.1 Completion of the Proof of Theorem 1.1

Corollary 3.2. Let g be afinite dimensional, complex Lie algebra. If the
Killing form B for g is non-degnerate, then g is semi-simple.
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Proof. By Theorem 3.1 as a g-module under the adjoint action g decomposes
as a direct sun of simple g-modules:

g = ⊕i∈IVi.

Since each Vi is a g-module and hence an ideal of g and consequently a
subalgebra. Similarly. for i 6= j, we have [Vi, Vj ] = 0, so that the Vi are
commuting subalgebras. Since ad(X)ad(Y ) = 0 if X and Y lie in different
simple factors, the bilinear form BV is an orthogonal direct sum of the forms
BVi and in particular in BVi is non-degenerater..

Lastly, since Vi is a simple g-module and [Vj , Vi] = 0 for j 6= i, it follows
that Vi is a simple Vi-module. Thus, it has no non-trivial Vi-submodules,
and hence each Vi is either a simple algebra or of dimension 1. But if Vi
is of dimension 1, then BVi is the zero bilinear form. This contradicts the
noon-degeneracy of BVi .

Thus, g = ⊕Vi is a decomposition of g as a direct sum of commuting
simple Lie subalgebras, each of which is an ideal. This proves that g is a
semi-simple algebra.

This completes the proof of Theorem 1.1.

4 Texchnical Results

Here we establish the technical results we needed in the study of semi-
simple algebras. about semi-simple Lie algebras:: (i) the existence of a
Cartan subalgebra, (ii) that a Cartan is its own centralizer. In addition, we
establish that for any root α there is a subalgebra, which we denote sl(2)α
isomorphic to sl(2,C) and containing gα ⊕ g−α as the root spaces of this
semi-simple subalgebra.

4.1 xss and xn for x in a semi-simple Lie algebra

Let x ∈ gl(V ) (with V a finite dimensional complex vector space). Then the
Jordan-Holder decomposition is x = xss + xn where xss is semi-simple and
xn is nilpotent and [xss, xn] = 0. There is a unique such decomposition.

Claim 4.1. Consider ad(x) ∈ gl(gl(V )). Its Jordan-Holder decomposition
is

ad(x) = ad(xss) + ad(xn),

i.e. as elements in gl(gl(V )) we have (ad(x))ss = ad(xss) and (ad(x))n =
ad(xn).
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Proof. ad(x) = ad(xss) + ad(xn) and [ad(xss), ad(xn)] = ad([xss, xn]) = 0.
Since xss is semi-simple, choosing a basis in which it is diagonal, we see
that ad(xss) is semi-simple with invariant spaces being the one-dimensional
subspaces {Ei,j}1≤i,j≤n with non-zero entry only in the (i, j)th-position. As
we have seen before, the fact that xn is nilpotent implies that ad(xn) is
nilpotent. Since the Jordan Holder decomposition of ad(x) is unique, this
completes the proof.

We proved in Lemma 1.1 of Lecture VI that for x ∈ gl(V ) there are
polynomials p(T ) and q(T ) with zero constant term such that xss = p(x)
and xn = q(x). Applying this to ad(x) yields the following.

Corollary 4.2. Given x ∈ gl(V ) there are polynomials p(T ) and q(T )with
zero constant term such that ad(xss) = p(ad(x)) and ad(xn) = q(ad(x)).

Theorem 4.3. Let g ⊂ gl(V ) be a semi-simple subalgebra and let x ∈ g.
Let x = xss + xn be the Jordan-Holder decomposition of x ∈ gl(V ) into
commuting semi-simple and nilpotent elements of gl(V ). Then xss and xn
are contained in g.

Proof.

Claim 4.4. Consider the sub Lie algebra of gl(V ) consisting of all X ∈
gl(V ) with the following properties:

• For each g-submodule W ⊂ V , X ·W ⊂W and TrW (X) = 0.

• [X, g] ⊂ g.

This subset is a sub Lie algebra g′ ⊂ gl(V ) that contains g as an ideal.

