
Lie Groups: Fall, 2022

Lecture VI

Structure of Simple Lie Algebras

November 28, 2022

1 The Four Infinite Families

As we pointed out in the last lecture there are four infinite families of simple
Lie algebras and apart from them there are only 5 others. In this lecture we
shall discuss in more detail the infinite families, their roots, their split real
forms and their compact forms.

1.1 The A-series An = sl(n+ 1,C) for n ≥ 1

One denotes by An, n ≥ 1, the Lie algebra sl(n+ 1,C). This is a Lie alebra
whose Cartan subalgebra, h, is the space of those matrices of trace 0, all of
whose off-diagonal terms are zero . The Cartan subalgebra has dimension n.
For each i ≤ n+ 1 let zi : h→ C send a matrix H ∈ h to its (i, i) entry The
roots of this algebra are {αi,j = (zi − zj) : h → C} where 1 ≤ i, j ≤ n + 1
and i 6= j. For any such (i, j) let Ei,j ∈ sl(n + 1,C) be the matrix with
1 in the i, j place and zero elsewhere and let Li,j be the one-dimensional
complex subspace spanned by Ei,j . It is the root space for αi,j , and is
denoted sl(n+ 1,C)αi,j . Here are the basic properties:

• There is a Cartan subalgebra h for sl(n+ 1,C).

• The non-zero eigenspaces for the adjoint action of h on sl(n + 1,C),
i.e., the root spaces, are one-dimensional

• If α is a non-zero eigenvalue for the adjoint action of h on sl(n+ 1,C);
i.e., if α is a root, then −α is a root.
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• For each root α the subspace

sl(n+ 1,C)α ⊕ sl(n+ 1,C)−α ⊕ [sl(n+ 1,C)α, sl(n+ 1,C−α]

is a subalgebra isomorphic to sl(2,C).

• The roots span h∗.

The split real form of sl(n+ 1,C) is sl(n+ 1,R). Its Cartan is denoted
hR = h ∩ sl(n+ 1,R). The roots are real on hR.

The compact form is su(n+1), which is the real subspace for the complex

anti-inear involution A 7→ −Atr. The roots are purely imaginary on hc = ihR
the Cartan for the compact form.

1.2 The Dn = so(2n), n ≥ 4 Series

In general so(n) consists of complex orthogonal n × n matrices; i.e., those
that satisfy A+Atr = 0.

The low dimensional cases of so(2n) are special. First, so(2) is the one-
dimensional abelian Lie algebra of matrices(

0 −z
z 0

)
The Lie algebra so(4) is isomorphic to so(3) ⊕ so(3) and is semi-simple

but not simple. It turns out that so(6) is isomorphic to sl(4) and already
occurs as A3 in the A-series.

Nevertheless to understand the structure of so(2n) we begin with so(4).
The Lie algebra so(4) is of rank two. A Cartan subalgebra h for it consists
of matrices

h =


0 −z1 0 0
z1 0 0 0
0 0 0 −z2

0 0 z2 0

 .

There are four root spaces and they span the space the matrices in block
2× 2 form (

0 A
−Atr 0

)
.

We write the vector space of the A in upper 2×2 block as C1⊗Ctr2 where
the Ci are column matrices of size 2. The left action of h on the upper left
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2× 2 block is the rotational action of upper so(2) on C1 tensor the identity
on Ctr2 . The rotation action is(

0 −z
z 0

)
·
(
a
b

)
=

(
−zb
za

)
.

Thus, the eigenvalues for the action of h on A are ±iz1, each of multiplicity
two. Minus the right action of h is the tensor product of the identity on
C1 with the negative of the rotational action of the lower so(2) on Ctr2 . Its
eigenvalues are ±iz2. Thus, the four roots of h are ±iz1 ± iz2.

More generally, if we consider so(2n) for n ≥ 3, we take as the Cartan h
the block 2× 2 diagonal matrices the jth diagonal block being(

0 −zj
zj 0

)
.

The root spaces are then grouped into four dimensional vector spaces in-
dexed y 1 ≤ j < k ≤ n: the 2× 2 blocks in position(

a2j−1,2k−1 a2j−1,2k

a2j,2k−1 a2j,2k

)
The roots associated with this block are ±izj ± izk).

Thus, there are 2n(n−1) roots ±izj±izj for 1 ≤ j < k ≤ n. The Cartan
has dimension n giving a dimension of n(2n− 1) for so(2n).

