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In order to prepare the way to establish the various technical results
we used in our study of semi-simple Lie algebras, we study nilpotent and
solvable Lie algebras.

1 Nilpotency

Definition 1.1. By a flag in a finite dimensional vector space V we mean
an increasing sequence of subspaces

oO=VycVicWVaC---CcWV=V

where for each 1 <4 < k the inclusion V;_; C Vj; is a proper inclusion.

1.1 Nilpotent Elements

Definition 1.2. Recall that an element = € gl(V) is nilpotent, or more
precisely is a nilpotent transformation of V if 0 = 2™ € gl(V) for some
n > 0.

Lemma 1.3. Let V be a finite dimensional complex vector space. If x €
gl(V') is nilpotent, then ad(z) € gl(gl(V')) is also nilpotent trransformation
of gl(V).

Proof. ad(x)*(y) is a sum of terms of the form +x'yx? where i+ j = k. O
Lemma 1.4. Let V # {0} be a finite dimensional complex vector space.

If g € gl(V) is a sub Lie algebra and if every element of g is a nilpotent
transformation of V', then there is a flag

O=WWcCcWvicWhcC---CV=V
with the property that g-V; C V;_1 for all 1 > 1.



Proof. The proof is by induction on the dimension of g. If the dimension of
g = 0, then there is nothing to prove. Suppose that the dimension of g is
k > 0 and the result holds for all Lie algebras of dimension < k.

For any subalgebra h C g of dimension less than g, consider the adjoint
action of h on g. Since every element of § is a nilpotent transformation of
V, it follows from Lemma 2.3 that this action consists of nilpotent transfor-
mations of g. Clearly, this action preserves fh and hence there is an induced
action of h on g/bh, every element of which is nilpotent. By induction, the
subspace W C g/b annihilated by b is non-zero. Fix y # 0 in W. Then
[h,y] C b. That is to say b’ = b & C(y) is a lie subalgebra and h C b’ is an
ideal of codimension 1. Arguing by induction on dimension (starting with
h = 0), we see that there is an ideal I of codimension 1 in g.

By the inductive hypothesis, the subspace, W C V, of V annihilated
by I is non-zero. Let y € g\ I. Since y normalizes I, it preserves W.
Since y is a nilpotent transformation of V' its restriction to W is a nilpotent
transformation. Hence, there is a non-zero vector w € W in the kernel of y.
Since I and y together generate g, g annihilates w.

This produces 0 C Vi3 C V with Vi # 0 and Vi in the kernel of g.
Consider the quotient W = V/Vi. f W = {0}, then 0 =V, C Vi =V is
the required flag. Otherwise consider the induced action of g on W. It is
an action by nilpotent elements. Hence, by induction on the dimension of
g-modules, we can assume that there is a flag0 C W1 C Wa--- C W =W
as stated in the lemma. For i > 2 set V; equal to the preimage of W;_;
under the natural projection V' — W. Then

0CV1CV2'--CV]H_1:V
is the required flag in V. O

2 Nilpotent Lie Algebras

Definition 2.1. For any Lie algebra g we define ideals inductively by setting
g1 = g and g, = [g, 9m—1]. This is the lower central series for g. Notice
that go = [g, g is the derived subalgebra of g.

A Lie algebra is nilpotent if the lower central series terminates in 0 at
some finite stage. That is to say, if g,, = 0 for some m.

Lemma 2.2. If g is a non-zero nilpotent Lie algebra then its center is non-
zero

Proof. The last non-zero term in the lower central series is contained in the
center of the Lie algebra. O



Proposition 2.3. The following are equivalent:

e g is a nilpotent Lie algebra.

e For some k > 0 all elementary brakcets [x1, [x2, [ - - [Tk—1, Tk]] - - ] van-
ish.
e For some k > 0 for all z1,...,x, € g we have

ad(z1)ad(xe) - - - ad(zy) = 0.
Proof. Since

ad(z1)ad(z2) - - ad(xp—1)(xr) = (21, (T2, - [Xp—1, T8]] - ]

the second and third item are equivalent. On the other hand, g, is the
vector space spanned by the m-fold brackets as in the second item. This
shows that the first and second items are equivalent. O

Corollary 2.4. Ifg C gl(V) is a Lie algebra consisting of elements that are
nilpotent endomorphisms of V', then g is a nilpotent Lie Algebra.

