
Lie Groups: Fall, 2022

Lecture IIIB: Lie Groups from Lie Algebras

October 7, 2022

1 Constructing a neighborhood of the identity in
a Lie Group from its Lie Algebra

The work of the last two lectures leads to a construction of a local Lie sub
group of a Lie group from its Lie algebra.

Theorem 1.1. Let G be a real Lie group. Let L = g, and choose U in
Theorem 1.14 of Lecture IIIA such that exp|U is a diffeomorphism onto an
open subset of G. Then exp: U 7→ exp(U) is an embedding of the local
Lie group of g onto a local Lie subgroup of G that is a neighborhood of the
identity in G. The inverse isomorphism of local Lie groups is log.

Proof. Take L = g in Theorem 1.14 in Lecture IIIA and choose U as in the
statement and also sufficiently small so that exp|U is a diffeomorphism onto
an open subset of G. Clearly exp(0) = e, exp(−A) = exp(A)−1 and

exp(H(A,B)) = exp(log(exp(A)exp(B))) = exp(A)exp(B).

This shows (assuming the absolute convergence of the power series for H)
the exponential mapping exp embeds the local Lie algebra g onto a local Lie
subgroup of G that is a neighborhood of the identity. The inverse isomor-
phism of local Lie groups is log.

Corollary 1.2. Any finite dimensional real Lie group is a Lie group in the
real analytic category in the sense that the underlying manifold has a real
analytic structure in which the inverse and multiplication are real analytic
maps.
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Proof. The real analytic structure is given by open sets of the form gU
where U is as in the previous corollary and the mapping of gU → G is
the left translation by g of the restriction to U of the exponential mapping.
The local Lie group properties imply that on the overlap these coordinate
patches define the same real analytic structure. It is clear that with respect
to these coordinate patches left multiplication and inverse are real analytic
maps.

2 Faithful, Finite Dimensional Linear Representa-
tion of L

A corollary of the PBW Theorem is that a Lie algebra has a faithful represen-
tation as automorphisms of an (infinite dimensional) vector space, namely
its universal enveloping algebra. Even for finite dimensional L this repre-
sentation is often (usually) infinite dimensional. Ado’s theorem says that
every finite dimensional Lie algebra over a field of characteristic zero has a
faithful, finite dimensional linear representation.

Theorem 2.1. (Ado’s Theorem) Every finite dimensional Lie algebra over
a field of characteristic 0 has a faithful finite dimensional representation.

Proof. (Sketch) First notice that the representation adL : L → End(L) is a
finite dimensional representation whose kernel is the center of L, i.e., the
sub Lie algebra consisting of all X ∈ L such that [X,Y ] = 0 for all Y ∈ L.

Thus, to complete the proof we need only construct a finite dimensional
linear representation ρ : L → End(V ) whose restriction to the center of L
is faithful, for then adL ⊕ ρ will be the required faithful, finite dimensional
representation.

First notice that since the center is an abelian algebra, it is a finite
direct sum of one-dimensional algebras. A 1-dimensional algebra has a two-
dimensional representation by nilpotent matrices, namely

t 7→
(

0 0
t 0

)
.

Taking the direct sum of these gives a faithful representation of the center
of L by nilpotent matrices.

To prove Ado’s theorem one shows that there is a representation of
L (which in fact represents the largest nilpotent ideal of L by nilpotent
matrices) whose restriction to the center of L is the given faithful nilpotent
representation. This is done first by induction over a solvable series to
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extend to the radical of L (the largest solvable ideal in L). Then there is an
extension over all of L using the fact that L modulo its radical is a direct
sum of simple Lie algebras, simple in the sense that have no non-trivial
ideals.

3 Producing Lie Groups from Lie Algebras

We just showed that the local structure of a real Lie group can be recovered
from its Lie algebra. But this leaves open the question as to whether every
finite dimensional real Lie algebra is the Lie algebra of a Lie group.

Theorem 3.1. Let L be a finite dimensional real Lie algebra. Then there
is a simply connected Lie group G with g isomorphic to L.

Proof. By Ado’s theorem L is a subalgebra of gl(n,R) for some R. The
Baker-Campbell-Hausdorff formula produces an open subset U0 ⊂ gl(n,R)
invariant under X 7→ θ(X) = −X, together with a convergent power series
H(A,B) defining a map m : U0 × U0 → gl(n,R) such that setting Ω ⊂
gl(n,R) × gl(n,R) the quintuple (U, 0, θ,Ω,m), where m is the restriction
of H(A,B) to Ω, is a local Lie group. Choosing U0 sufficiently small, the
exponential mapping gives an isomorphism from this local Lie group to a
neighborhood of the identity of GL(n,R). Set UL = U0 ∩ L. then since
H(A,B) is a convergent series whose terms are iterated brackets of A and
B, the map m restricts to give a map mL : UL × UL → L. We set ΩL =
Ω ∩ (L× L). Then we have the local Lie group (UL, 0, θ,ΩL,mL).

