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1 PBW Theorem concerning the Universal En-
veloping Algebra of a Lie Algebra

The Poincaré-Birkhoff-Witt Theorem (PBW Theorem). says that every
finite dimensional Lie algebra is a sub Lie algebra of the Lie algebra coming
from an associative algebra. There is a universal such associative algebra
which is called the Universal Enveloping Algebra of the Lie algebra.

1.1 The Construction

Definition 1.1. By a linear representation of a Lie algebra L on a vector
space V we mean a linear map ρ : L→ End(V ) that satisfies

ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X).

N.B. If ρ : G× V → V is a linear representation of a Lie group G, then the
differential at the identity Deρ : g → End(V ) is a linear representation of
the Lie algebra g of G.

Let (L, [·, ·]) be a Lie algebra over a field. Consider the tensor algebra

T (L) =

∞∑
n=0

⊗nL

with the usual (associative) multiplication defined by juxtaposition of ten-
sors. This is the free associative algebra generated by L in the sense that
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given an associative algebra A and a linear map ψ : L→ A there is a unique
extension of ψ to a map of associative algebras T (L)→ A.

We define the universal enveloping algebra of L, denoted U(L) to be the
quotient of T (L) by the two-sided ideal generated by (x⊗ y− y⊗ x− [x, y])
for all x, y ∈ L. Then U(L) is an associative algebra and the natural map
L → U(L) is a homomorphism of Lie algebras when U(L) is given the
AB −BA Lie bracket coming from its associative multiplication.

Clearly, any linear representation of the Lie algebra L → End(V ) on
a real vector space extends to a unique algebra homomorphism U(L) →
End(V ). Indeed, L → U(L) is the universal solution to the problem of
mapping L to the Lie algebra determined by an associative algebra. For,
if we have an associative algebra A and a linear map ρ : L → A with
ρ([X,Y ]) = ρ(X)ρ(Y ) − ρ(Y )ρ(X) then there is a unique map T (L) → A
extending ρ. Since ρ is a map of Lie algebras, it sends every defining relation
for U(L) to zero in A. Hence, it factors to give a map of associative alge-
bras U(L) → A. This is the unique map of associative algebras U(L) → A
extending ρ. There is a subtlety here. Is L→ U(L) an injective linear map?
If it has a kernel, this means that every linear representation of L has a
non-trivial kernel. In fact, the PBW Theorem says that this is not the case.

Theorem 1.2. (PBW) Let L be a finite dimensional Lie algebra. We denote
its underlying vector space by V . The natural increasing filtration on T (V )
defined by Fn(T (V )) =

∑n
k=0⊗kV induces an increasing filtration of U(L),

also denoted {Fn}. This is a multiplicative filtration in the sense that the
multiplication induces a map Fn ⊗ Fm 7→ Fn+m. It follows that there is a
graded algebra structure on the associated graded

F (L) = ⊕∞n=0Fn(U(L)/Fn−1(U(L)).

There is an isomorphism between this graded algebra and the polynomial
algebra on L which is the identity on L = ⊗1L.

Corollary 1.3. The natural map L→ U(L) is an injection.

Corollary 1.4. Every (finite dimensional) Lie algebra is a sub Lie algebra
of a Lie algebra given by the AB−BA Lie bracket of an associative algebra.

Proof. (of the theorem) We fix a basis {Xi}i∈I and choose a total ordering
for the basis, or equivalently a total ordering on the index set I. For a finite
sequence J = {j1, . . . , jk} of elements of I and i ∈ I, the notation i ≤ J
means that i ≤ jr for all jr ∈ J . We denote the number of elements in the
sequence J by |J |. We have a corresponding basis for the polynomial algebra
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on L, denoted P (L). To avoid confusion we use the notation zi for the
variable associated to Xi, so that the algebra is the algebra of polynomials
in the {zi}i∈I with a basis being the monomials zJ =

∏
j∈J zj as J ranges

over the finite sequences that are weakly ordered: {j1, . . . , jt} such that
ji ≤ jk for all i < k. Our goal is to define an action σ : L ⊗ P (L) → P (L).
We do this by induction on the degree p of the polynomial. The inductive
hypothesis for p is that we have a map σp : L⊗P p(L)→ P (L)p+1 satisfying
the following:

A(p): If i ≤ J for |J | ≤ p, then σp(Xi)zJ = zizJ .

B(p): For any J with |J | = q ≤ p we have σp(Xi)zJ − zizJ ∈ P (L)q.

