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In this lecture we shall make a deeper study of the relationship of a Lie
group and its Lie algebra. We shall outline a proof of the fact that two
simply connected Lie groups with isomorphic Lie algebras are themselves
isomorphic. More generally, we show that if G is a Lie group and L is a
sub Lie algebra of G then there is a simply connected Lie group H with
Lie algebra isomorphic to L and a morphism of Lie groups H → G whose
differential at the identity identifies the Lie algebra of H with L.

1 The Exponential Mapping.

We have shown how to pass from a Lie group to its Lie algebra by differen-
tiating at the identity element (twice) the conjugation map of G on itself.
The basic constructing passing from a Lie algebra to ‘its’ Lie group is the
exponential mapping. This mapping identifies a neighborhood of the origin
in g with a neighborhood of the identity in G.

1.1 The case of GLn(R)

Since GL(n,R) is an open subset of M(n×n,R), any A ∈M(n×n,R) deter-
mines a tangent vector to GL(n,R) at the identity element. This identifies
M(n× n,R) with gl(n,R). The power series

exp(tA) =

∞∑
n=0

tnAn

n!
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converges absolutely for all t ∈ R and hence defines a smooth curve γA(t)
in M(n × n,R). By construction it satisfies γA(0) = Id and γ′A(0) = A.
The usual power series manipulations show that for all t1, t2 ∈ R we have
γA(t1)γA(t2) = γA(t1 + t2). Since γA(t) ∈ GL(n,R) for all |t| sufficiently
small, it follows that, for all t ∈ R the matrix γA(t) is contained in GL(n,R),
and furthermore, γA is a homomorphism of Lie groups (R,+)→ GL(n,R).
We define the exponential map

exp: M(n× n,R)→ GL(n,R)

by
exp(A) = γA(1) = eA.

This is a smooth map from M(n × n,R) → GL(n,R) whose differential
at the origin is the identity. By the implicit function theorem there is a
neighborhood U of 0 ∈ M(n × n,R) that maps diffeomorphically onto an
open subset exp(U) of the identity in GL(n,R). The inverse map is the
logarithm log : exp(U)→ U .

In the case of GL(n,C) the exponential map (given by the same power
series) Associates to each A ∈ M(n× n,C) a homomorphism of Lie groups
γA : (C,+) → GL(n,C) with γ′A(0) : C → M(n × n,C) the complex linear
map sending 1 ∈ C to A. We define a holomorphic map exp: gl(n,C) →
GL(n,C) to send A to eA. Analogously, the differential of this map at
0 ∈ gl(n,C) is the identity so that it is a local holomorphic isomorphism
from some neighborhood of 0 in gl(n,C) to an open neighborhood of the
identity in GL(n,C).

1.2 The Exponential Map for a General Lie Group

Theorem 1.1. Let G be a Lie group. Then for every A ∈ g there is a unique
morphsim of Lie groups γA : (R,+)→ G with the property that γ′A(0) = A.

Proof. Fix A ∈ g. Let χA be the left-invariant vector field whose value at
g ∈ G is g · A. By the existence and uniqueness results for ODEs, for some
ε > 0, there is a unique integral curve γA : (−ε, ε) → G for this vector field
whose value at 0 is e. .

Claim 1.2. The maximal interval of definition for the integral curve γA is
the entire real line.

Proof. By the existence theorem for solutions to ODEs, there is ε > 0 such
that γA is defined on (−ε, ε). By uniqueness of solutions to ODEs, if I and J
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are intervals of definition for an integral curve of χA, both containing 0, then
the integral curves defined on these two intervals agree on the intersection
of the intervals and hence the two curves define an integral curve on I ∪ J .
From this it is easy to see that there is a maximal interval of definition for
the integral curve γA. We must show that this is R.

Let I ⊂ R be the maximal interval of definition for γA and suppose
that I is bounded above. Fix t0 within ε/2 of the least upper bound of I.
Consider the curve µ(t0 + t) = γA(t0)γA(t) for t ∈ (−ε, ε). Then µ′(t0 + t) =
γA(t0)γ′A(t) = γA(t0)γA(t) · A. This shows that µ is an integral curve for
χA. Since it and γA agree at t0, they agree on their common domain of
definition. This is a contradiction since it allows us to extend the domain
of definition beyond the least upper bound of I and I was assumed to be
the maximal interval of definition for the integral curve. Consequently, the
interval I has no upper bound. Symmetrically, I has no lower bound. The
only interval with no upper and no lower bound is R.