The restriction of the exponential mapping for gl(n,R) to UL embeds
this local Lie group as a sub local Lie group of GL(n,R).

Next, we invoke the extension result, Theorem 3.1 of Lecture III we see
that there is a connected Lie group H with (UL, 0, θ,ΩL,mL) as neighbor-
hood of the identity and a morphism of Lie groups H → GL(n,R) whose
differential at the identity is an isomorphism between h and L. This is a Lie
group with Lie algebra isomorphic to h.

Let H̃ → H be the universal covering. Points of H̃ are equivalence classes
of paths ω : [0, 1]→ H with ω(0) = e. Two paths ω and ω′ are equivalent if
ω(1) = ω′(1) and if the loop ω ∗ (ω′)−1 is homotopically trivial. It is left to
the problems to show that H̃ has a unique Lie group structure with identity
element being the point represented by the constant path at the idenity of
H so that the covering projection is a Lie group homomorphism.

The Lie group H̃ is a simply connected Lie group with Lie algebra h.
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Remark 3.2. The construction started with a Lie algebra h and produced
a sub Lie group H ⊂ GL(n,R) for some n with Lie algebra isomorphic to h.
To get a simply connected Lie group with the same Lie algebra we passed
to the universal covering H̃ of H. This group does not come equipped
with an embedding into GL(m,R) for any m. Indeed, there are examples
of Lie algebras for which any simply connected Lie group with the given
Lie algebra has no faithful, finite dimensional linear representation. One
example is SO(2, 1) = PSL(2,R). The fundamental group of PSL(2,R) is Z
and the universal covering P̃SL(2,R) has no faithful finite dimensional linear
representation. Of course, it has a finite dimensional linear representation
with kernel the fundamental group of P̃SL(2,R), and even one with image
SL(2,R).

3.1 Morphisms

Next, we shall show that the construction of simply connected Lie groups
from Lie algebras is functorial. As a first step in this direction we have the
following:

Proposition 3.3. Let G be a simply connected Lie group and let H be a
Lie group. Given a Lie algebra map ρ : g → h there is a unique Lie group
homomorphism G→ H whose induced map on the Lie algebras is ρ.

Proof. By the last corollary of Lecture IIIA there are neighborhoods U0 ⊂ g
and U ′0 ⊂ h of zero with ρ : U0 → U ′0 is a morphism of the local Lie groups
on U0 and U ′0 defined by the (convergent) BCH series.

Restricting to smaller neighborhoods U0 and U ′0 if necessary, by the
Theorem 1.1 the exponential mappings embed U0 → U ⊂ G and U ′0 → U ′ ⊂
H and are isomorphisms of local groups from the local group structure on U0

defined by BCH to the local group structure on U defined by G. Similarly for
H. This defines a local group morphism from ϕ : U → U ′ whose differential
at the identity is ρ.

Let W ⊂ U be a neighborhood of the identity, with W = W−1, such
that W 3 ⊂ U in the sense that for any w1, w2, w3 ∈W all pairs

(w1, w2), (w2, w3), (w1,m(w2, w3), (m(w1, w2), w3)

are contained in Ω. The associative law then follows for these three elements.
We define a foliation on G×H. The local leaves are of the form A(g, h) =
{(gw, hϕ(w))}w∈W where the topology and differential structure on A(g, h)
is induced from that of G by the projection onto the first factor. (Notice
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that projection to the first factor is a one-to-one map on every A(g, h).)
Since ϕ is a smooth map, we see that the inclusion of A(g, h) ⊂ G×H is a
smooth embedding onto a locally closed submanifold and the tangent planes
of A(g, h) vary smoothly as we vary (g, h) smoothly in G×H. Thus, to show
that these local leaves define a global foliation on G ×H we need only see
that they are compatible along their intersection. That is the content of the
next claim.

Claim 3.4. If (g′, h′) ∈ A(g1, h1)∩A(g2, h2) then this intersection contains a
neighborhood N of (g′, h′) in both A(g1, h1) and A(g2, h2) and the topologies
and smooth structures induced on N from A(g1, h1) and A(g2, h2) agree.

