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In order to prepare the way to establish the various technical results
we used in our study of semi-simple Lie algebras, we study nilpotent and
solvable Lie algebras.

1 Nilpotency

Definition 1.1. By a flag in a finite dimensional vector space V we mean
an increasing sequence of subspaces

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V

where for each 1 ≤ i ≤ k the inclusion Vi−1 ⊂ Vi is a proper inclusion.

1.1 Nilpotent Elements

Definition 1.2. Recall that an element x ∈ gl(V ) is nilpotent, or more
precisely is a nilpotent transformation of V if 0 = xn ∈ gl(V ) for some
n > 0.

Lemma 1.3. Let V be a finite dimensional complex vector space. If x ∈
gl(V ) is nilpotent, then ad(x) ∈ gl(gl(V )) is also nilpotent trransformation
of gl(V ).

Proof. ad(x)k(y) is a sum of terms of the form ±xiyxj where i+ j = k.

Lemma 1.4. Let V 6= {0} be a finite dimensional complex vector space.
If g ⊂ gl(V ) is a sub Lie algebra and if every element of g is a nilpotent
transformation of V , then there is a flag

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V

with the property that g · Vi ⊂ Vi−1 for all i ≥ 1.
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Proof. The proof is by induction on the dimension of g. If the dimension of
g = 0, then there is nothing to prove. Suppose that the dimension of g is
k > 0 and the result holds for all Lie algebras of dimension < k.

For any subalgebra h ⊂ g of dimension less than g, consider the adjoint
action of h on g. Since every element of h is a nilpotent transformation of
V , it follows from Lemma 2.3 that this action consists of nilpotent transfor-
mations of g. Clearly, this action preserves h and hence there is an induced
action of h on g/h, every element of which is nilpotent. By induction, the
subspace W ⊂ g/h annihilated by h is non-zero. Fix y 6= 0 in W . Then
[h, y] ⊂ h. That is to say h′ = h⊕ C(y) is a lie subalgebra and h ⊂ h′ is an
ideal of codimension 1. Arguing by induction on dimension (starting with
h = 0), we see that there is an ideal I of codimension 1 in g.

By the inductive hypothesis, the subspace, W ⊂ V , of V annihilated
by I is non-zero. Let y ∈ g \ I. Since y normalizes I, it preserves W .
Since y is a nilpotent transformation of V its restriction to W is a nilpotent
transformation. Hence, there is a non-zero vector w ∈W in the kernel of y.
Since I and y together generate g, g annihilates w.

This produces 0 ⊂ V1 ⊂ V with V1 6= 0 and V1 in the kernel of g.
Consider the quotient W = V/V1. If W = {0}, then 0 = V0 ⊂ V1 = V is
the required flag. Otherwise consider the induced action of g on W . It is
an action by nilpotent elements. Hence, by induction on the dimension of
g-modules, we can assume that there is a flag 0 ⊂ W1 ⊂ W2 · · · ⊂ Wk = W
as stated in the lemma. For i ≥ 2 set Vi equal to the preimage of Wi−1
under the natural projection V →W . Then

0 ⊂ V1 ⊂ V2 · · · ⊂ Vk+1 = V

is the required flag in V .

2 Nilpotent Lie Algebras

Definition 2.1. For any Lie algebra g we define ideals inductively by setting
g1 = g and gm = [g, gm−1]. This is the lower central series for g. Notice
that g2 = [g, g] is the derived subalgebra of g.

A Lie algebra is nilpotent if the lower central series terminates in 0 at
some finite stage. That is to say, if gm = 0 for some m.

Lemma 2.2. If g is a non-zero nilpotent Lie algebra then its center is non-
zero

Proof. The last non-zero term in the lower central series is contained in the
center of the Lie algebra.
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Proposition 2.3. The following are equivalent:

• g is a nilpotent Lie algebra.

• For some k > 0 all elementary brakcets [x1, [x2, [· · · [xk−1, xk]] · · · ] van-
ish.

• For some k > 0 for all x1, . . . , xk ∈ g we have

ad(x1)ad(x2) · · · ad(xk) = 0.

Proof. Since

ad(x1)ad(x2) · · · ad(xk−1)(xk) = [x1, [x2, · · · [xk−1, xk]] · · · ]

the second and third item are equivalent. On the other hand, gm is the
vector space spanned by the m-fold brackets as in the second item. This
shows that the first and second items are equivalent.

Corollary 2.4. If g ⊂ gl(V ) is a Lie algebra consisting of elements that are
nilpotent endomorphisms of V , then g is a nilpotent Lie Algebra.

