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1 Representations of C∗

Let us begin with a well-known theorem.

Proposition 1.1. Let ρ : C∗ × V → V be a finite dimensional complex
linear representation. Then there is a basis {e1, . . . , ek} for V and integers
n1, . . . , nk such that the action of z ∈ C∗ sends ei to zniei. In other words in
some basis the action is diagonal with integral powers of z down the diagonal.

Proof. We choose coordinates w for C and z for C∗ so that the exponential
map is given by z = exp(2πiw).

Let A ∈ C[n] be the image of 1 ∈ C under the differential of ρ. Then
the action ρ(z) is given by the matrix exp(2πiwA). The Jordan canonical
form for A says that in some basis we can write A = D + N where D is a
diagonal matrix and N nilpotent, say Nk+1 = 0, and [D,N ] = 0. Since D
and N commute, we have

exp(2πiwA) = exp(2πiwD)exp(2πiwN).

Since N is nilpotent, exp(2πiwN) is a polynomial function

p(2πiwN) =

k∑
j=0

(2πiwN)j

j!
.

The first exponential is diagonal and the second is nilpotent matrix commut-
ing with the diagonal term. It follows that the eigenvalues of exp(2πiwA)
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are the exponential of 2πi times the diagonal entries of D. Since the former
are periodic under w 7→ w+ 1, the latter are integers. Thus, exp(2πiwD) is
a diagonal matrix with diagonal entries of the form exp(2πiλ + jw) = zλj

for integers λj .
Since exp(2πiwD) is periodic under w 7→ w + 1 as is exp(2πiwA), it

follows that p(2πiwN) is also periodic under w 7→ w + 1. Since only con-
stant polynomials of w are periodic under w 7→ w + 1, this implies that
the coefficient of each positive powers of w in p(w) is identically zero. In
particular, the coefficient of the linear term of w in p(w), which is 2πiN , is
0, and hence A = D and A is thus diagonalizable with diagonal entries zλj

as asserted.

2 The Lie Algebra of sl(2,C)

sl(2,C) is the Lie sub algebra of C[2] of matrices of trace zero. Generators
for this algebra are

h =

(
1 0
0 −1

)
, e+ =

(
0 1
0 0

)
, e− =

(
0 0
1 0

)
.

The first matrix exponentiate a C∗ in SL(2,C). The relations in the Lie
algebra are [h, e+] = 2e+, [h, e−] = −2e−, and [e+, e−] = h.

Definition 2.1. An ideal I in a Lie algebra L is a linear subspace I with
the property that [I, L] ⊂ I. An ideal is non-trivial if it is neither all of L
nor 0.

Claim 2.2. If ρ : L→ L′ is a homomorphism of Lie algebras then the kernel
of ρ is an ideal in L.

The proof is left as an exercise.

Lemma 2.3. sl(2,C) has no non-trivial ideal.

Proof. Let I be a non-zero ideal of sl(2,C) and let X 6= 0 be an element of
I. Then,[e−, [e−, [e−, X]]] = 0. Let 0 ≤ k < 3 be the largest integer such
that k-fold bracketing X by e− is non-zero. Then this bracket, which is
contained in I, is a non-zero multiple of e−. This shows e− ∈ I. Bracketing
by e+ we see that h ∈ I, and bracketing once more by e+ we see that e+ ∈ I.
This proves that the ideal is all of sl(2,C).
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Suppose that we have a finite dimensional complex representation of
sl(2, C) on a vector space V . Since sl(2,C) has no non-trivial ideals it
follows that either this map is trivial or it is an embedding of sl(2,C) into
End(V ). We assume that the representation is non-trivial. Then it generates
a subgroupG ⊂ Aut(V ) ∼= GL(n,C). This group has the same Lie algebra as
SL(2,C) and thus is a finite quotient by a central subgroup. (The center of
SL(2,C) consists of the diagonal matrices with values ±1 down the diagonal,
and hence is a group of order 2.) In any case, the Lie algebra representation
integrates to a non-trivial representation of SL(2,C) (possibly with kernel
{±1}). As such we see that we can choose a basis for V in which the
infinitessimal generator h is diagonal with integer entries along the diagonal.