As before we have:

• There is a Cartan subalgebra h for so(2n).

• The non-zero eigenspaces for the adjoint action of h on so(2n), i.e.,
the root spaces, are one-dimensional

• If α is a non-zero eigenvalue for the adjoint action of h on so(2n); i.e.,
if α is a root, then −α is a root.

• For each root α the subspace

so(2n)α ⊕ so(2n)−α ⊕ [so(2n)α, so(2n)−α]

is a subalgebra isomorphic to sl(2,C).

• The roots span h∗.
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In this presentation the real subalgebra so(2n,R) is the Lie algebra of
the compact groups Spin(2n) or SO(2n). These are compact groups with
finite fundamental groups Thus, this real form is the compact form. As we
have already seen, the roots are purely imaginary on the Cartan hR of this
real form.

The split real from is so(n, n), the Lie algebra of the orthogonal group
of the real quadratic form

2n∑
i=1

(−1)i+1x2
i =

n∑
j=1

ujvj .

In the latter form, the Cartan for this real form is the diagonal matrix with
diagonal entries {t1,−t1, t2,−t2, · · · , tn,−tn} for the ti ∈ R

Notice that there are many other real forms of this complex Lie algebra,
namely the so(p, q) with p+ q = 2n.

1.2.1 The low dimensional special cases

In the special case when n = 2 there are four roots i(±z1±z2). I have left it
as a homework exercise to show this algebra is isomorphic to A1 ⊕ A1; i.e.,
so(3)⊕ so(3).

In the special case of so(6), the roots are i{±z1± z2,±z1± z3,±z2± z3}.
It is a homework problem to idenitfy this with A3 = sl(4).

1.3 The B-series Bn = so(2n+ 1);n ≥ 2

The rank of so(2n+1) is n. Thus, the natural inclusion so(2n)→ so(2n+1)
sends the Cartan subalgebra of so(2n) to one for so(2n + 1). Thus, all the
roots of so(2n), ±izj ± izk for 1 ≤ j < k ≤ n, are roots of the Cartan for
so(2n + 1), and the root spaces are the image under the embedding of the
corresponding root spaces in so(2n). But in addition there are the skew-
symmetric matrices with zero except on the last row and last column. The
left action of h rotates the two dimensional subspaces in position (2j−1, 2n+
1), (2j, 2n + 1) with eigenvalues ±izj and leaves the last row unchanged.
Minus the right action of h leaves the last column unchanged and rotates
the plane in positions (2n+1, 2i−1), 2n+1, 2i) with eigenvalues ∓izj . Thus,
the roots associated with these spaces are ±izj ; 1 ≤ j ≤ n. This gives us
a total of 2n(n − 1) + 2n = 2n2 roots and a Cartan of rank n for a total
dimension of (2n+ 1)n for so(2n+ 1).

As before we have:
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• There is a Cartan subalgebra h for so(2n+ 1).

• The non-zero eigenspaces for the adjoint action of h on so(2n+1), i.e.,
the root spaces, are one-dimensional

• If α is a non-zero eigenvalue for the adjoint action of h on so(2n+ 1);
i.e., if α is a root, then −α is a root.

• For each root α the subspace

so(2n+ 1)α ⊕ so(2n+ 1)−α ⊕ [so(2n+ 1)α, so(2n+ 1)−α]

is a subalgebra isomorphic to sl(2,C).

• The roots span h∗.

The real form in the given presentation is so(2n + 1,R) which is the
compact real from. The split real form is so(n+1, n) which contains so(n, n)
as a subgroup of the same rank.

1.4 The C-series Cn = Sp(2n) for n ≥ 2

Consider the 2n× 2n matrix

J =

(
0 In
−In 0

)
where In is the n×n identity matrix. This is the standard symplectic form in
dimension 2n and the complex symplectic group is defined as A ∈ GL(2n,C)
that preserve this bilinear form; i.e., with the property that AtrJA = J .
Differentiating at the identity we see that the complex symplectic Lie algebra
sp(2n) is

{X ∈ C[2n] | XtrJ + JX = 0}.

Direct computation shows that this is the group of matrices written in n×n
block form that satisfy (

A B
C −Atr

)
where B and C are symmetric, i.e., Ctr = C and Btr = B.