C(p): For any J with |J | < p,

σp(Xi)σp(Xj)zJ − σp(Xj)σp(Xi)zJ = σp([Xi, Xj ])zJ .

(Also, σp|P (L)p−1 = σp−1.)
We construct the maps by induction on the P (L)p. For p = 0, it follows

from Condition A(0) that σ0(Xi)1 = zi. We take this as our definition of
σ0.

Now suppose that σp−1 : L ⊗ P p−1(L) → P (L)p is defined satisfying
Conditions A(p−1), B(p−1), and C(p−1). We define σp on all monomials
zJ with |J | = p. If i ≤ J , the Condition A(p) requires σp(Xi)zJ = ziZJ .
Otherwise, re-odering J we have J = (k,K) with k ≤ K and k < i. By
the inductive hypothesis ZJ = σp−1(Xk)ZK . We invoke Condition C(p) and
define

σp(Xi)zJ = σp(Xi)σp−1(Xk)ZK = σp(Xk)σp−1(Xi)(zK)+σp−1([Xi, Xk])ZK .

Notice the first term σp(Xk)σp−1(Xi)zK = σp(Xk)(ziZK)+σp−1(Xk)(w) for
some w ∈ P (L)p−1. Since k ≤ (i,K), σp(Xk)(zizK) is already defined by
A(p). This shows that there is at most one extension of σp−1 to σp satisfying
A(p), B(p), and C(p).

Clearly, Conditions A(p) and B(p) hold for σp. It remains to show that
C(p) holds. By construction it holds for σp(Xi)σp−1(Xj)zK if j ≤ K and
i ≥ j. By symmetry it holds if i ≤ K and j ≥ i. Thus, the remaining cases
are where K = (k,M) with k ≤ M and k < i, j. To simplify the notation
we drop σp and σp−1 from the notation and simply write the product as a
juxtaposition. By induction and the cases where we already know that C(p)
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holds we have

XiXjzK = XiXjXkzM = XiXkXjzM +Xi[Xj , Xk]zM

= XkXiXjzM + [Xi, Xk]XjzM +Xi[Xj , Xk]zM

= XkXjXizM +Xk[Xi, Xj ]zM + [Xi, Xk]XjzM +Xi[Xj , Xk]zM

By the symmetric argument we have

XjXiXkzM = XkXjXizM + [Xj , Xk]XizM +Xj [Xi, Xk]zM .

The first equation minus the second one yields:

XiXjzK −XjXizK =Xk[Xi, Xj ]zM [+[Xi, Xk], Xj ]zM

+Xi[Xj , Xk]zM − [Xj , Xk]XizM −Xj [Xi, Xk]zM

=([[Xi, Xk], Xj ] + [Xi, [Xj , Xk]] +Xk[Xi, Xj ])zM .
(1.1)

The Jacobi identity tells us that

[[Xi, Xk], Xj ]+[[Xi, [Xj , Xk]]] = −[[Xk, [Xi, Xj ]] = [Xi, Xj ]Xk−Xk[Xi, Xj ].

Thus, Eequation 1.1 becomes

XiXjzK −XjXizK = [Xi, Xj ]XkzM = [Xi, Xj ]zK .

This completes the proof of property C(p) and hence completes the inductive
proof of the existence of the action σ : L ⊗ P (L) → P (L) with properties
A(p), B(p), C(p) for all p ≥ 0.

By Condition C(p) for all p, the map resulting map σ : L→ End(P (L))
is a map of Lie algebras and hence extends to an action of U(L)⊗ P (L)→
P (L). By definition σ(Xi)zM = zizM modulo F|M |P (L) and hence

Xi1 · · ·XitzM = zi1 · · · zitzM modulo F|M |+tU(L).

We define a map U(L) → P (L) be sending a ∈ U(L) to ϕ(a) = a · 1.
Then ϕ : U(L) → P (L) is compatible with the gradings by degree. We
define the associated graded FU(L) to the increasing filtration by degree
FnU(L). The associated graded to ϕ, denoted F (ϕ), induces a map of
graded algebras F (ϕ) : FU(L) → P (L) sending the element Xi1 · · ·Xit to
the monomial zi1 · · · zit . This map of graded algebras is clearly surjective.