Proof. According to Lemma 2.4 thereisaflagin0CcVp Cc Vi C--- C Vi =
V such that for each i we have g-V; C V;_1. It follows that for each i the
subalgebra g, maps V; to V;_,.. Hence, for r sufficiently large g, = 0. O

Notice that the converse to this corollary is not true. A subalgebra
g of gl(V) can be a nilpotent Lie algebra without consisting of nilpotent
elements. An example is subalgebra of diagonal matrices. It is an abelian
subalgebra hence nilpotent but its elements are semi-simple.

Corollary 2.5. Let g be a finite dimensional Lie algebra. Then g is nilpotent
if and only if ad(x) is nilpotent for every x € g.

Proof. If ad(x) is nilpotent for every = € g, then by Lemma 2.4 applied to
the adjoint representation of g there is a flag

ocvicVe---CVe=g

with [g, Vi] C Vi_1. It now follows immediately from Proposition 3.3 that g
is nilpotent.

Conversely, if g is nilpotent then the lower central series produces a flag
as above so that ad(z) is nilpotent for every x € g. O



2.1 Jordan-Holder Series and Nilpotence

Definition 2.6. Let g be a Lie algebra. A g-module V is simple if V' has
no non-trivial submodules.

Let M # {0} be a finite dimensional g module. A Jordan-Holder series
for M is a sequence of g-submodules

M=My>D M, DMy---D M =0,
where for each i the quotient M;/M;; is a simple g-module.

It is easy to see that there always exists a Jordan-Holder series (which
is not necessarily unique) for any (non-zero) finite dimensional g-module.

Lemma 2.7. Let M be a finite dimensional g-module and let a be an ideal
of g every element of which is a nilpotent endomorphism of M. Let {M;}
be a Jordan-Holder decomposition for M. Then for every i the map induced
by any x € a on M; /M1 is zero. In particular, if M is simple, then a acts
trivially on M.

Proof. For each i we have an induced action of a on M;/M;.; and every
element of a acts by a nilpotent transformation on this sub-quotient. Thus,
by Lemma 2.4, the subspace W C (M;/M;41) annihilated by every x € a
is non-zero. Since a is an ideal of g the subspace W is stable under g.
Hence, W is a non-zero g submodule of M;/M;1. Since M; /M, is simple,
W = (M;/M;+1), showing that the action of a on M;/M;; is trivial. O

Corollary 2.8. Let M be a finite dimensional g-module and {M;} a Jordan-
Holder sequence for M. Then the set of x € g such that for each i the map
induced by x from M;/M; 1 to itself is zero is an ideal. This ideal consists of
elements of g whose action sends each M; to M;y1 and hence are nilpotent
transformations of M.

Proof. Let n be the set of x € g with the property that x - M; C M;1q
for every ¢. Suppose x € n and y € g. Since y - M; C M;, it follows that
[y, z] € n. This proves that n is an ideal. It is clear that every element of n
acts nilpotently on M. O

Definition 2.9. This ideal in the previous corollary is denoted n = n(M)
and is the nilpotent ideal of the g-module M.



2.2 The (Jacobson) Radical of an Algebra

Recall that if A is an associative algebra with unit, then the (Jacobson)
radical J(A) of A is the intersection of all maximal left ideals. This is the
same as the two-sided ideal of all @ € A such that a- M = 0 for every simple
left A-module M.

Lemma 2.10. Suppose that A is a finite dimensional C-algebra. Then J(A)
is a nilpotent ideal in the sense that for some k > 0 we have (J(A))F = 0.

Proof. J(A) is the intersection of two-sided ideals and hence is a two-sided
ideal of A. By the hypothesis on A, the ideal J(A) is finite dimensional over
C. Thus, J(A) has a Jordan-Holder decomposition {J;} with J; D J;4+1 and
the quotients J;/J;+1 being simple A-modules. From the definition of J(A),
we see that its action on J;/Jiy1 is trivial for all i. Thus, J(A4) ® J;(4) —
Ji11(A), and consequently J(A) is nilpotent in the sense that J(A)* = 0 for
some k > 0. O

2.3 The Nilradical of g

Definition 2.11. The nilradical N = N (g) of a Lie algebra g is the inter-
section of the kernels of all simple representations of g. Said another way, it
consists of all x € g such that x - M = 0 for every simple g-module M.