We take as the Cartan subalgebra the matrices in sp(2n) the matrices
where A is diagonal and B and C are zero. Let λ1, . . . , λn record the diagonal
entries of A.

Then the non-zero eigenspaces for this Cartan are:
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• For 1 ≤ i 6= j ≤ n, the element Xi,j = Ei,j−En+j,n+i is an eigenvector
for h with eigenvalue λi − λj

• For 1 ≤ i < j ≤ n, the element Yi,j = Ei,n+j +Ej,n+i is an eigenvector
with eigenvalue λi + λj

• for 1 ≤ i < j ≤ n, the element Zi,j = En+i,j +En+j,i is an eigenvector
with eigenvalue −λi − λj

• For 1 ≤ i ≤ n, the element Ui = Ei,n+i has eigenvalue 2λi

• For 1 ≤ i ≤ n, the element Vi = En+i,i has eigenvalue −2λi.

Thus, the roots for sp(2n) are

{±(λi − λj),±(λi + λj) for 1 ≤ i < j ≤ n and ± 2λi for 1 ≤ i ≤ n}.

There are 2n2 roots and the Cartan of rank n for a total dimension of
n(2n+ 1).

As before, we have:

• There is a Cartan subalgebra h for sp(2n).

• The non-zero eigenspaces for the adjoint action of h on sp(2n), i.e.,
the root spaces, are one-dimensional

• If α is a non-zero eigenvalue for the adjoint action of h on sp(2n); i.e.,
if α is a root, then −α is a root.

• For each root α the subspace

sp(2n)α ⊕ sp(2n)−α ⊕ [sp(2n)α, s(2n)−α]

is a subalgebra isomorphic to sl(2,C).

• The roots span h∗.

In this presentation, the real symplectic Lie algebra is the split real
from (since the eligenvalues are real on the Cartan). It is the Lie algebra
of the usual symplectic group SP (2n) of automorphisms of R2n preserving
the symplectic form (i.e., skew symmetric bilinear form) given by J . The
compact form of the symplectic group is SP (2n,C)∩SU(2n). Its Lie algebra
is

{A ∈ sp(2n) | −Atr = A}.
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One sees directly that this complex anti-linear involution preserves sp(2n)
and hence defines a real form of sp(2n). Since the intersection of this real
from with h is ihR (where hR is the Cartan of the split real form), it follows
that this real form is the compact real form. [Also, it is clear that Sp(2n)∩
SU(2n) is a closed subgroup of SU(2n) and hence is compact.]

2 The General Structure of Root Systems of Sim-
ple Lie Algebras

A central tool for understanding semi-simple Lie Algebras is the Killing
Form.

Definition 2.1. Let L be a complex Lie Algebra. The Killing form B : L⊗
L→ C is the symmetrtic bilinear form defined by

B(X,Y ) = Trace(ad(X) ◦ ad(Y ))

for X,Y ∈ L.

The following fundamental result is a central one in the theory of semi-
simple Lie algbras.

Theorem 2.2. The Killing form of a (finite dimensional, complex) Lie
algebra L is non-degenerate if and only if L is semi-simple. The Killing
form is a real bilinear pairing on any real form of L. Assuming that L is
semi-simple, the Killing form is positive definite on the split real form of L
and is purely imaginary on the compact real form.

We have seen that this result holds for sl(n,C). It is a similar, straight-
forward computation to prove it for each of the series An, Bn, Cn, Dn as
defined above. But the proof in general takes us pretty far afield. I will
establish it in an appendix. For now we assume it.

We also need a result that we have discussed before.

Lemma 2.3. The adjoint representation preerves B in the sense that

B([X,Y ], Z]) +B(Y, [X,Z]) = 0.

Definition 2.4. Let g be a semi-simple Lie algebra. A subalgebra h ⊂ g
is a Cartan subalgebra if it is an abelian sub-algebra consisting of elements
which map to semi-simple elements (i.e., diagonalizable elements) under
the adjoint representation and if h is maximal with respect to these two
properties.
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Theorem 2.5. Every semi-simple algebra has a non-zero Cartan sub-algebra.

I will postpone the proof of this result.
For the rest of this section g is a semi-simple complex Lie algebra. We

fix a Cartan subalgebfra h ⊂ g giving a decomposition

g = h⊕α∈Φ gα,

where Φ is the set of roots and gα is the root space associated to the root α.