Proof. We have w1, w2 ∈ W with g1w1 = g′ = g2w2 and h1ϕ(w1) = h′ =
h2ϕ(w2). From the first pair of equations we conclude that g2 = g1(w1w2)
and from the second that h2 = h1ϕ(w1)ϕ(w2)

−1. But since W = W−1 and
W 2 ∈ U , it follows that ϕ(w2) = ϕ(w−12 ). Thus, we rewrite the second
equation as h2 = h1ϕ(w1)ϕ(w−12 ).

Now there is an open neighborhood Z of e such that Zw2 ⊂ W and
Zw1 ∈W for all w ∈ Z. We asert that the following equation holds:

(g1(w1w), h1ϕ(w1w)) = (g2(w2w), h2ϕ(w2w)).

This will establish the claim. Clearly g1(w1w) = g2(w2w) and h2ϕ(w2w) =
h1(ϕ(w1)ϕ(w−12 ))ϕ(w2w). Using the fact that w1, w

−1
2 , and w2w are all in W

and W 3 ⊂ U , we see that (ϕ(w1)ϕ(w−12 ))ϕ(w2w) = ϕ(w1w) as required.

Let L be the global leaf of this foliation through (e, e). We give L the
leaf topology, where the open sets are unions of open subset of the A(g, h)
contained in the leaf. With this topology L is one-to-one smoothly immersed
in G×H. Notice that the projection to the first factor gives a smooth map
L → G that is a local diffeomorphism. Furthermore, for g ∈ G the pre-
image of gW in L is the disjoint union indexed by h such that (g, h) ∈ L
of the A(g, h). This shows that any open subset of G of the form gW is
evenly covered by the projection from L → G. Hence, L → G is a covering
projection. Since G is simply connected, this implies that the projection
L → G is a diffeomorphism.

Claim 3.5. If (g1, h1) and (g2, h2) ∈ L, then so is (g1g2, h1h2). That is to
say L is a subgroup of G×H endowed with the product multiplication.

Proof. Fix (g1, h1) ∈ L and consider the subset X ⊂ L consisting of all
(g2, h2) ∈ L such that (g1g2, h1h2) ∈ L. Since (g1g2, h1h2) ∈ L, so is
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A(g1g2, h1h2) meaning for all w ∈ W , we have (g1g2w, h1h2ϕ(w)) ∈ L.
By definition (g2w, h2ϕ(w)) is a neighborhood of (g2, h2) in L. This shows
that X is an open subset of L in the leaf topology. Since the leaves are
locallly closed smooth submanifolds, it is clear that X is a closed subset of
L. Obviously, if (g1, h1) ∈ L then so is (g1e, h1e), showing that (e, e) ∈ X.
Since L is connected, it follows that (g1, h1) · L ⊂ L for every (g1, h1) ∈ L;
i..e., L is closed under multiplication in G×H.

It follows that that the projection from L → G is then an isomorphism
of groups and hence of Lie groups.

Since L is a subgroup of G×H, the projection to H gives a homomor-
phism L → H, which composed with the inverse of the projection of L → G
yields a Lie group homomorphism G→ H. Restricted to W it is the original
map ϕ. In particular, the induced map on the Lie algebras is original Lie
algebra map ρ : g→ h.

Corollary 3.6. Let L be a Lie algebra and G a simply connected Lie group
and let ρ : g → L be an isomorphism of Lie algebras. If G′ is a connected
Lie group and we have an isomorphism of Lie algebras ρ′ : g′ → L then there
is a homomorphism f : G → G′ with ρ′ ◦ Def = ρ. Futhermore, kernel
of f is a discrete subgroup contained in the center of G and f induces an
isomorphism G/Ker(f)→ G′.

In particular, if G′ is also simply connected then f : G → G′ is an iso-
morphism of Lie groups compatible with the identifiactions of g and g′ with
L.

Proof. The previous result implies that there is a unique map f : G → G′

with ρ′ ◦Def = ρ. Since this map is an isomorphism on the Lie algebras, it
induces an isomorphisms of suficiently small local Lie subgroups of G and G′.
This implies that there is a neighborhood of the identity in G disjoint from
the kernel of f . It follows that the kernel of f is a discrete subgroup. It is also
a normal subgroup. Thus, the conjugation action of G on itself stabilizes
Ker(f). But since this group is discrete and G is connected, this implies
the conjufgation action of G on Ker(f) is trivial, meaning that Ker(f) is
contained in the center of G..

Corollary 3.7. Given a simply connected Lie group G, then every connected
Lie group with the same Lie algebra is isomorphic to G/Λ where Λ is a
discrete subgroup of the center of G. Furthermore, the projection G→ G/Λ
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is a covering space with automorphism group Λ acting by left multiplication
on G.
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