We claim that it is also injective. Since every element of FnU(L) is rep-
resented by a sum of monomials of degrees ≤ n and any two monomials that
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involve exactly the same Xi each the same number of times, just in differ-
ent orders, are equal modulo Fn−1U(L) it follows that FnU(L)/Fn−1U(L)
is a quotient of the vector space generated by the monomials of length n on
weakly ordered sequences. Since these elements map via F (ϕ) to a basis for
the homogeneous polynomials of degree n, it follows that the these mono-
mials of degree n are a basis for FnU(L)/Fn−1U(L), and hence that F (ϕ)
is an isomorphism of graded algebras.

1.2 The Co-multiplication of U(L)

We give U(L)⊗ U(L) the product associative algebra structure.
We define a map c : L→ U(L)⊗ U(L) by c(x) = x⊗ 1 + 1⊗ x..

Proposition 1.5. c extends uniquely to an algebra map c : U(L)→ U(L)⊗
U(L). The map c is a co-associative and co-commutative and has a co-unit

Proof. We define c on the tensor algebra T ∗(L) by multiplicativity, giving
an algebra map T ∗(L) → U(L) ⊗ U(L). It descends to an algebra map
U(L)→ U(L)⊗U(L) because c(x)c(y)− c(y)c(x) = c([x, y]) for all x, y ∈ L.

Since c(x) is symmetric under interchange of factors for all x ∈ L, the
image of c is symmetric under this interchange. This is the definition of
co-commutative. Similarly, for all x ∈ L we have

(1⊗ c) ◦ c(x) = x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x = (c⊗ 1) ◦ c(x),

from which it follows that (1⊗c)◦c = (c⊗1)◦c on all elements, which is the
definition of co-associative. Finally, the co-unit of c is the map U(L) → R
of unital algebras that sends x ∈ L to zero for all x ∈ L.

Definition 1.6. An element x ∈ U(L) is primitive if c(x) = x⊗ 1 + 1⊗ x

Lemma 1.7. The primitive elements form a real vector subspace of U(L).

Proof. Exercise.

Clearly, every x ∈ L ⊂ U(L) is primitive. We define the standard co-
multiplication c0 on the polynomial algebra P (V ). It is characterized by
c0(v) = v⊗1 + 1⊗ v and c0 is a homomorphism of associative, commutative
algebras.

Claim 1.8. In the polynomial algebra P (V ) (over a field of characteristic
zero) the only primitive elements for the standard co-multiplication are the
elements on V .
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Proof. In the polynomial algebra every homogeneous polynomial of degree
n in P (L) is a linear combination of nth powers of elements in L. In P (L)
with its standard co-multiplication c′ the general homogeneous element of
degree n can be written as

c0(
∑
i

λia
n
i ) =

∑
i

λi

(∑
k

(
n

k

)
aki ⊗ an−ki

)
.

Thus, the term of bi-degree (1,n-1) in c0(
∑

i λia
n
i ) is n

∑
i λiai⊗a

n−1
i . Hence,

for n > 1 if this element is primitive then n
∑

i λiai ⊗ a
n−1
i = 0. But the

image of this element under the multiplication map is n
∑

i λia
n
i = 0, imply-

ing that the element is zero. This shows that the only primitive elements in
P (L) are of degree 1 and hence are elements of L.

There is an analogous proposition for U(L).

Proposition 1.9. The primitive elements in U(L) for the co-multiplication
are exactly the elements in L.

Proof. We define an increasing filtration Fn[U(L)⊗U(L)] =
∑

i+j≤n U
i(L)⊗

U j(L). Then c : U(L) → U(L) ⊗ U(L) preserves the filtration and hence
induces a co-multiplication c′ = F ∗(c) on FU(L), which is a homomorphism
of algebras with every element in degree 1 being primitive. Thus, under
the identification of FU(L) with P (L) the co-multiplication c′ becomes the
standard co-multiplication c0 on polynomials.

Suppose that a ∈ U(L) is primitive and non-zero. Since no multiple
of the identity is primitive, there is n ≥ 1 such that a ∈ FnU(L) and has
non-trivial projection to FnU(L)/Fn−1U(L). We show that n = 1. Let
a ∈ U(L)n/U(L)n−1 be the image of a. Since a ∈ FU(L) is primitive,
under the identification of FU(L) with P (L) a is identified with a primitive
element for c0. it follows from the previous claim that a = 0 unless n = 1.
But by construction a 6= 0. This implies that n = 1. Thus, a is the sum of
an element in L and a multiple of the identity: a = x+λ1 where x ∈ L and
λ is in the ground field. But c(x + λ1) = x ⊗ 1 + 1 ⊗ x + λ1 ⊗ 1, so that
this element is primitive if and only if λ = 0 and consequently, if and only
if a ∈ L.