Claim 2.4. For v ∈ V , if h(v) = λv, then h(e−(v)) = (λ − 2)e−(v) and
h(e+(v)) = (λ+ 2)e+(v).

Proof. We apply the equation [h, e+] = 2e+ to v and conclude that h(e+(v))−
e+(h(v)) = h(e+(v)) − e+(λv) = 2e+(v), giving h(e+(v)) = (λ + 2)e+(v).
The argument for e− is symmetric.

Now let λ be the maximal eigenvalue for the action of h on V and let
v 6= 0 be a vector in V with h(v) = λ(v). We see that e+(v) = 0. For every
j ≥ 0 we define vj = (e−)j(v). Then h(vj) = (λ− 2j)(vj).

Claim 2.5. For any j ≥ 0, if vj 6= 0, then e+(vj+1) =
∑j−1

i=0 (λ− 2i)vj.

Proof. If vj 6= 0, then vi 6= 0 for all 0 ≤ i ≤ j. We establish the formula in
the claim by induction on i. It holds for i = 0 since

λv0 = [e+, e−](v0) = e+e−(v0) = e+(v1).

Suppose that it holds for vj−1. This means that e−e+(vj) =
∑j−1

i=0 (λ−2i)vj
Thus,

(λ− 2j)vj = (e+e− − e−e+)(vj) = e+(vj+1)−
j−1∑
i=0

(λ− 2i).

The result follow by induction.

Corollary 2.6. For any t 6= λ, if vt 6= 0, then vt+1 6= 0.

Proof. As long as t 6= λ, the numerical coefficient is nonzero, and hence
vt+1 6= 0.
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Corollary 2.7. λ is a non-negative integer and the dimension of the sl(2,C)
representation generated by v is λ+ 1.

Proof. Since V is finite dimensional there can be only finitely many vt that
are non-zero. Hence, it must be the case that vλ+1 = 0, for otherwise vt
would be non-zero for all t. On the other hand since v0 6= 0, vt 6= 0 for all
0 ≤ t ≤ λ. Thus, v belongs to a unique subrepresentation of V of dimension
λ+ 1.

Indeed, the above argument does not need the eigenvalue of v to be
maximal, all that is required is that e+(v) = 0. Since he+ − e+h = 2e+, we
see that h leaves invariant ker(e+).

Thus, we write kernel(e+) as a direct sum ⊕iLi where each Li is one-
dimensional and contained in eigenspace of h with eigenvalue λi ∈ Z. Then
each Li generates an sl(2,C)-submodule Vi of V of dimension λi + 1.

Claim 2.8. The inclusions Vi ⊂ V determine an isomorphism of sl(2,C)
modules ⊕iVi → V .

Proof. Since each Vi is a subrepresentation of V , we have the sum of the
inclusion maps ρ : ⊕i Vi → V which is an sl(2,C) homomorphism. By
construction it induces an isomorphism on ker(e+). As we have seen, every
non-trivial finite dimensional sl(2,C) representation contains a non-trivial
vector in ker(e+). Thus, if ker(ρ) 6= 0, then there would be a non-trivial
element in ker(e+) which maps trivially under ρ, which is not possible. This
contradiction proves the map ⊕iVi → V is a monomorphsm.

Now let W ⊂ V be the image of ⊕Vi. Assume that there is a non-trivial
cokernel. Then there is an elementary subrepresentation generated by an
element in V/W in the kernel of e+. In particular, there is an element v ∈ V ,
not in W , that is in non-negative eigenspace for h and has e+(v) ∈W . The
element e+(v) is in a positive h-eigenspace of W . Direct computation shows
that the elementary summands of W split as vector spaces as Im(e+) ⊕
ker(e−) which means in particular that e+(W ) contains all the positive h-
eigenspaces on W . Thus, e+(v) = e+(w) for some w ∈ W . Hence, e+(v −
w) = 0 and v − w 6∈ W . This is a contradiction since the map W → V
induces an isomorphism of the kernels of e+.