Proof. According to Lemma 2.4 there is a flag in 0 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vk =
V such that for each i we have g · Vi ⊂ Vi−1. It follows that for each i the
subalgebra gr maps Vi to Vi−r. Hence, for r sufficiently large gr = 0.

Notice that the converse to this corollary is not true. A subalgebra
g of gl(V ) can be a nilpotent Lie algebra without consisting of nilpotent
elements. An example is subalgebra of diagonal matrices. It is an abelian
subalgebra hence nilpotent but its elements are semi-simple.

Corollary 2.5. Let g be a finite dimensional Lie algebra. Then g is nilpotent
if and only if ad(x) is nilpotent for every x ∈ g.

Proof. If ad(x) is nilpotent for every x ∈ g, then by Lemma 2.4 applied to
the adjoint representation of g there is a flag

0 ⊂ V1 ⊂ V2 · · · ⊂ Vk = g

with [g, Vi] ⊂ Vi−1. It now follows immediately from Proposition 3.3 that g
is nilpotent.

Conversely, if g is nilpotent then the lower central series produces a flag
as above so that ad(x) is nilpotent for every x ∈ g.
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2.1 Jordan-Holder Series and Nilpotence

Definition 2.6. Let g be a Lie algebra. A g-module V is simple if V has
no non-trivial submodules.

Let M 6= {0} be a finite dimensional g module. A Jordan-Holder series
for M is a sequence of g-submodules

M = M0 ⊃M1 ⊃M2 · · · ⊃Mk = 0,

where for each i the quotient Mi/Mi+1 is a simple g-module.

It is easy to see that there always exists a Jordan-Holder series (which
is not necessarily unique) for any (non-zero) finite dimensional g-module.

Lemma 2.7. Let M be a finite dimensional g-module and let a be an ideal
of g every element of which is a nilpotent endomorphism of M . Let {Mi}
be a Jordan-Holder decomposition for M . Then for every i the map induced
by any x ∈ a on Mi/Mi+1 is zero. In particular, if M is simple, then a acts
trivially on M .

Proof. For each i we have an induced action of a on Mi/Mi+1 and every
element of a acts by a nilpotent transformation on this sub-quotient. Thus,
by Lemma 2.4, the subspace W ⊂ (Mi/Mi+1) annihilated by every x ∈ a
is non-zero. Since a is an ideal of g the subspace W is stable under g.
Hence, W is a non-zero g submodule of Mi/Mi+1. Since Mi/Mi+1 is simple,
W = (Mi/Mi+1), showing that the action of a on Mi/Mi+1 is trivial.

Corollary 2.8. Let M be a finite dimensional g-module and {Mi} a Jordan-
Holder sequence for M . Then the set of x ∈ g such that for each i the map
induced by x from Mi/Mi+1 to itself is zero is an ideal. This ideal consists of
elements of g whose action sends each Mi to Mi+1 and hence are nilpotent
transformations of M .

Proof. Let n be the set of x ∈ g with the property that x · Mi ⊂ Mi+1

for every i. Suppose x ∈ n and y ∈ g. Since y ·Mi ⊂ Mi, it follows that
[y, x] ∈ n. This proves that n is an ideal. It is clear that every element of n
acts nilpotently on M .

Definition 2.9. This ideal in the previous corollary is denoted n = n(M)
and is the nilpotent ideal of the g-module M .
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2.2 The (Jacobson) Radical of an Algebra

Recall that if A is an associative algebra with unit, then the (Jacobson)
radical J(A) of A is the intersection of all maximal left ideals. This is the
same as the two-sided ideal of all a ∈ A such that a ·M = 0 for every simple
left A-module M .

Lemma 2.10. Suppose that A is a finite dimensional C-algebra. Then J(A)
is a nilpotent ideal in the sense that for some k > 0 we have (J(A))k = 0.

Proof. J(A) is the intersection of two-sided ideals and hence is a two-sided
ideal of A. By the hypothesis on A, the ideal J(A) is finite dimensional over
C. Thus, J(A) has a Jordan-Holder decomposition {Ji} with Ji ⊃ Ji+1 and
the quotients Ji/Ji+1 being simple A-modules. From the definition of J(A),
we see that its action on Ji/Ji+1 is trivial for all i. Thus, J(A) ⊗ Ji(A) →
Ji+1(A), and consequently J(A) is nilpotent in the sense that J(A)k = 0 for
some k > 0.

2.3 The Nilradical of g

Definition 2.11. The nilradical N = N (g) of a Lie algebra g is the inter-
section of the kernels of all simple representations of g. Said another way, it
consists of all x ∈ g such that x ·M = 0 for every simple g-module M .