1.3 Free Lie Algebras

Let S be a set. (We are primarily interested in the case when S has car-
dinality 2.) By induction on i we define sets Si. We begin with S1 = S.
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Given Si for i < n. we define Sn =
∐

i+j=n;i,j≥1 Si × Sj . We can view Sn as
all expressions that are a composition of ordered binary products of pairs of
elements. Fox example, S2 = (x · y) for x, y ∈ S1. S3 has elements of the
form x1 · (x2 ·x3) and ((x1 ·x2) ·x3) for x1, x2, x3 ∈ S. S4 has elements of the
form ((x1 ·x2) · (x3 ·x4)) as well as elements such as (x1 · ((x2 ·x3) ·x4)), and
many others. We set S∞ =

∐
Sn. We define the free non-associative algebra

generated by S, denoted F (S) to be the R-vector space spanned by S∞. The
multiplication of x ∈ Si and y ∈ Sj is the element (x, y) ∈ Si × Sj ⊂ Si+j .
Given this multiplication on the basis elements we extend by linearity to a
multiplication on F (S). The freeness of F (S) is captured in the following
property. Given any not necessarily associative algebra A and a set function
S → A, it extends uniquely to a map of algebras F (S)→ A.

[From the perspective of operads, consider the operad whose operations
of order n are the set of rooted trivalent tress whose leaves are numbered
1, . . . , n. The composition law at position i of a tree T with r leaves and a
tree T ′ with s leaves is obtained by attaching the root of T ′ to the ith leaf of
T and then renumbering the leaves, starting with the first i−1 of T in order,
then the s of T ′ in order and finally the last r − i − 1 of T in order. This
produces a new rooted trivalent tree with leaves numbers 1, . . . , s + t − 1.
A magma on a set S is the same thing as the set of all rooted trees (with
numbered leaves) together with a function of the leaves of the tree to the
generating set of the magma. The product operation for magmum is given
by the operad composition. This operad is equivalent to the associahedron:
all ways of legitimately associating a product of n elements with a given
order in a non-associative, non-commutative algebra.]

We define the free Lie algebra generated by S, denoted L(S) to be the
quotient of F (S) by the two-sided ideal generated by Q(a.a) = a · a and
J(a, b, c) = a · (b · c) + c · (a · b) + b · (c · a). The proper way now to write an
element of this quotient is to replace the parentheses by brackets. So that
each element of S∞ is a legitimate expression in the Lie algebra generated by
L(S) and we have imposed by fiat the skew symmetry and Jacobi identity
(the multi-linearity over R comes from the fact that we have an algebra over
R). Given any function of S to a Lie algebra L, the function extends uniquely
to a homomorphism of Lie algebras L(S) → L. To see this, first use the
universal property of F (S) to define an algebra map ψ : F (S)→ L extending
S → L and sending the product in F (S) to the bracket in L. Then notice
that the generators of the two-sided ideal Q(a, a) and J(a, b, c) map to zero
in L since L is a Lie algebra. That implies that the two-sided ideal generated
by these elements maps to zero in L and hence F (S) → L factors through
the quotient L(S), and thus defines an algebra homomorphism L(S)→ L.
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Let A(S) be the free associative algebra generated by S. It has an R-
basis consisting of all monomials in S, and multiplication of monomials is
juxtaposition: m1⊗m2 7→ m1m2. This algebra has the property that if A is
any associative algebra and S → A is a set function, then there is a unique
algebra map A(S)→ A extending the given map S → A.

Claim 1.10. 1. L(S) = ⊕n≥1L(S)n is a graded Lie algebra and U(L(S))
inherits a grading from that of L(S). The algebra A(S) is graded by
the degree of the monomial.

2. The inclusion S → A(S) extends uniquely to a linear map L(S) →
A(S) sending the Lie bracket to the AB − BA bracket in A(S). By
the universal property of U(L(S)), this map induces an algebra ho-
momorphism ϕ : U(L(S)) → A(S). This map is an isomorphism of
algebras.

3. Furthermore, ϕ : U(L(S)) → A(S) is an isomorphism of graded alge-
bras.

Proof. The grading on F (S) is given by the grading on S∞. The two-sided
ideal I whose quotient is L(S) is generated by homogeneous elements so that
L(S) inherits a grading. The tensor algebra T (L(S))) inherits a grading from
the grading on L(S) and with this grading the defining relations x ⊗ y −
y ⊗ x = [x, y] are homogeneous. Hence, the quotient of the two-sided ideal
that these relations generate is a homogeneous ideal and therefore U(L(S))
is a graded algebra. The degree of a product in U(L(S)) of homogeneous
elements in L(S) is the sum of the degrees of these elements. Likewise the
algebra A(S) is graded by the degree of monomials in the same way.