Analogously to the case of GL(n,R), the differential equation shows that
γA is a Lie group homomorphism from (R,+) to G.

Claim 1.3. Suppose that γ : (R,+)→ G is a homomorphism of Lie groups
and suppose that γ′(0) = A. Then γ(t) = γA(t) for all t ∈ R.

Proof. Since γ is a homomorphism, it follows that γ′(t) = γ(t)γ′(0), and
thus γ is an integral curve for χA whose value at t = 0 is the identity. There
is only one such integral curve and it is γA.

This completes the proof of Theorem 1.1

Definition 1.4. We define the exponential map, expG : g → G by sending
A ∈ g to γA(1) where γA is the one-parameter subgroup whose tangent
vector at the identity is A.

The following is clear from the definition.

Proposition 1.5. The exponential mapping is a smooth map whose differ-
ential at 0 ∈ g is the identity. Hence, there is a neighborhood U ⊂ g of 0 such
that expG is a diffeomorphism from U to an open neighborhood expG(U) of
the identity in G. We denote the inverse by log : exp(U)→ U .

Corollary 1.6. If H ⊂ G is a Lie subgroup with Lie algebra h ⊂ g, then
expG|h = expH . Any particular, any one-parameter subgroup tangent to H
at the origin is contained in H.

Proof. For any A ∈ h the left-invariant vector field gA is tangent to H.
Hence the integral curve γA that passes through e at t = 0 lies in H.
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2 Local Lie Groups

There is an intermediate category between the categories of Lie groups and
Lie algebras. It is the category of local Lie groups – germs of Lie groups at
the identity.

Definition 2.1. A local Lie Group consists of:

(i) a smooth manifold U

(ii) an element e ∈ U ,

(iii) a diffeomorphism θ : U → U fixing e with θ2 = IdU

(iv) an open subset Ω ⊂ U × U and a smooth map m : Ω → U called
multiplication,

such that

(a) for every g ∈ U (e, g) and (g, e) are contained in Ω and m(e, g) =
m(g, e) = g,

(b) for every g ∈ U the pairs (θ(g), g) and (g, θ(g)) are contained in Ω and
m(θ(g), g) = m(g, θ(g)) = e,

(c) for every triple (g, h, k) of elements inG if the pairs (g, h), (h, k), (g,m(h, k))
and (m(g, h), k) are contained in Ω thenm(g,m(h, k)) = m(m(g, h), k).

Clearly Properties (a),(b), and (c) are local versions of the identity law,
the inverse law, and the associative law for a group. The only difference is
that the domain of definition for multiplication is an open subset of U × U
and the associative law only holds on a smaller open subset of U × U × U .

From now on we denote θ(g) by g−1. Of course e−1 = e. We also write
gh for m(g, h).

The following is an elementary lemma.

Lemma 2.2. For g ∈ U there are open subsets W ⊂ U containing e and
V ⊂ U containing g such that ug is defined for every u ∈ W , and vg−1 is
defined for every v ∈ V and the maps u 7→ ug and v 7→ vg−1 are inverse
diffeomorphisms between W and V . Furthermore, there is an open subset
W ⊂ G such that W 2×W 2 ⊂ Ω. For any w1, w2, w3 ∈W the following two
expressions w1(w2w3) and (w1w2)w3 are defined and hence are equal.
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Every Lie group G determines the local Lie group (U = G and Ω =
G×G).

A morphsm of local Lie groups (U ′, e′, θ′,Ω′,m′) → (U, e, θ,Ω,m) is a
smooth map ρ : U ′ → U with ρ(e′) = e and ρ × ρ|Ω′ : Ω′ → Ω such that
ρ(θ′(x)) = θ(ρ(x)) for all x ∈ U ′ and m(ρ(x), ρ(y)) = ρ(m′(x, y)) for all
(x, y) ∈ Ω′. It is clear that these morphisms can be composed and that each
object has the identity morphism. Hence we have a category of local Lie
groups.

A morphism of Lie groups is a morphism of the local Lie groups they
determine.

Lemma 2.3. Any local Lie group has a Lie algebra whose underlying vector
space is the tangent space TeU . The differential at e of a morphism of local
Lie groups induces a homomorphism of their Lie algebras.

Proof. The argument that this defines a Lie algebra follows the proof in the
case of a Lie group. Given X ∈ TeU there is a vector fields on U whose value
at g ∈ U is g ·X. (For any g multiplication by g is define on a neighborhood
of e, and hence multiplication by g sends TeU → TgU .) We call all such
vector fields left-invariant. Then the usual argument shows that the space
of these vector fields is closed under bracket and the space is identified with
TeU . Hence, there is the induced Lie algebra structure on TeU , which is
defined to be its Lie algebra.