Theorem 2.12. The nilradical of g is a nilpotent ideal of g. It is contained
in the nilpotent ideal of any non-zero, finite dimensional g-module.

Proof. Since N is an intersection of ideals of g, it is an ideal. To prove
that the nilradical is a nilpotent ideal we show that ad(x) is a nilpotent
transformation of g for every z € N and then invoke Corollary 3.5. To do
this let A be the associative subalgebra (over C) of gi(g) generated by 1
and ad(x) for all z € g. Then A is a finite dimensional algebra over C. By
definition g C A and the Lie bracket on g is induced by the ab — ba product
in the associative algebra A. Thus, any A-module is a g-module and since
g generates A as an algebra, any simple A-module is a simple g-module.

Since every element in A/ acts trivially on every simple g-module, a
fortiori it acts trivially on every simple A-module. This shows that A is
contained in the radical J(A). But as we have seen J(A)* = 0 for some
k > 0. Thus, for every z € N the action ad(z) on g is nilpotent. By
Corollary 3.5 this implies that A is a nilpotent ideal of g.

Lastly, suppose that M # {0} is a finite dimensional g module. Let M;
be its Jordan-Holder composition series. For each ¢, the module M;/M;; is



a simple g-module and hence the nilradical acts trivially onM;/M; 1. That
is to say the nilradical maps M; to M;y1. According to Definition 3.9, this
means that the nilradical of g is contained in the nilpotent ideal of M. [

3 Solvable Lie Algebras and the Radical of any Lie
Algebra

3.1 Solvable Lie Algebras

Definition 3.1. Given a Lie algebra g we define the derived series induc-
tively by D1(g) = g and for m > 1:

Dim(g) = [Pm-1(9), Dm-1(g)]-
A Lie algebra is solvable if Dy (g) = 0 for some k > 1.

Notice D2(g) = g2 = [g, g] is the derived subalgebra of g. Since g, D D,
any nilpotent algebra is solvable. Also, notice that for every m > 1 the
quotient Dy, /Dy,+1 is an abelian Lie algebra.

Exercise. Let L be a Lie algebra with an ideal M with quotient the Lie
algebra P. Show that L is solvable if and only if M and P are.

3.2 The Radical

It follows from the exercise in the previous subsection that if I and J are
solvable ideals of a lie algebra L then so is I + J. [J is an ideal of I + J
with quotient /I N J.] It follows from this that any (finite dimensional)
complex lie algebra g has a maximal solvable ideal. This ideal contains all
other solvable ideals.

Definition 3.2. The radical of g, denoted t = t(g), is the maximal solvable
ideal of g.

Exercise. Show that g/t has trivial radical and that v is contained in any
ideal with this property.

Here is the fundamental result that gives the relationshp between the
radical and nilradical of a Lie algebra.

Theorem 3.3. For any finite dimensional complex Lie algebra g the nilrad-
ical of g is the intersection of its radical and its derived subgroup:

N(g) = Da2(g) N



Corollary 3.4. If L is a solvable Lie algebra, then Dy(L) is the nilradical
of L and hence Do(L) is a nilpotent subalgebra.

Corollary 3.5. L is solvable if and only if [L, L] is nilpotent.

Proof. The previous corollary establishes the forward implication. Con-
versely, since L/[L, L] is abelian and hence solvable, if [L, L] is nilpotent
and hence solvable, then it follows that L, which is the extension of the
former by the latter, is solvable, ]

Corollary 3.6. The only simple modules of a solvable Lie algebra g are
one-dimensional and are given by linear maps \: g/[g,g] — C.

Proof. (of corollary, assuming the theorem) Suppose that g is solvable. Then
its nilradical is Dy(g) and hence every simple g-module is induced by pulling
back a simple A(g) = (g/D2(g))-module. But A(g) is an abelian Lie algebra
and consequently its only simple modules are one -dimensional and, up to
isomorphism, are given by a linear map \: A(g) — C. O

Proof. (of theorem) T" = g/D2(g) is an abelian Lie algebra. Any \ € T*
determines a one-dimensional simple g module, which is annihilatd by N.
This shows that A/ C Ker(\). Since this is true for every A € T, N is
contained in the kernel of the quotient map g — 7" and thus N' C Ds(g).
Since N is nilpotent, it is solvable and hence contained in t. This proves
that N' C Da(g) Ne.