By the universal property of L(S) the inclusion of S → A(S) induces
a Lie algebra homomorphism L(S) → A(S), which in turn by the univer-
sal property of U(L(S)) induces an algebra homomorphism ϕ : U(L(S)) →
A(S). On the other hand, the universal property of A(S) implies that the
inclusion S → U(L(S)) extends to an algebra homomorphism ψ : A(S) →
U(L(S)). Both ϕ◦ψ and ψ◦ϕ are the identity on S and hence by the unique-
ness part of the universal properties of A(S) and U(L(S)) both compositions
are the identity. Thus, they are inverse isomorphisms.

Since the generators S have grading one, the map L(S) → A(S) is a
graded map. Then the extension to U(L(S)) also preserve the gradings.
Thus, ϕ and ψ are inverse isomorphisms of graded algebras.
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Corollary 1.11. There is a co-multiplication c : A(S) → A(S) that is a
homomorphism of graded algebras and whose space of primitive elements is
(S) ⊂ A(S).

A(S) is a graded algebra with A0(S) equal R with 1 ∈ R the unit or
the algebra. Define Fn(A(S)) = ⊕k≥nAk(S). This is a decreasing filtration
and ∩n≥0Fn(A(S)) = 0. Thus, we can form the completion Â(S) of A(S)
with respect to the Fn(A(S)). In this case, Â(S) is simply formal sums of
elements in A(S), namely

Â(S) =

{ ∞∑
n=0

an | ∀n, an ∈ A(S)n

}
.

We let L̂ie(S) be the closure of L(S) ⊂ A(S) in Â(S). Then

L̂(S) =

{ ∞∑
n=0

xn | ∀n, xn ∈ L(S)n

}
.

Corollary 1.12. Let Bn =
∑

i+j=nA(S)i⊗A(S)j and set B̂(S) =
∏

n≥0Bn.

The co-multiplication in Corollary 1.11 induces a map Â(S)→ B̂(S) sending∑
n an to

∑
n c(an). This makes sense because c(an) ∈ Bn. Let δ′(

∑
n an) =∑

n an ⊗ 1 and δ′′(
∑

n an) =
∑

n 1⊗ an be maps of Â(S)→ B̂(S). Then

c(
∑
n

an) = δ′(
∑
n

an) + δ′′(
∑
n

an)

if and only if an ∈ L(S) for all n ≥ 0; i.e., if and only if
∑

n an ∈ L̂(S).

Proof. All of this is immediate from the fact that the only primitive elements
in A(S) are the elements or L(S).

We call elements satisfying the equation in the corollary primitive.

1.4 Formal Power Series in Â(S)

The reason for introducing the completions to series is so that our power
series will have meaning, without having to worry about convergence issues.

Now we consider case when S = {A,B}. Consider

exp(A) =
∑
n≥0

An

n!
; exp(B) =

∑
n≥0

Bn

n!
.
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These formal power series are elements in Â(S) and as is their product

∑
n≥0

 ∑
i+j=n

AiBj

i!j!

 .

Now consider

log(exp(A)exp(B)) =
∑
n≥1

(−1)n−1

n

∑
r,s≥0

ArBs

r!s!

n

.

Let e(x) =
∑

n≥1 x
n/n! and `(x) =

∑
k≥1(−1)kxk/k. These power series

are well defined on F1(Â(S)), and take values in Â(S). The reason is that
for x ∈ F1(Â(S)), all but finitely many of the terms in the series for e or `
vanish modulo Fn(Â(S)). Thus, the infinite sum represents a well-defined
element of the inverse limit of Â(S)/Fn(Â(S)), which is Â(S). Now for
t ∈ (−1, 1) the power series for e(t) and `(t) are convergent and converge to
exp(t)− 1 and log(1 + t). Thus, for t sufficiently close to 0 these are inverse
functions: we have e(`(t)) = t and `(e(t)) = t.