Definition 2.9. A finite dimensional representation V of a Lie algebra L is
said to be completely reducible if it is isomorphic as a L-module to a direct
sum of irreducible L-modules, i.e. L-modules that admit no non-trivial
submodules.
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Theorem 2.10. Every finite dimension sl(2,C)-module is completely re-
ducible. Up to isomorphism there is exactly one irreducible sl(2,C) module
for dimension k, for every k ≥ 1. It is generated by a vector v with h(v) =
(k−1)v and e+(v) = 0. A C-basis for the module is {v, e−(v), . . . (, e−)k−1v}.

What are these representations? By the general theory, we know that
they all come from representations of SL(2,C). The one-dimensional rep-
resentation is the trivial representation on C. The two-dimensional repre-
sentation is the defining representation SL(2,C) ⊂ GL(2,C). The higher
dimensional representations are the symmetric powers of the defining repre-
sentation. The symmetric kth power has dimension (k+1), with a basis ea1e

b
2

with a + b = k. (Here, e1, e2 is a basis for the two-dimensional representa-
tion.) We can also view these representations as the induced representation
on homogenous polynomial functions of degree k on the two-dimensional
representation.

The even dimensional irreducible representations are faithful representa-
tions of SL(2,C). The reason is that all the eigenvalues of h are odd integers
and thus the resulting action of the C∗ generated by h is a diagonal matrix
with odd powers of z down the diagonal. This map is a faithful action of
C∗. Since the only possible kernel for the action of SL(2,C) is the central
subgroup ±1 that lies in the center, any action of SL(2,C) whose restriction
to the diagonal C∗ is faithful is a faithful action of SL(2,C).

The odd dimensional irreducible representations have h eigenvalues that
are even integers, and hence the resulting action of C∗ is diagonal with even
powers of z along the diagonal. Any such action is trivial on the element
−1, and hence the representation factors through SL(2,C)/{±1}.

3 sl(2,R)

Any complex representation of sl(2,R) extends to a representation of sl(2,C).
As such, h ∈ sl(2,R) is diagonalizable with integer eigenvalues. The argu-
ment given in for sl(2,C) now applies word-for-word to show that all finite
dimensional complex representation of sl(2,R) is completely irreducible and
up to isomorphism the irreducible representations are the symmetric powers
of the defining 2-dimensional complex representation.

Now let us consider finite dimensional, real representations of sl(2,R).
Fix one V . We first pass to the complex representation VC of sl(2,R).
In this complex representation, as we have just seen, h is diagonalizable
with integer eigenvalues. Since the eigenvalues are all real, this implies that
there is a (real) basis of V in which h is diagonal. Once we have this the
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arguments in the previous cases apply to show that the representation is
completely reducible and the irreducible representations are the symmetric
powers of the defining real representation. Thus, all these representations
come from the symmetric powers of the defining 2-dimensional real repre-
sentation of SL(2,R). As before the even dimensional irreducible repre-
sentations of SL(2,R) are faithful and the odd dimensional representations
factor through SL(2,R)/{±1}.

4 so(3)

The Lie algebra so(3) is the 3-dimensional real Lie algebra of skew symmetric
3 × 3 real matrices. It has a basis X,Y, Z and bracket relations [X,Y ] =
Z, [Y,Z] = X, [Z,X] = Y . It is the Lie algebra of the compact group
SO(3), and the universal covering of SO(3) is SU(2), the 2 × 2 unitary
matrices of determinant 1. Thus any representation of so(3) determines a
representation of SU(2) = Spin(3).

Claim 4.1. The complexification of so(3) is isomorphic to sl(2,C).

Proof. While we can give a direct argument, using the fact that so(3) is the
Lie algebra of SU(2) and we have SU(2) ⊂ SL(2,C). These together induce
an isomorphism between the complexification of the Lie algebra of SU(2)
with sl(2,C).