To prove the converse we show that for any simple g-module V' the ideal
Dy(g) Nt annihilates V. We fix a simple g-module V and p: g — gl(V) be
the associated Lie algebra homomorphism.

Claim 3.7. Let a C p(D2(g) Nt) be an ideal of p(g), and set S be the
subalgebra of End(V') generated by 1 and = for x € a. Suppose that b C a is
a p(g)-ideal and Try (bs) =0 for allb € b and all s € S. Then b =0.

Proof. Let n = dimc(V). Since b € S, so is b" for all » > 0. Since
Try(bs) = 0 for all s € S, it follows that Try(b") = 0 for all n > 1.
Denote by {\1,...,\,} the diagonal entries of the Jordan canonical form
of b. The coefficients of the characteristic polynomial of b are the elemen-
tary symmetric functions of the {\;}, whereas the trace of b" is ), \I". The
symmetric polynomials of the \; form a polynomial algebra with polynomial
basis the elementary symmetric polynomials. The Newton polynomials give
a way to write each elementary symmetric polynomial as a polynomial in
the pp = >, )\f, so that the pg also form a polynomial basis for the sym-
metric polynomials. It follow that Try (b¥) = 0 for all k if and only if the



characteristic polynomial for b is b = 0, which is equivalent to b being a
nilpotent endomorphism of V. Since this holds for all b € b, the ideal b
consists of nilpotent elements. By Lemma 3.7 the subalgebra b acts trivially
on the simple g-module V' and hence b = 0. 0

We return to the proof of the theorem. Since t is solvable, for some k,
Dy (r) = 0, and consequently, p(D2(g)NDg(r)) = 0. Suppose by contradiction
that p(Da(g) Nt) # 0. Set a = p(Da(g) N Dy(r)), where ¢t > 1 is chosen to
be the largest integer for which this image is non-zero. Since p(D2(g) N
Diy1(r)) = 0, it follows that a C End(V) is a non-zero abelian subalgebra.

We set b = [p(g),a] C a. For any = € p(g) and y € a, we have
Try([z,y]s) = Try(zys — yxs) = Try(zys — xsy) = 0, where the last
equality comes from the fact that ys = sy since a is abelian and s is con-
tained in the subalgebra of End(V') generated by 1 and a. Applying the
claim, we see that b = [p(g), a] = 0, showing that a is in the center of p(g).

Since a is contained in the center of p(g), we conclude that p(g) com-
mutes with S. For z,y € g consider Try(p([x,y])s) = Trv(p(x)p(y)s —
p(y)p(x)s) = Try(p(x)p(y)s—p(x)sp(y)) = 0, where the last equality comes
from the fact that sp(y) = p(y)s. Since a C p(D2(g)), applying the claim
with b = a, we conclude that a = 0. This contradicts the assumption that
a # 0, establishing that p(D2(g) Nt) = 0.

Since V is an arbitrary simple g-module, Da(g) Nt C N. O

Corollary 3.8. Let V be a finite dimensional complex vector space and
g C gl(V) a solvable sub Lie algebra. Then there is a basis for V in which g
1 given by upper triangular matrices, or equivalently, g preserves is a flag

0O=VycCcWVic---CVp=V
with dim(V;/V;_1) = 1 for every i.

Proof. By Corollary 4.6 all simple g-modules are 1-dimensional. Let V =
Voo ViDVeD--- DV, D0 be the Jordan Holder decomposition of V' as a
g-module. Then for each i we have dim(V;/V;11) = 1. Setting V! = Vjiq_,
we have a flag of g-modules

o=VygcVicVyCc---CcViCVi, =V,

where V//V." | has dimension 1 for all 1 <14 < k+1. Choose a basis adapted
to this flag, in the sense that the basis {e1,...,ex+1} has the property that
for each j the subset {ej,...,e;} is a basis for Vj’ . In this basis g is repre-
sented by upper triangular matrices. ]



Corollary 3.9. Let V be a finite dimensional complex vector space and let
g C gl(V) be a sub Lie algebra. Denote by v the radical of g and by N the
nilradical of g. Then N and v are orthogonal under By :

By (N, t) = (Try)|xvoee = 0.

