Problem Set 4 for Lie Groups: Fall 2022

October 25, 2022

Problem 1. Show that $Spin(2) \to SO(2)$ is the double covering of the circle over the circle. Show Spin(3) is SU(2). Show that $Spin(4) \cong SU(2) \times SU(2)$.

Problem 2. Let Spin(1,3) be the Spin group associated with the real quadratic form of type (1,3). Show that $Spin(1,3) \cong SL(4,\mathbb{C})$. The Poincaré group is defined as

 $Spin(1,3) \ltimes \mathbb{M}^{1,3}$

where $\mathbb{M}^{1,3}$ is Minowski 4-dimensional space and with Spin(1,3) acing via the 'rotation' group SO(1,3) of isometries fo $\mathbb{M}^{1,3}$ fixing the origin. Much of physics revolves around unitary representations of the Poincaré group.

Problem 3. Let k be a subfield of K. Suppose that V is a k-vector space with a non-degnerate quadratic form Q. Then show that by extension of scalars there is an induced non-degenerate quadratic form \hat{Q} on $V \otimes_k K$ and that there is a natural map $ClLV, Q) \otimes_k K \to CL(V \otimes_k K, \hat{Q}).$

Problem 4. Show that all non-degenerate quadratic forms on an *n*-dimensional complex vector space are isomorphic. We denote by $CL_{\mathbb{C}}(n)$ the (complex) Clifford algebra associated to a non-degenerate *n*-dimensional complex quadratic form. Show $CL_{\mathbb{C}}(n+2) \cong CL_{\mathbb{C}}(n) \otimes CL_{\mathbb{C}}(2)$. Give the classification of all finite dimensional complex Clifford algebras.

Problem 5. Let k be a field of characteristic $\neq 2$. Show that a nondegenerate quadratic form on a finite dimensional k-vector space V can be diagonalized; i.e., there is a basis $\{e_1, \ldots, e_k\}$ for V such that under the bilinear form B associated to Q we have $B(e_i.e_j) = 0$ for all $i \neq j$. Show that the isomorphism classes of one-dimensional quadratic forms over k are identified with $k^{\times}/(k^{\times})^2$. What is the Clifford algebra associated with the one-dimensional form over k determined by $d \in k^{\times}$. **Problem 6.** Verify the claims in the last paragraph in Section 1.2.1 of Lecture IV.

Problem 7. Establish the statement about the existence of e_2'' in the last paragraph of Section 2.2.1 of Lecture IV.

Problem 8. We have identified $CL_{3,1}^0$ with $\mathbb{C}[2]$ and $CL_{3,1}$ with $\mathbb{H}[2]$. Describe the map $\mathbb{C}[2] \to \mathbb{H}[2|$ induced by these identifications and the natural inclusion $CL_{3,1}^0 \to CL_{3,1}$.

Problem 9. Same question as Problem 8 for the identifications $CL_{1,3} = \mathbb{R}[4]$ and $Cl_{1,3}^0 = \mathbb{C}[2]$.

Problem 10. All tensor products in this problem are over \mathbb{R} and *isomorphism* means isomorphism of \mathbb{R} -algebras. Show that $\mathbb{R}[r] \otimes \mathbb{R}[s]$ is isomorphic to $\mathbb{R}[rs]$. Show that $K \otimes \mathbb{R}[s]$ is isomorphic to K[s] for $K = \mathbb{C}, \mathbb{H}$. Show that $\mathbb{C} \otimes \mathbb{H}$ is isomorphic to $\mathbb{C}[2]$. Show that $\mathbb{H} \otimes \mathbb{H}$ is isomorphic to $\mathbb{R}[4]$.