It follows that the complex representations of so(3), which are the same
as the complex representations of so(3)⊗ C. (It follows that that the com-
plex representations of SU(2) and SO(3) are completely reducible.) The
complex representations of these Lie algebras and Lie groups are completely
reducible. There is one irreducible complex representation of SU(2) in each
dimension. Each of these is a complex representation of a map of complex
Lie groups SU(2) → GL(N,C). The even dimensional irreducible complex
representations are faithful and the odd dimensional ones factor to give irre-
ducible complex representations of SO(3). This gives a complete description
of all finite dimensional representations of SU(2) and SO(3).

4.1 Real Representations

Let’s begin with a simple example that shows that not every complex rep-
resentation of so(3) comes from a real representation.

Claim 4.2. There is no irreducible 2-dimensional real representation of
so(3).
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Proof. Since so(3) is the Lie algebra of SO(3) and hence also the Lie algebra
of its double cover S3 with group multiplication as the quaternions of unit
length, any real representation of so(3) comes from a representation of the
Lie group S3. Let V be a finite dimensional real representation of so(3) and
hence of S3. Fix any positive definite quadratic from Q on V and consider

Q =

∫
S3

g∗Qdg

where dg is the usual volume element on S3 thought of as the unit sphere in
R4. Then Q is a positive definite form on V invariant under the action of S3.
Thus, S3 is represented as the isometries of (V,Q), and the differential of
the representation is a homomorphism of Lie algebras so(3)→ so(n) where
n = dim(V ).

If the dimension of V is 2, then so(2) is an abelian Lie algebra and hence
any representation of so(3) → so(2) induces a homomorphism S3 → S1.
The only such homomorphism is trivial. Thus, the only two dimensional
real representation of so(3) is trivial and hence not irreducible.

In fact, the classification of real representations of so(3) is known. All the
odd dimensional irreducible complex representation of so(3) come from real
representations of SO(3) built out of the defining 3-dimensional representa-
tion of SO(3). The only even dimensional irreducible complex representa-
tions of so(3) that come from real representations are those that are induced
real representations underlying quaternion representations. These of course
all have dimension congruent to zero modulo 4. As we have seen, there is
no irreducible real 2-dimensional representation; more generally there is no
irreducible real representation of dimension 4k + 2 for any k ≥ 0. We shall
not prove this.

5 Complete Reducibility of Representations of Com-
pact Lie Groups

The arguments in the last section showing finite dimensional linear repre-
sentations of SU(2) are completely reducible has a vast generalization.

Theorem 5.1. Let G be a compact group and ρ : G × V → V a finite
dimensional complex linear representation. This representation is completely
reducible.

Proof.
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Lemma 5.2. The compact Lie group G has a Riemannian metric that is
invariant under left translation.

Proof. Fix a positive definite quadratic form Qe : g→ R and define a smooth
section of the bundle of quadratic forms on the tangent bundle by setting
Qg : TgG→ R equal to the composition

TgG
g−1·−→ g

Q−→ R.

Let B : TG ×G TG → R be the associated bilinear form. Then B is a
smoothly varying, positive definite bilinear form on the tangent spaces to
G. From the definition one sees that B is invariant under left multiplication
in the sense that for tangent vectors τ1, τ2 ∈ ThG

B(τ1, τ2) = B(g · τ1, g · τ2).

That is to say, B a Riemannian metric on G invariant under left multipli-
cation.

Lemma 5.3. G has a Borel measure invariant under left-multiplication.

Proof. Choose an orientation for g and hence an orientation O for G. (This
orientation is left-invariant.) Denote by n the dimension of G. Associated
with the Riemannian metric B and the orientation is a differential n-form
ωB,O whose integral over n-tangent vectors {τ1, · · · , τn} at a point h ∈ G
is the signed volume of the parallelopiped spanned by these vectors. Said
another way, fix an orthonormal basis {e1, . . . , en} giving the orientation of
ThG Then τ1 ∧ · · · ∧ τn = V · e1 ∧ · · · ∧ en for some V ∈ R. Then

ωB,O(τ1, . . . , τn) = V.

Now we define µ to be the Borel measure as follows. If U ⊂ G is an open
set, then

µ(U) =

∫
U
ωB,O

where U is oriented as an open submanifold of G. This measure is left-
invariant in the sense that µ(T ) = µ(g · T ) for all measurable sets T .