Proof. (of claim) Fixing a g-submodule W , the set of X that stabilize W is
a sub Lie algebra of gl(V ), and since Tr([X,Y ]) = 0 for all X,Y , the X that
stabilize W and have trace 0 when restricted to W is a sub Lie algebra. Also
the set of X with [X, g] ⊂ g is a sub Lie algebra. Hence, the intersection
of all these sub Lie algebras is a sub Lie algebra. Since g is semi-simple,
[g, g] = g, thus the trace of X ∈ g on any g-module is trivial. From this it
follows immediately that g ⊂ g′. Since [g′, g] ⊂ g, we have that g is an ideal
in g′.

Now let us turn to the proof of the theorem. Let g′ be as in the claim.
Since g is an ideal in g′, it follows that g′ is a g-module. By Theorem 3.1,
there is a g-submodule U ⊂ g′ with g′ = g ⊕ U . Since U is a g-submodule
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[g, U ] ⊂ U . But since g is an ideal in g′, [U, g] ⊂ g. This implies that
[g, U ] = 0, i.e., that all X ∈ U commute with g. This means that for
every X ∈ U the linear map X : V → V is a g-module homomorphism.
Since U ⊂ g′, for W ⊂ V a simple g-submodule X maps W to W and
its restriction to W has zero trace. Since X is a g-module map and W is a
simple g-module X|W is multiplication by a constant. Since the trace of this
map is zero, that constant is 0. Hence, the restriction of X to any simple
g-submodule of V is trivial. On the other hand, by complete reduciblility
of g-modules, the g-module V is a direct sum of simple g-modules and X
acts trivially on each of these summands. Hence, X = 0. Since X was an
arbitrary element of U , this shows that U = 0 and hence g = g′.

Now we have seen (Lemma 1.1 in Lecture VI) that both xss and xn are
given by polynomials in x with zero constant term. Fix a g-submodule W
of V . Since x ∈ g, it follows that x ·W ⊂W . Thus, for any polynomial p(x)
we have p(x) ·W ⊂W . This shows that xss ·W ⊂W and xn ·W ⊂W . Since
xn is nilpotent, its restriction to W is nilpotent and hence has zero trace.
Since xss = x − xn and both x and xn have zero trace on W , the same is
true of sss. Lastly, we must show that [xss, g] ⊂ g, and similarly for xn. But
ad(xss) is a polynomial in ad(x) with zero constant term since ad(x)(g) ⊂ g,
we also have ad(xss)(g) ⊂ g. An analogous argument shows ad(xn)(g) ⊂ g.
This shows that xss and xn are elements of g′ = g, completing the proof.

Definition 4.5. Since the adjoint representation, ad : g→ gl(g), is injective,
for any x ∈ g it is natural to define xss and xn in g so that ad(xss) = ad(x)ss
and ad(xn) = ad(x)n. Since ad is an injection and ad(x)ss and ad(x)n are
both contained in the image of the adjoint representation, this does indeed
produce elements xss and xn in g.

Lemma 4.6. Let g be a semi-simple Lie algebra and fix x ∈ g. Suppose
x = xss + xn is as in Definition 4.5. Then xss is ad-semi-simple, xn is ad
nilpotent, and [xss, xn] = 0. Furthermore, xss and xn are the unique pair of
elements summing to x with these three properties.

Proof. This is obvious from the definition, the fact that the adjoint represen-
tation is injective, and the uniqueness of the Jordan-Holder decomposition
for any element in the endomorphism algebra of a finite dimensional complex
vector space.

Now let us show that the decomposition x = xss + xn continues to hold
under the image of any representation of g.
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Proposition 4.7. Let g be a semi-simple Lie algebra and let x ∈ g. Suppose
that ρ : g⊗V → V is a finite dimensional g-module. Then (ρ(x))ss = ρ(xss)
and (ρ(x))n = ρ(xn)

Proof. Let g = ⊕igi be the decomposition of g into its simple (commuting)
factors. Suppose x ∈ g. We write x =

∑
i xi with xi ∈ gi. Since adg =∑

i adgi , we see that xss =
∑

i(xi)ss and xn =
∑

i(xi)n. Thus, it suffices to
prove the proposition when g is a simple Lie algebra. Assuming that g is
simple, any ρ : g→ gl(V ) is either 0 or an embedding. If ρ is zero the result
is obvious.