The other approach to the Lie bracket also works for local Lie groups. For
any g ∈ U , the element m(ge, g−1) = geg−1 is defined and hence for every
g ∈ U there is a neighborhood V of e ∈ U such that ρg(v) = gvg−1 is defined.
for all v ∈ V . Thus, the differential of this map ρg at v = e determines a
map ρg : U → GL(TeU) and restricted to sufficiently small neighborhood
of e ∈ U this map is a local homomorphism in the sense that ρhρg = ρhg
for h, g sufficiently close to the identity. Define ad(X) : TeU → TeU as the
image of X under the differential, dρe : Te(U)→ End(TeU). The Lie algebra
of the local Lie group is then [X,Y ] = ad(X)(Y ).

The proof that these two methods define the same Lie algebra follows
by the same argument as in the case of a Lie group.

Let G0 = (U, e, θ,Ω,m) be a Local Lie group. Let U ′ ⊂ U an open subset
containing e and invariant under θ and let Ω′ ⊂ Ω open subset containing
({e} × U ′) ∪ (U ′ × {e}) and {g, θ(g)} for all g ∈ U ′ and such that m(Ω′) ⊂
U ′. Set m′ = m|Ω′ and θ′ = θ|U ′ . Then we say that (U ′, e, θ′,Ω′,m′) is a
neighborhood of the identity in G0. Notice that any open subset U ′ ⊂ U
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containing e and invariant under θ can be completed to a neighborhood of
the identity of the local Lie group (U, e, θ,Ω,m).

Corollary 2.4. Let G be a Lie group and U ⊂ g an open subset containing
0 and invariant under X 7→ −X and for which the restriction of exp to U is
a diffeomorphism onto an open subset of G. Then there is a local Lie group
(U, e, θ,Ω,m) that is a neighborhood of the identity in the local Lie group
determined by G.

Viewed from the categorical perspective we have two natural transfor-
mations:

Lie Groups —–> Local Lie Groups ——> Lie Algebras
The object of the rest of this lecture and the next two (IIIA and IIIB)

is to find morphisms in the opposite direction.

3 Extending local Lie Subgroups of a Lie group

Let’s begin by showing how to enhance a local Lie sub group of a Lie group
to a Lie group that is one-to-one immersed in G. This will give an inverse
for the first morphism above but only on the subcategory of local Lie groups
that can be embedded as subgroups of some Lie group.

Theorem 3.1. Let G be a Lie group and let (U, e, θ,Ω,m) be a local Lie
sub group of G. (This means that there is a morphism of local Lie groups
(U, e, θ,Ω,m)→ G which is a locally closed embedding on U .) Then there is
a Lie group N and an identification of (U, e, θ,Ω,m) as a neighborhood of
the identity in N . Furthermore, there is a one-to-one immersion of N → G
whose restriction to U is the identity. The subgroup of G generated by U is
an open subgroup of N . If U is connected, then this subgroup is the connected
component of the identity of N .

Proof. Let N ⊂ G be the set of elements g ∈ G such that gUg−1 contains
an open neighborhood of the identity in U .

Claim 3.2. For any g ∈ N , there is an open neighborhood V of the identity
in U such that the map V → G given by v 7→ gvg−1 is a diffeomorphism of
V onto an open subset V ′ ⊂ U containing the identity.

Proof. By the definition of N there is an open subset W ⊂ U containing the
identity with W ⊂ gUg−1. Thus, V = g−1Wg ⊂ U . Since conjugation by
g−1 is a diffeomorphism of G, the map w 7→ g−1wg is a smooth map from
W → U whose image is V . Being the restriction of a diffeomorphism to a
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smooth submanifold of G, this map is one-to-one has injective differential
at each point. It follows that as a map W → U it has surjective differential
at each point and hence is a diffeomorphism onto an open subset of U . This
shows that V is an open subset of U containing e. Conjugation by g is the
inverse diffeomorphism from V ⊂ U to W ⊂ U .

Claim 3.3. N is a subgroup of G.

Proof. Suppose that g ∈ N . Then according to the previous claim there
is an open neighborhood V ⊂ U of e such that conjugation by g maps
it diffeomorphically onto an open neighborhood W ⊂ U of e. Of course,
conjugation by g−1 takes W to V , establishing that g−1 ∈ N .