Theorem 2.12. The nilradical of g is a nilpotent ideal of g. It is contained
in the nilpotent ideal of any non-zero, finite dimensional g-module.

Proof. Since N is an intersection of ideals of g, it is an ideal. To prove
that the nilradical is a nilpotent ideal we show that ad(x) is a nilpotent
transformation of g for every x ∈ N and then invoke Corollary 3.5. To do
this let A be the associative subalgebra (over C) of gl(g) generated by 1
and ad(x) for all x ∈ g. Then A is a finite dimensional algebra over C. By
definition g ⊂ A and the Lie bracket on g is induced by the ab− ba product
in the associative algebra A. Thus, any A-module is a g-module and since
g generates A as an algebra, any simple A-module is a simple g-module.

Since every element in N acts trivially on every simple g-module, a
fortiori it acts trivially on every simple A-module. This shows that N is
contained in the radical J(A). But as we have seen J(A)k = 0 for some
k > 0. Thus, for every x ∈ N the action ad(x) on g is nilpotent. By
Corollary 3.5 this implies that N is a nilpotent ideal of g.

Lastly, suppose that M 6= {0} is a finite dimensional g module. Let Mi

be its Jordan-Holder composition series. For each i, the module Mi/Mi+1 is
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a simple g-module and hence the nilradical acts trivially onMi/Mi+1. That
is to say the nilradical maps Mi to Mi+1. According to Definition 3.9, this
means that the nilradical of g is contained in the nilpotent ideal of M .

3 Solvable Lie Algebras and the Radical of any Lie
Algebra

3.1 Solvable Lie Algebras

Definition 3.1. Given a Lie algebra g we define the derived series induc-
tively by D1(g) = g and for m > 1:

Dm(g) = [Dm−1(g),Dm−1(g)].

A Lie algebra is solvable if Dk(g) = 0 for some k ≥ 1.

Notice D2(g) = g2 = [g, g] is the derived subalgebra of g. Since gm ⊃ Dm

any nilpotent algebra is solvable. Also, notice that for every m ≥ 1 the
quotient Dm/Dm+1 is an abelian Lie algebra.

Exercise. Let L be a Lie algebra with an ideal M with quotient the Lie
algebra P . Show that L is solvable if and only if M and P are.

3.2 The Radical

It follows from the exercise in the previous subsection that if I and J are
solvable ideals of a lie algebra L then so is I + J . [J is an ideal of I + J
with quotient I/I ∩ J .] It follows from this that any (finite dimensional)
complex lie algebra g has a maximal solvable ideal. This ideal contains all
other solvable ideals.

Definition 3.2. The radical of g, denoted r = r(g), is the maximal solvable
ideal of g.

Exercise. Show that g/r has trivial radical and that r is contained in any
ideal with this property.

Here is the fundamental result that gives the relationshp between the
radical and nilradical of a Lie algebra.

Theorem 3.3. For any finite dimensional complex Lie algebra g the nilrad-
ical of g is the intersection of its radical and its derived subgroup:

N (g) = D2(g) ∩ r.
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Corollary 3.4. If L is a solvable Lie algebra, then D2(L) is the nilradical
of L and hence D2(L) is a nilpotent subalgebra.

Corollary 3.5. L is solvable if and only if [L,L] is nilpotent.

Proof. The previous corollary establishes the forward implication. Con-
versely, since L/[L,L] is abelian and hence solvable, if [L,L] is nilpotent
and hence solvable, then it follows that L, which is the extension of the
former by the latter, is solvable,

Corollary 3.6. The only simple modules of a solvable Lie algebra g are
one-dimensional and are given by linear maps λ : g/[g, g]→ C.

Proof. (of corollary, assuming the theorem) Suppose that g is solvable. Then
its nilradical is D2(g) and hence every simple g-module is induced by pulling
back a simple A(g) = (g/D2(g))-module. But A(g) is an abelian Lie algebra
and consequently its only simple modules are one -dimensional and, up to
isomorphism, are given by a linear map λ : A(g)→ C.

Proof. (of theorem) T = g/D2(g) is an abelian Lie algebra. Any λ ∈ T ∗

determines a one-dimensional simple g module, which is annihilatd by N .
This shows that N ⊂ Ker(λ). Since this is true for every λ ∈ T ∗, N is
contained in the kernel of the quotient map g → T and thus N ⊂ D2(g).
Since N is nilpotent, it is solvable and hence contained in r. This proves
that N ⊂ D2(g) ∩ r.