Now suppose that g is simple and ρ is an embedding. According to
Proposition 4.3, the elements (ρ(x))ss and (ρ(x))n in gl(V ) are contained
in ρ(g). Let xVss and xVn be the elements in g with ρ(xVss) = (ρ(x))ss and
ρ(xVn ) = (ρ(x))n. The element ad(ρ(xVss)) is semi-simple on gl(V ) and the
element ad(ρ(xVn )) is nilpotent on gl(V ). Thus, ad(ρ(xVss)) is semi-simple on
ρ(g) and ad(ρ(xVn )) is nilpotent on ρ(g). Since ρ(xVss) and ρ(xVn ) commute,
the same is true of ad(ρ(xVss)) and ad(ρ(xVn )). This means that ad(ρ(xVss))
and ad(ρ(xVn )) are the semi-simple and nilpotent terms in the Jordan-Holder
decomposition of ad(ρ(x)) acting on g. This means that ad(xVss) and ad(xVn )
are the semi-simple and nilpotent terms in the Jordan-Holder decompostion
of ad(x). By definition, this means xVss = xss and xVn = xn. Thus, ρ(xss) =
(ρ(x))ss and ρ(xn) = (ρ(x))n.

5 Existence of a Cartan subalgebra

Lemma 5.1. Let g be a complex semi-simple Lie algebra and suppose that L
is a subalgebra with the property that for every x ∈ L is ad(x) semi-simple.
Then L is an abelian subalgebra.

Proof. Let x ∈ L and we prove the result by showing that all the eigenvalues
of adL(x) are zero. Arguing by contradiction, suppose that there is y ∈ L
an eigenvector for adL(x) with non-zero eigenvalue a, adL(x)(y) = ay. Now
adL(y)(x) is a sum of eigenvectors of adL(y) with non-zero eigenvalue. But
adL(y)(x) = −adL(x)y = −ay, and this is an eigenvector of adL(y) with
zero eigenvalue. This is a contradiction, and hence all eigenvalues of adL(x)
are zero.

Lemma 5.2. If g is a semi-simple complex Lie algebra, then there is a
semi-simple element in g.
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Proof. If x ∈ g has a Jordan decomposition x = xss + xn then both xss
and xn are contained in g. Thus, either every element of g is nilpotent or
there is a semi-simple element in g. But by Corollary 2.4 of Lecture VIB,
if every element of g is nilpotent then g is a nilpotent Lie algebra. Since
every non-zero nilpotent algebra has a non-trivial center, and hence has a
one-dimensional ideal. Either this is a proper ideal or the dimension of the
Lie algebra is one. In both cases the Lie algebra is not semi-simple.

Corollary 5.3. There are subalgebras h ⊂ g consisting of only semi-simple
elements. A maximal such one is a Cartan subalgebra of g

5.1 h is its own Centralizer g

For this subsection we fix a semi-simple Lie algebra g and a Cartan subal-
gebra h.

Now we write
g = C ⊕α gα

where C is the subspace that commutes with h (the 0 eigenspace), where α
ranges over non-zero elements in h∗, and where gα is the α-eigenspace for h.

Claim 5.4. If a, b ∈ h∗ are eigenvalues for the action of h on g and a+b 6= 0,
then B(ga, gb) = 0

Proof. Since ad(ga)(gc) ⊂ ga+c, the composition ad(ga) ◦ ad(gb) sends gc to
ga+b+c and as long as a+ b 6= 0 the trace of such a map is zero.

Corollary 5.5. The restriction of B to C ⊗ C is non-degenerate.

Proposition 5.6. C = h. That is to say h is its own centralizer.

Proof. Step 1. The semi-simple part of every element of C is con-
tained in h.

Let x ∈ C and we write the Jordan decomposition x = xss + xn. Since
ad(xss) is a polynomial with zero constant term in ad(x) and h ⊂ Ker(ad((x),
it follows that h ∈ Ker(ad(xss)). The maximality of h among subalgebras
consisting only of semi-simple elements means that xss ∈ h.
Step 2. The Killing form restricted to h is non-degenerate.