Now suppose that g1, g2 ∈ N . Let V be an open neighborhood of e in
U such that conjugation by g−1

2 sends V to an open neighborhood V1 ⊂ U
of e. Then V ∩W is an open neighborhood of e in U and conjugation by
g−1

2 sends this diffeomorphically onto T = (V1 ∩ g−1
2 Wg2) which is an open

subset of g−1
2 (V1)g2 = V ⊂ U containing e. Now g1(g2Tg

−1
2 )g−1

1 is an open
subset of g1(V ∩W ) which in turn is an open subset of g1Wg−1

1 which lastly
is an open subset of U . This proves that g1g2 ∈ N , and completes the proof
that N is a subgroup o G.

There is a neighborhood V ⊂ U of e such that V × V ⊂ Ω, and given V
there is a subset W ⊂ V such that m(W,W ) ⊂ V . Now we define a topology
on N that makes it a smooth manifold of the dimension of U . Namely, for
any g ∈ N we define gW to be an open neighborhood of g ∈ N with the
topology and smooth structure it inherits from W ⊂ U translated by left
multiplication by g.

To show that these choices define a topology and a smooth manifold
structure on N we need only show that on two-fold overlaps the smooth
structures are compatible, meaning the the overlap function from one neigh-
borhood to the other is a diffeomorphism. So let gW and g′W be two smooth
patches with gW ∩ g′W 6= ∅. Take a point x in the intersection.Then there
are w,w′ ∈ W with x = gw = g′w′. It follows that g−1g′ = w(w′)−1, and
hence g−1g′ ∈ W 2 ⊂ V . This means that multiplication by g−1g′ : W → W
is a multiplication in the local Lie group, and hence multiplicaton by g−1g′

is a smooth map from W → U . This smooth map carries the open subset
(g′)−1(g′W ∩ gW ) ⊂W to the open subset g−1(gW ∩ g′W ) ⊂W and is ex-
actly the overlap transformation in one direction. The symmetric argument
show that the inverse overlap function is also smooth. Since these maps are
inverses of each other, each is a diffeomorphism.
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This completes the proof that we have defined a smooth manifold struc-
ture on N . It has the property that the restriction of this smooth structure
to U ⊂ N agrees with the smooth structure U already has. Thus, U is a
neighborhood of e in N . Notice that the inclusion map N → G is smooth
immersion and is one-to-one. It follows that since G is a Hausdorff space,
so is N .

Next we show that with this smooth structureN the group multiplication
from G is smooth. We fix g1, g2 ∈ and consider the product map g1W ×
g2W → N . By restricting to a smaller neighborhood of the identity W ′ ⊂W
we can suppose that the image of multiplication g1W

′×g2W
′ lies in g1g2W .

The map is given by

(g1w)(g2w
′) = (g1g2)(g−1

2 wg2))w′.

Since g2 ∈ N , if we restrict to a sufficiently small neighborhood T of e in
W conjugation by g−1

2 sends T diffeomorphically onto T ′ ⊂ W . Since the
product W ×W → U is smooth, it follows that

(g1w)g2(w′) 7→ g1g2(g−1
2 wg2)w′

is a smooth map in some neighborhood of (e, e)
Lastly, we show that g 7→ g−1 is a smooth map N → N . We fix g ∈ N

and consider the inverse map from gW to g−1N . The map sends gw to
g−1gw−1g−1. As before, since g ∈ N , restricting to a smaller neighborhood
of e in W conjugation of g sends that neighborhood diffeomorphically onto
another neighborhood of e in W . Then since the inverse in W is given by
θ, it is also smooth, showing that g → g−1 is a smooth map of N to itself.

This completes the proof that N is a Lie group, that the inclusion of
N → G is a one-to-one immersion of Lie groups, and that the local Lie
group (U, e, θ,Ω,m) is a neighborhood of the identity in N .

While N may not be second countable, if U is second countable, then
the subgroup of N generated by U is second countable. In particular, the
connected component of the identity N0 ⊂ N is a second countable Lie
group.

Example. Let G be a Lie group and U = {e}. It is a sub local Lie
group. Then N = G and the topology on N is the discrete topology. The
immersion N → G is the identity map, which is a surjective, one-to-one
immersion, but far from a diffeomorphism. Any time the local Lie group
has a positive dimensional normalizer in G, then the Lie algebra N will have
uncountably many components.
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4 Lie Algebras to local Lie Groups

4.1 The Baker-Campbell-Hausdorff Formula

Constructing a local Lie group from a Lie algebra relies on the BCH formula,
so we begin with that formula.