To prove the converse we show that for any simple g-module V the ideal
D2(g) ∩ r annihilates V . We fix a simple g-module V and ρ : g → gl(V ) be
the associated Lie algebra homomorphism.

Claim 3.7. Let a ⊂ ρ(D2(g) ∩ r) be an ideal of ρ(g), and set S be the
subalgebra of End(V ) generated by 1 and x for x ∈ a. Suppose that b ⊂ a is
a ρ(g)-ideal and TrV (bs) = 0 for all b ∈ b and all s ∈ S. Then b = 0.

Proof. Let n = dimC(V ). Since b ∈ S, so is br for all r > 0. Since
TrV (bs) = 0 for all s ∈ S , it follows that TrV (bn) = 0 for all n > 1.
Denote by {λ1, . . . , λn} the diagonal entries of the Jordan canonical form
of b. The coefficients of the characteristic polynomial of b are the elemen-
tary symmetric functions of the {λi}, whereas the trace of bn is

∑
i λ

n
i . The

symmetric polynomials of the λi form a polynomial algebra with polynomial
basis the elementary symmetric polynomials. The Newton polynomials give
a way to write each elementary symmetric polynomial as a polynomial in
the pk =

∑
i λ

k
i , so that the pk also form a polynomial basis for the sym-

metric polynomials. It follow that TrV (bk) = 0 for all k if and only if the
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characteristic polynomial for b is bn = 0, which is equivalent to b being a
nilpotent endomorphism of V . Since this holds for all b ∈ b, the ideal b
consists of nilpotent elements. By Lemma 3.7 the subalgebra b acts trivially
on the simple g-module V and hence b = 0.

We return to the proof of the theorem. Since r is solvable, for some k,
Dk(r) = 0, and consequently, ρ(D2(g)∩Dk(r)) = 0. Suppose by contradiction
that ρ(D2(g) ∩ r) 6= 0. Set a = ρ(D2(g) ∩ Dt(r)), where t ≥ 1 is chosen to
be the largest integer for which this image is non-zero. Since ρ(D2(g) ∩
Dt+1(r)) = 0, it follows that a ⊂ End(V ) is a non-zero abelian subalgebra.

We set b = [ρ(g), a] ⊂ a. For any x ∈ ρ(g) and y ∈ a, we have
TrV ([x, y]s) = TrV (xys − yxs) = TrV (xys − xsy) = 0, where the last
equality comes from the fact that ys = sy since a is abelian and s is con-
tained in the subalgebra of End(V ) generated by 1 and a. Applying the
claim, we see that b = [ρ(g), a] = 0, showing that a is in the center of ρ(g).

Since a is contained in the center of ρ(g), we conclude that ρ(g) com-
mutes with S. For x, y ∈ g consider TrV (ρ([x, y])s) = TrV (ρ(x)ρ(y)s −
ρ(y)ρ(x)s) = TrV (ρ(x)ρ(y)s−ρ(x)sρ(y)) = 0, where the last equality comes
from the fact that sρ(y) = ρ(y)s. Since a ⊂ ρ(D2(g)), applying the claim
with b = a, we conclude that a = 0. This contradicts the assumption that
a 6= 0, establishing that ρ(D2(g) ∩ r) = 0.

Since V is an arbitrary simple g-module, D2(g) ∩ r ⊂ N .

Corollary 3.8. Let V be a finite dimensional complex vector space and
g ⊂ gl(V ) a solvable sub Lie algebra. Then there is a basis for V in which g
is given by upper triangular matrices, or equivalently, g preserves is a flag

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

with dim(Vi/Vi−1) = 1 for every i.

Proof. By Corollary 4.6 all simple g-modules are 1-dimensional. Let V =
V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vk ⊃ 0 be the Jordan Holder decomposition of V as a
g-module. Then for each i we have dim(Vi/Vi+1) = 1. Setting V ′r = Vk+1−r
we have a flag of g-modules

0 = V ′0 ⊂ V ′1 ⊂ V ′2 ⊂ · · · ⊂ V ′k ⊂ V ′k+1 = V,

where V ′i /V
′
i−1 has dimension 1 for all 1 ≤ i ≤ k+1. Choose a basis adapted

to this flag, in the sense that the basis {e1, . . . , ek+1} has the property that
for each j the subset {e1, . . . , ej} is a basis for V ′j . In this basis g is repre-
sented by upper triangular matrices.
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Corollary 3.9. Let V be a finite dimensional complex vector space and let
g ⊂ gl(V ) be a sub Lie algebra. Denote by r the radical of g and by N the
nilradical of g. Then N and r are orthogonal under BV :

BV (N , r) = (TrV )|N◦r = 0.