Suppose that h ∈ h and B(h, h) = 0. To establish the statement we
show that this implies that h = 0. Let x ∈ C with Jordan decomposition
x = xss + xn. By Step 1 the element xss ∈ h so that B(h, xss) = 0. Since
xn is nilpotent, by Lemma 1.3 of Lecture VIB, ad(xn) is nilpotent. Since
[h, xn] = 0 the elements ad(xn) and ad(h) commute. But the composition
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of commuting elements, one of which is nilpotent, is nilpotent. This implies
that the composition ad(h)ad(xn) is nilpotent and hence has zero trace.
This shows that B(h,C) = 0. By Corollary 5.5 the restriction of B to C⊗C
is non-degenerate, so h = 0, proving that the restriction of B to h ⊗ h is
non-degenerate.
Step 3. C is nilpotent.

For any x ∈ C with x = xss+xn as above, we know that xss ∈ h and thus
adC(xss) = 0. On the other hand, by Lemma 1.3 of Lecture VIB, since xn
is nilpotent adC(xn) is also nilpotent. This shows that adC(x) is nilpotent
for every x ∈ C. From this it follows by Corollary 2.4 of Lecture VIB that
C is a nilpotent Lie algebra.
Step 4. h ∩ [C,C] = 0.

For h ∈ h and x, y ∈ C we have B(h, [x, y]) = B([h, x], y) = B(0, y) = 0.
Since the restriction of B to h⊗ h is non-degenerate the statement follows.
Step 5. [C,C] = 0.

Claim 5.7. If N is a nilpotent Lie algebra and if I ⊂ N is a non-zero ideal,
then the intersection of I and the center of N is non-zero.

Proof. I is an N -module via the adjoint representation. According to Propo-
sition 2.3 of Lecture VIB for every x ∈ N the adjoint representation ad(x) is
nilpotent. Thus, the action of N on I consists of nilpotent transformations.
Therefore by Lemma 1.4 of Lecture VJB, there is a flag 0 ⊂ I1 ⊂ I2 ⊂
· · · ⊂ Ik = I of N submodules of I with the property that [N, Ij ] ⊂ Ij−1. In
particular, [N, I1] = 0 and hence I1 is contained in the center of N .

Since we know that C is nilpotent, if [C,C] 6= 0 then by the claim there
is 0 6= z ∈ [C,C] that is in the center of C. It cannot be the case that
z ∈ h since we have already seen that h ∩ [C,C] = 0. Thus, z = zss + zn
and since zss ∈ h, we have zn 6= 0. Since zss ∈ h is contained in the center
of C, we have that zn is contained in the center of C. By Lemma 1.3 of
Lecture VIB,, since zn is nilpotent, adg(zn) is nilpotent. Since zn commutes
with every c ∈ C, adg(zn) commutes with adg(c) for every c ∈ C. But the
composition of commuting elements, one of which is nilpotent is nilpotent, so
that adg(zn)◦adg(c) is nilpotent. Thus, B(zn, c) = Tr(adg(zn)◦adg(c)) = 0.
Since this is true for all c ∈ C and since by Corollary 5.5 the restriction of
the Killing form to C ⊗C is non-degenerate, this implies that zn = 0. This
proves that [C,C] = 0.
Step 6. C = h.

If C 6= h let z ∈ C \ h and as before write z = zss + zn with zss ∈ h.
Thus, zn ∈ C \h. Since C is abelian adg(zn) commutes with adg(c) for every
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c ∈ C. But adg(zn) is nilpotent, thus so is adg(zn) ◦ adg(c). This shows that
B(zn, c) = 0 for all c ∈ C. By the non-degeneracy of the restriction of B to
C ⊗ C, we conclude that zn = 0, which is a contradiction.