Theorem 2.6. In the above decoposition every α is a non-zero homomor-
phism of h→ C. That is to say the subalgebra of elements commuting with
every element of h is h itself. Said another way 0 is not a root of g.

This is a third result whose proof we postpone.

Lemma 2.7. The roots span h∗ over C.

Proof. If not, then the roots span a proper subspace of h∗ and hence there
is a non-zero element h ∈ h such that α(h) = 0 for all roots α. This implies
that h commutes with every root space gα. Of course, h also commutes
with h and hence h is contained in the center of g. This means that the
subspace spanned by h is a one-dimensional, abelian ideal of g. Since g
is semi-simple it is dimension gt least 2, so that the span of h is a non-
trivial ideal. This contradicts the fact that the only non-trivial ideals of g
themselves semi-simple and hence not of dimension 1.

2.1 The Killing Form and Pairs of Roots

We fix a semi-simple Lie algebra g with Cartan h and roots α.

Lemma 2.8. If α and β are eigenvalues of the adjoint action of h on g and
α+ β 6= 0 then gα and gβ are orthogonal under the Killing form B.

Proof. Let X ∈ gα and Y ∈ gβ. Then ad(X) ◦ad(Y ) sends the γ-eigenspace
for h to its γ+α+β eigenspace. Since α+β 6= 0, this composition has trace
zero.

Corollary 2.9. Under the Killing form h is orthogonal to all the root spaces.
An eigenspace space gα is B-orthogonal to all eigenspaces except the −α
eigenspace. As a result the restriction of the Killing form to h is non-
degenerate. Also for each root α the eigenspaces gα and g−α are dually
paired under the Killing form.
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2.2 The Killing Form and the Cartan

We can use the Killing form to define a non-degenerate pairing on h∗. Given
a, b ∈ h∗ we write a = (ha, ·) for a unique ha ∈ h. Then the dual pairing
B∗(a, b) = b(ha). Clearly, B∗ is a non-degenerate symmetric bilinear form
on h∗. We denote the dual pairing on h∗ by 〈a, b〉. In particular for a root
α we have 〈α, α〉 = α(tα) = B(tα, tα).

Definition 2.10. For each root α let tα ∈ h be the unique element such
that for each h ∈ h we have

B(tα, h) = α(h).

Notice that since B and α are both real on split real form it follows that
tα is contained in the Cartan hR of the split real form.

Lemma 2.11. For X ∈ gα and Y ∈ g−α, we have

[X,Y ] = B(X,Y )tα.

Proof. For h ∈ h, we have

B(h, [X,Y ]) = B([h,X], Y ) = B(α(h)X,Y ) = α(h)B(X,Y ) = 〈h, tα〉B(X,Y ) = 〈h,B(X,Y )tα〉.

Since this is true for all h ∈ h and since B|h is non-degenerate, this implies

[X,Y ] = B(X,Y )tα.

Corollary 2.12. We have [gα, g−α] = C(tα) ⊂ h.

Proof. The inclusion ⊂ is clear from the previous lemma. That the image
is all of C(tα) folllows from the non-degneracy of the pairing.

2.3 The sl(2) associated with a root

Consider a root α and a non-zero element X0 ∈ gα. Then there is Y0 ∈ g−α
with B(X0, Y0) = tα. Then for the 3-dimensional Lie algebra spanned (over
C) by X0, Y0, tα

Proposition 2.13. α(tα) = B(tα, α) 6= 0

Proof. Suppose that α(tα) = 0. Then the 3-dimensional Lie algebra with
C-basis X0, Y0, tα has the following Lie bracket structure:
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• [X0, Y0] = tα

• [tα, X] = α(tα)X0 = 0

• [tα, Y0] = −α(tα)Y0 = 0

• [X0, Y0] = tα.

This is a solvable Lie algebra with tα in the commutator subgroup.

Proposition 2.14. Let V be a finite dimensional complex vector space and
let L ⊂ gl(V ) be a solvable Lie subalgebra. Then there is a flag

0 = V0 ⊂ V1 ⊂ · · · ⊂ VK = V,

with the property that for each i ≥ 1 the quotient Vi/Vi−1 has dimension
1, a flag that is preserved by the L action. Furthermore, for each i ≥ 1
the derived subalgebra D2(L) = [L,L] sends Vi to Vi−1. In particular every
element of D2(L) is a nilpotent endomorphism of V .