Proof. By Corollary 4.8 there is a flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V with
dim(Vi/Vi−1) = 1 for each i that is preserved by r. Since the nilradical of
g is equal to the nilradical of r, the ideal N acts trivially on all the simple
r-modules and hence maps Vi to Vi−1 for every i. Hence, for each i and for
any x ∈ r and n ∈ N the composition xn sends Vi to Vi−1, and consequently
has zero trace.

4 Cartan’s Criterion for Solvablility

Cartan’s criterion for solvability is the converse to Corollary 4.9.

Theorem 4.1. (Cartan’s Criterion for Solvability) Let V be a finite dimen-
sional complex vector space, let g be a Lie algebra and let ρ : g → gl(V ) be
a representation. Then ρ(g) is a solvable subalgebra of gl(V ) if and only if
ρ(D2(g)) is orthogonal to ρ(g) under BV .

Proof. Clearly, if suffices to consider the case when g ⊂ gl(V ) and ρ is the
identity representation. Corollary 4.9 shows the necessity of the condition
for g to be solvable.

We consider the converse. Suppose that D2(g) is orthogonal under BV

to g.

Claim 4.2. Let A ⊂ B ⊂ gl(V ) be linear subspaces and let T = {t ∈
gl(V ) | [t, B] ⊂ A. If x ∈ T and TrV (xt) = 0 for all t ∈ T , then x is a
nilpotent transformation of V .

Proof. We write x = xss +nn the Jordan decomposition of x and we choose
a diagonal basis {ei}ni=1 of V for xss: xss(ei) = λiei for 1 ≤ i ≤ n. Let
K ⊂ V be the rational subspace generated by the λi. To complete the claim
we must show that the λi are all zero, or equivalently that K = 0.

Take the basis {Ei,j}1≤i,j≤n for gl(V ) where Ei,j(er) = δ(i, r)ej . Then
ad(xss)(Ei,j) = (λi−λj)Ei,j . Fix a Q-linear form f : K → Q. Let D ∈ gl(V )
be the element defined by D(ei) = f(λi)ei. Then

ad(D)(Ei,j) = (f(λi)− f(λj)Ei,j = f(λi − λj)Ei,j .
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There is a polynomial p(t) with Q coefficients and with 0 constant term
such that p(λi − λj) = f(λi)− f(λj) for all i, j. [If λi − λj = λk − λ`, then
since f is linear f(λi) − f(λj) = f(λk) − f(λ`) . Similarly, if λi − λj = 0
then f(λi − λj) = 0.] Then ad(D) = p(ad(xss)). On the other hand, there
is a polynomial with zero constant term q such that q(ad(x)) = ad(xss). It
follows that ad(D) = p(q(ad(x))). Since ad(x)(B) = [x,B] ⊂ A, it follows
that ad(D)(B) = [D,B] ⊂ A, and hence D ∈ T . Thus, Tr(Dx) = 0. On
the other hand Tr(Dx) =

∑
i λif(λi), so that 0 = f(Tr(Dx)) =

∑
i f(λi)

2.
Since the f(λi) are rational numbers, this imples f(λi) = 0 for all i. But f
was an arbitrary linear form on K and K is generated over Q by λi, so it
follows that any linear form on K is trivial, showing that K is trivial.

Now we apply this claim to our situation. Let B = g and A = D2(g)
in gl(V ) and T as in the claim for this A ⊂ B.. Consider t ∈ T and
[x, y] ∈ D2(g). We have TrV (t[x, y]) = TrV (([t, x])y]. But [t, x] ∈ D2(g), so
by hypothesis, TrV (([t, x])y) = 0 for all t ∈ T . By linearity, it follows that
TrV (tu) = 0 for any u ∈ D2(g) and all t ∈ T . On the other hand, it is clear
that D2(g) ⊂ T . Applying the claim, we see that every element in D2(g) is
a nilpotent transformation of V . It follows from Corollary 3.4 that D2(g) is
a nilpotent Lie Algebra and hence g is solvable.

Corollary 4.3. Let V be a finite dimensional vector space and g ⊂ gl(V ).
Then the space of all x ∈ g that are orthogonal under BV to g is a solvable
ideal of g.

Proof. Consider L the vector space of x ∈ g orthogonal to g under BV .
Since BV ([x, y], z) = BV (x, [y, z]), it follows that L is an ideal in g. Since
BV (L,L) = 0 and a fortiori BV (L,D2(L)) = 0, it follows from the previous
theorem that L is solvable.
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