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1 Real Lie Groups

1.1 Basic Definitions

Definition 1.1. A (real) Lie group consists of a smooth (finite dimensional)
manifold G together with smooth maps

m : G×G→ G

ι : G→ G.

The map m is called the product and is usually written by juxtaposition.
The map ι is the inverse map sending every element to its inverse. These
are required to define a group structure on G, meaning that m is associative,
there is an element e ∈M such that for all g ∈M , m(ι(g), g) = m(g, ι(g)) =
e, and m(e, g) = m(g, e) = g for all g ∈M . A map of Lie groups ρ : H → G
is a morphism of Lie groups if it is a group homomorphism and a smooth
map. The category of Lie groups has as objects Lie groups and morphisms
as just defined. An isomorphism of Lie groups is a diffeomorphism between
the underlying manifolds that is also a group isomorphism.

Definition 1.2. Let M be a smooth manifold. A smooth submanifold is
a subset N ⊂M with the property that for each n ∈ N there is a local
coordinate system (x1, . . . , xk) defined on an open set U containing the point
n such that N ∩ U is given by the equations {xr+1 = · · · = xk = 0}.
Then N inherits a unique smooth structure such that the inclusion N →M
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is a smooth map. Such a map is called a smooth embedding. [Since we
are working exclusively in the smooth category we shall drop the adjective
smooth from the terminology both for submanifolds and embedding. It is
imiplicit.]

Notice that if N is a submanifold of M then it is a closed subset of
M . There is a converse to this. Suppose that ϕ : N → M is an immersion
(injective differential at every point) and is a one-to-one map. Then the
image ϕ(N) is a submanifold of M if and only if it is a closed subset. An
example showing that the image is not automatically closed is given by the
map

R1 f→ R2 → R2/Z2

where f(t) = (t, πt).

Definition 1.3. Let G be a Lie group. A Lie subgroup H ⊂ G is a smooth
submanifold H of G that is closed under the product and inverses and con-
tains the identity element1.

The terminology is justified by the following lemma.

Lemma 1.4. If H ⊂ G is a sub-Lie group, then the restriction of the
product and inverse of G to H give H the structure of a Lie group and the
inclusion H ⊂ G is a morphism of Lie groups. Furthermore, the space of
left cosets G/H has the structure of a smooth manifold in such a way that
the projection G→ G/H is a submersion (i.e., has surjective differential at
every point).

Proof. Since H is closed under product and inverses and contains the iden-
tity, the restriction of the group structure maps from G to H define the
structure of a group on H. We need only see that the product and the
inverse are smooth maps of H. But they are smooth maps of G and H is a
smooth submanifold invariant under the maps. Hence, the restriction of the
maps to H are smooth. The inclusion H ⊂ G is a smooth map and a group
homomorphism and hence, by definition a morphism of Lie groups.

Fix a local coordinate system for G centered at the identity and a ball
B about the origin in the coordinate system such that H ∩ B = {xr+1 =
· · · = xk = 0}∩B. Let S be the intersection of B with the coordinate plane
spanned by the unit vectors in the first r directions. (We call any intersec-
tion of a ball centered at the origin with the coordinate space spanned by

1In the literature one sometimes finds the more general notion of sub Lie group where
the submanifold is not required to be closed, just to be one-to-one immersed.

2



(x1, . . . , xr) a slice.) Then TeG = TeH ⊕TeS. It follows that the differential
of the map µ : H × S → G sending (h, s)→ hs is an isomorphism at (e, 0).
Hence, there is a sub-ball B′ ⊂ B centered at the origin, such that setting
S′ = S ∩ B′, there is an open neighborhood U of e ∈ H such that the re-
striction of µ to a map µ : U × S′ → G is a diffeomorphism onto an open
subset of G. By H-equivariances, the restriction of H × S′ → G is a local
diffeomorphism onto an open neighborhood of H in G.

We claim that possibly after shrinking B′ to a smaller open ball centered
at the origin and consequently shrinking the slice S′ to a smaller ‘slice,’,
the map H × S′ → G is a diffeomorphism onto an open subset. For the
restriction of the map to a smaller slice H×S′′ → G to be a diffeomorphism,
it suffices to show that it is one-to -one. If there is no such S′′, then there are
sequences {si}i<∞ and {s′i}i<∞ in S′ both converging to zero and sequences
{hi}i<∞ and {h′i}i<∞ in H such that for every i we have hisi = h′is

′
i yet

(hi, si) 6= (h′i, s
′
i). Multiplying by h−1i , we can assume that hi = e for all i..