Proof. By Corollary 4.8 there is a flag 0 = Vy C Vi C -+ C Vi, = V with
dim(V;/V;_1) = 1 for each i that is preserved by v. Since the nilradical of
g is equal to the nilradical of v, the ideal N acts trivially on all the simple
t-modules and hence maps V; to V;_; for every i. Hence, for each ¢ and for
any x € v and n € N the composition zn sends V; to V;_1, and consequently
has zero trace. O

4 Cartan’s Criterion for Solvablility

Cartan’s criterion for solvability is the converse to Corollary 4.9.

Theorem 4.1. (Cartan’s Criterion for Solvability) Let V be a finite dimen-
sional complex vector space, let g be a Lie algebra and let p: g — gl(V') be
a representation. Then p(g) is a solvable subalgebra of gl(V') if and only if
p(Da(g)) is orthogonal to p(g) under By .

Proof. Clearly, if suffices to consider the case when g C gl(V') and p is the
identity representation. Corollary 4.9 shows the necessity of the condition
for g to be solvable.

We consider the converse. Suppose that Dy(g) is orthogonal under By
to g.

Claim 4.2. Let A C B C gl(V) be linear subspaces and let T = {t €
gl(V)|[t,B] C A. Ifx € T and Try(zt) = 0 for allt € T, then x is a
nilpotent transformation of V.

Proof. We write x = x5 + n,, the Jordan decomposition of z and we choose
a diagonal basis {e;}]' ; of V for zgs: ws(e;) = Nie; for 1 < i < n. Let
K C V be the rational subspace generated by the \;. To complete the claim
we must show that the \; are all zero, or equivalently that K = 0.

Take the basis {E; ;}1<ij<n for gl(V) where E; j(e,) = 6(i,7)e;. Then
ad(zss)(Ei ;) = (Ai—Aj)E; j. Fix a Q-linear form f: K — Q. Let D € gl(V)
be the element defined by D(e;) = f(\;)e;. Then

ad(D)(E; ;) = (f(N) = fF(A)Eij = f(Ni = Xj)Ei j.



There is a polynomial p(t) with Q coefficients and with 0 constant term
such that p(A; — Aj) = f(\) — f(A;) for all 4, 5. [If A; — A\j = A\, — A¢, then
since f is linear f(\;) — f(A;) = f(Ax) — f(A¢) . Similarly, if \; = X; =0
then f(A\; — Aj) = 0.] Then ad(D) = p(ad(xss)). On the other hand, there
is a polynomial with zero constant term ¢ such that g(ad(x)) = ad(zss). It
follows that ad(D) = p(¢q(ad(x))). Since ad(z)(B) = [z, B] C A, it follows
that ad(D)(B) = [D,B] C A, and hence D € T. Thus, Tr(Dz) = 0. On
the other hand Tr(Dz) = Y, \if(\;), so that 0 = f(Tr(Dx)) =Y, f(\)2.
Since the f()\;) are rational numbers, this imples f(\;) = 0 for all i. But f
was an arbitrary linear form on K and K is generated over Q by A;, so it
follows that any linear form on K is trivial, showing that K is trivial. [

Now we apply this claim to our situation. Let B = g and A = Da(g)
in gl(V) and T as in the claim for this A C B.. Consider ¢t € T and
[z,y] € Da(g). We have Try (t[x,y]) = Trv(([t,z])y]. But [¢,z] € Da(g), so
by hypothesis, Try (([t,z])y) = 0 for all t € T. By linearity, it follows that
Try(tu) = 0 for any u € Da(g) and all t € 7. On the other hand, it is clear
that Do(g) C T. Applying the claim, we see that every element in Do(g) is
a nilpotent transformation of V. It follows from Corollary 3.4 that Da(g) is
a nilpotent Lie Algebra and hence g is solvable. O

Corollary 4.3. Let V be a finite dimensional vector space and g C gl(V).
Then the space of all x € g that are orthogonal under By to g is a solvable
ideal of g.

Proof. Consider L the vector space of x € g orthogonal to g under By .
Since By ([z,y],z) = By(z, [y, z]), it follows that L is an ideal in g. Since
By (L,L) =0 and a fortiori By (L,D2(L)) = 0, it follows from the previous
theorem that L is solvable. O
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