We have shown that for any Lie group G there is a local Lie group that
is a neighborhood of the identity in G and whose underlying submanifold
U is the diffeomorphic image of an open subset in the Lie algebra under
the exponential mapping. The question naturally arises as to whether the
multiplication in a local Lie group that is a sufficiently small neighborhood of
the identity in G is determined by the Lie bracket (and the linear structure)
on the Lie algebra. The answer is ‘yes,’ and in fact the multiplication for the
local Lie group structure is given by the Baker-Campbel-Hausdorff formula.

One way to view the question is to consider two elements eA and eB in
G for A,B ∈ g sufficiently close to zero. The goal is to write the product
eAeB as eH(A,B) where H(A,B) is a convergent power series (with some
positive radius of convergence) whose nth order terms are universal linear
combinations of all possible brackets of A and B of order n, that is to say
linear combinations of brackets of n terms each of which is either A or B.

Let us examine the first few terms in the case of GLn(R) to see how this
would work. We write

eAeB =
∑
n,m

AnBm

n!m!
= 1 + (A+B) + (A2/2 +AB +B2/2)

+ (A3/6 +A2B/2 +AB2/2 +B3/6) + · · · .

Thus, the power series for H(A,B) begins

H(A,B) = (A+B) + · · · .

Let us compute the quadratic term Q(A,B) in H(A,B). It must satisfy the
equation

A2/2 +AB +B2/2 = (A+B)2/2 +Q(A,B).

Thus,

Q(A,B) = AB − (AB +BA)/2 = (AB −BA)/2 =
1

2
[A,B].
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The cubic term C(Q,B) in H(A,B) satisfies

A3/6 +A2B/2 +AB2/2 +B3/6 =

= (A+B)3/6 + [(A+B)Q(A,B) +Q(A,B)(A+B)]/2 + C(A,B)

=
1

6
(A3 +A2B +ABA+BA2 +AB2 +BAB +B2A+B3)

+
1

4
[(A+B)[A,B] + [A,B](A+B)] + C(A,B).

Cancelling terms and expanding yields:

1

3
(A2B +AB2) =(

1

6
(ABA+BA2 +BAB +B2A)

+
1

4
(A2B −ABA+BAB −B2A+ABA−BA2 +AB2 −BAB) + C(A,B).

Collecting terms gives

1

12
(AB2 +A2B +B2A+BA2)− 1

6
(BAB +ABA) = C(A,B).

Thus,

C(A,B) =
1

12
([A, [A,B]] + [B, [B,A]]).

Theorem 4.1. (Baker-Campbell-Hausdorff Formula) Let L be the free Lie
algebra generated by X and Y . There is a formal infinite sum H(X,Y ) in
two variables where the nth term in the sum is a linear combination of the
Lie brackets of order n of X and Y

[Z1, [Z2, · · · ., [Zn−1, Zn]] · · · ]

where the Zi range over X and Y , such that there is an equality of formal
power series

log(exp(X)exp(Y ) = H(X,Y ).

For any finite dimensional real Lie algebra L, fixing a positive definite
form Q on L there is r > 0 and defining U ⊂ L by U = {X ∈ L | Q(X) < r}.
The power series H(A,B) converges absolutely for (A,B) ∈ U × U and
defines an analytic function H : U × U → L. The open set U is invariant
under X 7→ −X. Let Ω ⊂ U × U be H−1(U). Defining θ(A) = −A and
m(A,B) = H(A,B), makes (U, 0, θ,Ω,m) is a local Lie group. If L = g
for a Lie group G, and possibly replacing r by r′ with 0 < r′ < r so that
exp|U is a diffeomorphism onto an open subset of G, the restriction of the
exponential mapping to U defines an embedding of (U, 0, θ,Ω,m) onto a local
Lie sub group of G that neighborhood of the identity.
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We call any such local Lie group a defined on an open set U ⊂ L of
0 sufficiently small so that the BCH series converges and invariant under
X 7→ −X a local Lie group determined by the Lie algebra L. Any two such
have a common neighborhood of 0.

There is an explicit formula due to Hausdorff, and even a recursive for-
mula for the coefficients. But the actually coefficients are not important.
The only important thing is that a convergent series exists and has a posi-
tive radius of convergence. The proof that a series exists uses the Poincaré-
Birkhoff-Witt Theorem. The convergence is a direct computation that we
leave to the exercises.
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