Again, I postpose the proof of this proposition
Since tα is in the commutator subgroup of the solvable Lie subalgebra

of g with vector space basis {X,Y, tα}, the previous proposition implies
that the action of tα on g is nilpotent. This contradicts the fact that since
tα ∈ h it is a non-zero semi-simple element. (And tα 6= 0 since it is dual
under the Killing form to a root α 6= 0.) This contradiction proves that
α(tα) = B(tα, tα) 6= 0.

Now we set hα = 2tα/B(tα, tα) and Y = 2Y0/B(tα, tα) and X = X0.
Then the 3-dimensional algebra with generators X,Y, hα has the following
Lie bracket relations:

• [hα, X] = 2X

• [hα, Y ] = −2Y ,

• [X,Y ] = hα.

That is to say, this subalgebra is isomorphic to sl(2,C). We denote this
subalgebra by sl(2)α. Apriori. this subalgebra may depend upon the choice
of X ∈ gα, but we shall see that it does not.

Now consider the subalgebra m = h⊕c∈C∗ gcα. It is a module over sl(2)α.
By the structure of these modules, we see that m is a direct sum of towers.
The towers with even eigenvalues for hα each containing a one-dimensional

10



subspace on which hα acts trivially and different such towers lead to linearly
independent elements in the 0 eigenspace of hα. In m, the zero eigenspace
of tα is h. On the other hand, sl(2,C)α + h is a sl(2,C)α submodule. This
shows that the towers with even hα eigenvalues consist of the direct sum
sl(2,C)α. From this it follows that gα is one dimensional and that 2α is not
a root.

Now let us consider the towers with odd eigenvalues for hα. If there
is such a tower, then α/2 must be a root. But we have already seen that
twice a root is never a root, so since α is a root, α/2 cannot be a root.
Consequently, m = sl(2,C)α ⊕ Ker(α). From this it follows immediately
that sl(2,C)α is independent of the choice of X ∈ g.

Corollary 2.15. If α is a root, then cα is a root for c ∈ C∗ if and only if
c = ±1. The root spaces are one-dimensional.

2.4 The Involution

We can use the sl(2,C)α in another important way. The action of sl(2,C)α
acts on g. This leads to an action of SL(2,C)α on g. In SL(2,C)α the
matrix (

0 i
i 0

)
sends hα to −hα and is the identity on Ker(α) ⊂ h. Notice that this involu-
tion also interchangeas gα and g−α. Notice, that being an automorphism of
the Lie algebra g stabilizing h it also stabilizes the set of roots. The formula
for this involution of h is

h 7→ h− 2〈α, h〉
〈α, α〉

.

2.5 The rational form of h∗

Lemma 2.16. If α and β are roots then

2β(hα)

〈α, α〉
∈ Z.

Proof. We need only consider the case when β 6= ±α. Let

mβ = ⊕i∈Zgβ+iα.

By what Corollary 2.15, it follows that β + iα 6= 0 for all i, so that all the
non-zero spaces are in this direct sum decomposition are one dimensional.
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Furthermore, (β + iα)(hα) = β(hα) + 2i. Since the eigenspaces of hα are
all one dimensional and have eigenvalues differing by 2, it follows from the
classification of sl(2,C) modules that mβ is an irreducible sl(2C)α module.
Thus, there are integers r ≤ q such that the eigenvalues for mβ of hα

β(hα) + 2q, β(hα) + 2q − 2, . . . β(hα) + 2r,

and β(hα) + 2r = −β(hα)− 2q, from which we deduce that β(hα) = q− r is
an integer. Since

hα = 2tα/B(tα, tα) = 2tα/〈α, α〉

we conclude that

β(hα) =
2β(tα)

〈α, α〉
=

2〈β, α〉
〈α, α〉

∈ Z.

Since the roots span h∗, there is a subset {α1, . . . , αk} which are a C-basis
for h∗

Proposition 2.17. Fix a set of roots {α1, . . . , αk} that are a C-basis for
h∗. Set h∗Q equal to the Q-span of this set of roots. Then:

• All roots are contained in h∗Q.

• The subspace of h that is the Q-dual to h∗Q is the Q-span of the {hαi}.
It includes hα for every root α.