5.2 Summary

Now we have established the basic facts: (i) existence of a Cartan subalgebra,
(ii) the fact that a Cartan is it is its own centralizer, and (iii) the Killing
form is non-degenerate. The one other result result we used in Lecture VI
was that any element of the derived sub algebra of a solvable Lie algebra g
acts in a nilpotent way on any g-module. This follows from the facts that
(i) the nilradical of a solvable algebra is its derived subalgebra (Theorem
3.3 of Lecture VIB), (ii) that the nilradical of a Lie algebra g is contained
in the nilpotent ideal of any g-module (Theorem 2.12 of Lecture VIB), and
(iii) that every element in the nilpotent ideal of a g-module V acts by a
nilpotent transformation on V (Corollary 2.8 and Definition 2.9 of Lecture
VIB).

Here we recap what we have now established. Fix a semi-simple Lie
algebra g.

(i) g has a Cartan subalgebra; i.e., a maximal abelian subalgebra all of
whose elements are semi-simple.

(ii) The centralizer of any Cartan subalgebra h is itself.

(iii) g is an h-module by the restriction to h of the adjoint representation.
This module decomposes as

g = h⊕α∈Φ gα

where Φ is a finite subset of h∗ \ {0}. The α ∈ Φ are the roots and the
gα are the root spaces.

(iv) The root spaces gα are one-dimensional.

(v) The bracket [h, gα] is given by [h,X] = α(h)X.

(vi) [gα, gβ] ⊂ gα+β.

(vii) The restriction of the Killing form B to h is non-degenerate and hence
identifies h and h∗.

(viii) For each root α, setting tα ∈ h equal to the element corresponding to
α ∈ h∗ under the isomorphism in (vii) we have α(tα) 6= 0.
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(ix) The subalgebra gα⊕g−α⊕C(tα) is isomorphic to sl(2,C). It is denoted
sl(2)α

(x) The Killing form B induces a non-degenerate form on h∗ which we
denote by 〈a, b〉. For any root α we have

B(tα, tα) = α(tα) = 〈α, α〉.

(xii) For a root α we define

hα =
2tα

B(tα, tα)
=

2tα
〈α, α〉

.

Fixing X ∈ gα and Y ∈ g−α with B(X,Y ) = 2/B(tα.tα), the three
elements X,hα, Y correspond under an isomorphism of sl(2)α with
sl(2,C) with the standard generators(

0 1
0 0

)
,

(
1 0
0 −1

)
,

(
0 0
1 0

)
.

(xiii) For roots α and β we define the Cartan integer n(α, β) by

n(α, β) =
2α(hβ)

α(hα)
=

2〈α, β〉
〈α, α〉

.

Here are the properties of the root system of a semi-simple Lie algebra:

(a) The roots span h∗.

(b) The Cartan integers are indeed integers and for every root n(α, α) = 2.

(c) Let h∗Q ⊂ h∗ be the rational subspace generated by all the roots. Then
h∗Q is a rational form of h∗ in the sense that h∗Q ⊗Q C = h∗.

(d) The restriction of the dual to the Killing form to h∗Q is a positive
definite, rational bilinear form

(e) The rational dual of h∗Q is the rational subspace of h generated by the
{hα}α∈Φ.

(f) If α is a root then −α is a root and ±α are the only multiples of α
that are roots.

(g) For each root α, there is an involution Iα of h that preserves the Killing
form, sends hα to −hα.

12



(h) The formula for Iα is:

Iα(h) = h− 2α(h)

〈α, α〉
hα.

The dual involution I∗α : h∗ → h∗ is given by

I∗α(a) = a− 2〈a, α〉
〈α, α〉

α,

thus on a root β is given by the formula

I∗α(β) = β − n(α, β)α.

The involution I∗α preserves the set of roots.

6 Axioms for Root Systmes

Definition 6.1. More generally, a root system consists of a triple (V,B,Φ)
where V is a finite dimensional real vector space, B is a positive definite
bilinear pairing on V , denoted 〈·, ·〉, and Φ is a finite subset of V , the set of
roots. These data are required to satisfy the following properties:

• The roots span V .

• If α is a root, then so is −α but no other multiple of α is a root.

• For α, β roots, the quantity n(α, β) = 2〈α, β〉/〈α, β〉 is an integer.

• For each root α, there is an involution Iα : V → V defined by

Iα(v) = v − 2〈α, v〉
〈α, α〉

α.

This involution preserves the set Φ and the blinear form B.
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