This leads to finite algebraic equations for the coefficients of the com-
posed power series. Namely, composing the power series for e and ` in either
order applied to x ∈ F1(Â(S) and then rearranging the terms, all the co-
efficients of xN vanish for N > 1 and the coefficient of x is 1. Working
modulo Fn(Â(S)) all but finitely many of the terms vanish and thus there is
no issue about convergence of the rearrangement of the coefficients. Hence,
for x ∈ F1(Â(S)) we have e(`(x)) ≡ x ≡ `(e(x)) modulo Fn(Â(S)) for all
n. This means e(`(x)) = `(e(x)) = x for all x ∈ F1(Â(S)). In particular, in
Â(S) we have

exp(log(exp(A)exp(B))) = exp(A)exp(B).

Clearly

exp(log(exp(0)exp(A))) = exp(log(exp(A)exp(0))) = A,

and exp(A)exp(−A) = 1 so that

exp(log(exp(A)exp(−A))) = exp(log(1)) = 1.

Lastly, we claim that letting S = {A,B,C}

exp(A)(exp(B)exp(C)) = (exp(A)exp(B))exp(C)
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in Â(S). The terms from the left-hand side are of the form
(An

1B
n2 )(Cn3 )

n1!n2!n3!
,

whereas the terms from the right-hand side are
An

1 (B
n2Cn3 )

n1!n2!n3!
. Since Â(S) is

associative, these terms are equal.

Theorem 1.13. (Hausdorff Series) The series H(A,B) = log(exp(A)exp(B))

in Â(S) lies in L̂(S).

Proof. We have the image ĉ : Â(S) →
∏

nBn where Bn =
∑

i+j=nA
i(S) ⊗

Aj(S) given by ĉ(x) =
∑

n c(xn) where c(xn) ∈ Bn. Because the only
primitive elements in A(S) for c are elements on L(S), it follows that if

ĉ(x) = x ⊗ 1 + 1 ⊗ x, then x ∈ L̂ie(S), or equivalently xn ∈ L(S) for all
n ≥ 1. It remans to show that ĉ(H(A,B)) = H(A,B)⊗ 1 + 1⊗H(A,B).

Since A,B ∈ L(S), we have c(A) = A⊗ 1 + 1⊗ A and c(B) = B ⊗ 1 +
1⊗B. If x is primitive and in the maximal ideal, then exp(x) is defined, is
congruent to 1 modulo the maximal ideal and the multiplicative property of
the power series exp(x) on commuting elements shows that if x is primitive
and contained in the maximal ideal then

ĉ(exp(x)) = exp(c(x)) = exp(x⊗ 1 + 1⊗ x)

= (exp(x⊗ 1))(exp(1⊗ x)) = exp(x)⊗ exp(x).

Such elements are called group-like. It is also an easy exercise to show
that if x, y in Â(S) are group-like and congruent to 1 modulo the maximal
ideal, then the same is true from xy, and if u is group-like and congruent
to 1 modulo the maximal ideal, then log(u) is primitive and contained in
the maximal ideal. Applying these elementary facts tells us that H(A,B) =
log(exp(A)exp(B)) is primitive in Â(S) and thus log(exp(A)exp(B)) ∈ L̂(S).

This proves that, formally at least, the seriesH(A,B) = log(exp(A)exp(B))
defines a group structure on Â(S) with 0 as identity and −1 as inverse. One
should think of this as a formal Lie group determined by the Lie algebra L.

1.5 Finite Dimensional Real Lie Algebras and Groups

To show that H leads to a local Lie group structure, we need to see that
for any real Lie group g the power series H(A,B) has a positive radius of
convergence and defines a real analytic function

U × U → g
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defined in some neighborhood of the identity. If it does, then the formal
computations of the local group structure are valid in the neighborhood of
convergence meaning that H determines the multiplication of a local Lie
group. Here is the statement of the convergence result.

Theorem 1.14. Let L be a Lie algebra. Then there is a neighborhood U ⊂ L
of the identity invariant under X 7→ −X such that for all A,B ∈ U the power
series H(A,B) = log(exp(A)exp(B)) converges absolutely to an element of
L.

Corollary 1.15. Set Ω ⊂ U × U equal to H−1(U), define θ(X) = −X and
m(A,B) = H(A,B) ∈ U for all (A,B) ∈ Ω. Then (U, 0,−1,Ω,m) is a local
Lie group, the local Lie group of L with underlying open set U .

Proof. (of the corollary assuming the theorem) We have established the
formal properties of the power series showing that it is associative, has 0 as
a unit and −X as the inverse for X. On any open set in g× g on which the
power series converges, these results hold for the analytic function defined
by the power series. The corollary now follows immediately.

The homework consists of a sequence of problems establishing this con-
vergence result
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