• The restriction of the Killing form to hQ is rational and positive defi-
nite. Dually, the restriction of the form dual to the Killing form to h∗Q
is also rational and positive definite

Proof. For any root β, we have 〈β, β〉 = B(tβ, tβ) = Tr(ad(tβ)2). But ad(tβ)
preserves each root space and acts on it by multiplication by α(tβ) = 〈α, β〉.
Thus, Tr(ad(tβ)2) =

∑
α〈α, β〉2 and so 〈β, β〉 =

∑
α∈Φ〈α, β〉2.This gives

1

〈β, β〉
=
∑
α

〈α, β〉2

〈β, β〉2
.

The right-hand side is a sum of squares of half-integers and hence is a non-
negative rational number. On the other hand, we know that 〈β, β〉 6= 0. We
conclude that 〈β, β〉 is a positive rational number. This is true for every
root.
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For roots α, β we have 2〈β, α〉 = nβ,α〈α, α, 〉 where nβ,α is the integer

nβ,α =
2〈β, α〉
〈α, α〉

.

It follows that 〈β, α〉 ∈ Q for all roots α, β.
Lastly we must show that every root β is in the Q-span of {α1, . . . , αk}.

Since the αi are a C-basis of h∗ we have β =
∑

i c
iαi with the ci complex

numbers. Thus,
〈β, αj〉
〈αj , αj〉

=
∑
i

〈αi, αj〉
〈αj , αj〉

ci.

Consider

Ai,j =
〈αi, αj〉
〈αj , αj〉

.

It is a matrix with rational coefficients, and since the αi form a C-basis, this
matrix is invertible over C. Thus, it is invertible over Q. Thus, we have

nβ,αj
(Ai,j)

−1 = ci.

Since the nβ,αj
are integers and A−1

i,j is a rational matrix, it follows that the

ci ∈ Q. This proves that all roots are in h∗Q.
Let hQ be the Q subspace of h that is the Q-dual to h∗Q. Then for any

h ∈ hQ, non-zero, we have

B(h, h) =
∑
α

α(h)2.

This is a sum of squares, which because h ∈ hQ are all rational squares, and
since the roots span h∗, at least one of the rational numbers is non-zero. It
follows that B(h, h) > 0. This proves that B is positive definition on hQ.

We have already seen that for all pairs of roots α and β, we have α(hβ) ∈
Z. This proves that for all roots β, the element hβ ∈ hQ.

2.6 Properties of Root Systems for semi-Simple Lie Algebras

Let g be a semi-simple complex Lie algebras. Here are the properties about
the Cartan subalgebra and the Killing form

• There is a Cartan subalgebra h for g.

• The adjoint action of h on g is semi-simple and decomposes g = h⊕α∈Φ

gα,
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• The Killing form B on g is non-degenerate as is its restriction to h.

• The restriction of the Killing form to gα ⊕ g−α is non-degenerate and
dually pairs gα with g−α. where Φ is the set of roots.

• Each root space gα is one-dimensional.

• For each root α there is an involution Iα of g that stabilizes h, sends
hα to −hα and is the identity on Ker(α) ⊂ h.

• the restriction of the Killing form to the rational subspace spanned by
the {hα} is rational and positive definite.

Here are the basic properties about the roots:

• The set of roots Φ spans h∗Q and each root is non-zero.

• If α is a root then for c ∈ C∗ cα is a root if and only if c = ±1.

• For each root α the dual pairing I∗α : h∗Q → h∗Q maps roots to roots and
for each root β we have

I∗α(β) = β − 2〈β, α〉
〈α, α〉

α.

• If α and β are roots then
2〈β, α〉
〈α, α〉

is an integer.

Definition 2.18. Let V be a finite dimensional rational vector space with
a positive definite rational inner product B and let Φ ⊂ V ∗ be a finite set
spanning V ∗. Suppose that Φ satisfies the above four properties (where hQ
with the Killing form is replaced by (V,B)). Then (V,B,Φ) is called a root
system. In the case when V = hQ of a semi-simple Lie algebra with its
killing form the root system of the semi-simple algebra.

One can show that every root system decomposes as an orthogonal direct
sum of indecomposable root systems. The latter are called simple root
systems. Tho simple root systems are classified. They fall into four infinite
families which are the root systems of the Lie algebras in the An, Bn, Cn,
and Dn series and 5 sporadic root systems labeled G2, F4, E6, E7, and
E8. These are the root systems of sporadic Lie algebras (and hence simply
connected, sporadic Lie groups) labeled the same way.
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