Lemma 5.4. Now let ρ : G×V → V be a finite dimensional complex repre-
sentation. Then V has a positive definite Hermitian inner product invariant
under the left action of G.
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Proof. Give V a positive definite hermitian inner product, denoted 〈v1, v2〉0.
We form a new pairing 〈·, ·〉 on V by defining

〈v1, v2〉 =

∫
G
〈gv1, gv2〉0dµ.

This is a real bilnear form that is complex linear in the first variable and
complex anti-linear in the second with 〈v, v〉 > 0 for any non-zero vector
v. That is to say, 〈·, ·〉 is a positive definite Hermitian inner product on
V . Clearly since µ is left-invariant this Hermitian inner product on V is
left-invariant under the G-action.

Now we prove the complete reducibility by induction on the dimension of
the representation. It is clear for 1-dimensional representations since there
are no non-trivial linear subspaces. Suppose that we know the result for
representations of dimension < n and V is an n-dimensional representation.

If V is irreducible, then there is nothing to prove. So suppose that
V is reducible with a non-trivial G-invariant subspace W ⊂ V . We fix a
G-invariant positive definite Hermitian inner product on V . Let W⊥ be its
orthogonal complement under the positive definite Hermitian inner product.
Then V = W ⊕W⊥ and each of W and W⊥ are non-zero (since W is non-
trivial.) Because the Hermitian inner product is G-invariant, if v ∈W⊥, i.e.
〈w, v〉 = 0 for all w ∈ W , then for any g ∈ G 〈gw, gv〉 = 0 for all w ∈ W .
But the left action of g is a linear isomorphism W → W , so that it follows
that 〈w, gv〉 = 0 for all w ∈ W . That is to say, gv ∈ W⊥. This shows that
W⊥ is G-invariant.

Thus, we have a decomposition of G representations V = W⊕W⊥. Since
W and W⊥ are both non-zero, each has smaller dimension than V . Hence
by induction, each of W and W⊥ are completely reducible and hence so is
V .

Appendix: Borel measures

A σ-algebra in X is a collection of subsets Σ of X that (i) X ∈ Σ, (ii) if
A ∈ Σ then the complement Ac of A is also an element of Σ, and (iii) if
An ∈ Σ for 1 ≤ n <∞, then A = ∪nAn is an element of Σ.

A Borel σ-algebra of a topological space is the σ-algebra generated by
the open subsets of X. A Borel measure µ on X is a function from Borel
measurable subsets of X to [0,∞] that satisfies additivity for countable dis-
joint unions of Borel measurable sets. We also require that the measure of
any compact set is finite. A Borel measure µ for a locally compact metric
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space is inner and outer regular in the following sense. For any Borel mea-
surable set A and any ε > 0 there is a closed set F ⊂ A and an open subset
U with A ⊂ U with µ(U \A) < ε. In fact, this is a characterization of Borel
measurable sets: ones that can be approximated from without by an open
set U and within by a closed set F so that the difference in measure between
U and F is at most ε. A Borel measure on a locally compact metric space is
determined by its values on open subsets. Indeed, the measure of any Borel
measurable A is the (decreasing) limit of Borel measure of open sets that
are better and better outer approximations.

If f is any non-negative continuous function on Rn, then we define a
Borel measure by defining

µf (U) =

∫
Rn

f(z1, . . . , xn)dx1 · · · dxn.

Standard theorems in Lebesgue integration show that this is a Borel measure
and finite on compact subsets We can restrict this to a Borel measure on any
open subset U ⊂ Rn by replacing f by fχU , where χU is the characteristic
function of U . This function is not continuous but is Borel measurable,
again by standard results in Lebesgue measure theory.

These results extend to smooth manifolds. Let M be a smooth, oriented
manifold of dimension n and ω is nowhere 0 differential n form M compatible
with the orientation. Then for any open subset U ⊂M , we define

µ(U) =

∫
M
χ(U)ω,

where U has the orientation induced from M . Straight forward extensions of
the standard results in Lebesgue integration show that µ is a Borel measure,
finite on every compact set.
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