Hence h′is
′
i 7→ e and s′i 7→ e, so that h′i converges to e. Since H × S′ → G is

a local diffeomorphism near (e, 0), it follows that for all i sufficiently large
h′i = e and s′i = si. This is a contradiction.

We have now shown that for a sufficiently small slice S the map H×S →
G is a diffeomorphism onto an open subset. Thus, S is a coordinate patch
for G/H near the identity coset. Pushing these local coordinates around by
g ∈ G gives coordinate patches covering G/H. It is clear that the overlap
of two of these patches is smooth and the projection map G → G/H is a
smooth submersion.

Lastly, we need to show the quotient G/H is a Hausdorff space. That is
to say we need to show that a sequence in the quotient space has at most
one limit point. If not then there is a sequence {si}i in G converging to
some g0 ∈ G and elements hi ∈ H such that the sequence hisi converges to
a point g1 ∈ G with the property that g0 and g1 are not in the same H-orbit.

If a sequence {si}i converges to s ∈ g0H. Then g−10 si converges to the
identity and hence for all i sufficiently large g−10 si is contained in the a
neighborhood of the form H × S ⊂ G (where the neighborhood is invariant
under the action of H and the action is h(h′, s) = (hh′, s). It follows that
the H-orbits siH converge to H. Multiplying by g0 we see that assuming
that hisi converges to a point of g−10 g1 ∈ G implies that the hi converge in
to some h ∈ H and hence g1 = hg0, showing that g0 and g1 are in the same
H-orbit.

Definition 1.5. A sub Lie group K ⊂ G is said to be normal if K is a
normal subgroup of G in the usual group theoretic sense.
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Lemma 1.6. If K ⊂ G is a normal Lie subgroup, then the space of left cosets
G/K has the structure of a Lie group such that the projection G→ G/K is
a homomorphism of Lie groups.

Proof. Since K is a normal subgroup of G, the group structure on G induces
a group structure onG/K. We have just seen thatG/K is a smooth manifold
and that the projection is a smooth map and a group homomorphism. It
remains only to show that the structure maps for the group structure on
G/K are smooth. Let us consider the multiplication map µ : G/K×G/K →
G/K. Fix points x, y ∈ G/K. Left these to points x̃, ỹ ∈ G and let Sx̃, Sỹ
be slices from the projection mapping G → G/K at x̃ and ỹ, respectively.
Let Sx̃ỹ be a slice for the projection G→ G/K at x̃ỹ. Choosing Sx̃ and Sỹ
sufficiently small, we can assume that the image of the product µ(Sx̃ × Sỹ)
is contained in K × Sx̃ỹ ⊂ G. It is a smooth map. Thus, the composition

Sx̃ × Sỹ
µ→ K × Sx̃ỹ

π2→ Sx̃ỹ

is also smooth. This is the restriction of the multiplication map for the
quotient to Sx̃ × Sỹ.

The argument for the inverse is similar.

There is an analogue of the first part of Lemma 1.4

Lemma 1.7. Let G be a Lie group. Suppose that H is a smooth manifold
and ϕ : H → G is a one-to one smooth immersion whose image is a subgroup
of G. Then there is a unique Lie group structure on H so that ϕ is a
homomorphism of Lie groups.

Proof. Since H is a smooth manifold and a group, we need only show that
group multiplication and inverse are smooth maps. Let (h, h′) ∈ H × H.
There there are neighborhoods U,U ′ and V of h, h′ and hh′, respectively,
such that ϕ : U → G and ϕ : U ′ → G and ϕ : V → G are embeddings onto
smooth (locally closed) submanifolds. Taking U and U ′ sufficiently small
we can arrange that the product in G maps U × U ′ → V . Since the group
multiplication of G is smooth the composition U × U ′ → V ⊂ G is smooth,
and since V is a locally closed smooth submanifold of G, this implies that
U × U ′ → V is smooth.

The argument for the inverse map is analogous.

Notice that in this case there is no reasonable manifold structure on
G/H. Indeed, in general the quotient space is not Hausdorff.
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1.2 Some Examples

Here are a few examples of Lie groups. The real line R with m being
addition and ι(x) = −x is a Lie Group, the additive group over R. The
unit circle in the complex plane with product being product of complex
numbers and ι being inverse of complex numbers is a Lie group. Let V be
a finite dimensional real vector space. Then GL(V ) is a Lie group under
matrix multiplication and matrix inverse. SL(V ) the subgroup of GL(V )
of matrices of determinant 1 is a subgroup. (Give a definition of the trace
which makes no reference to a basis.)

Let Q be a non-degenerate quadratic form on a finite dimensional real
vector space V . W define O(Q), the orthogonal group of Q, to be the
subgroup of GL(V ) that leaves Q invariant in the sense that A ∈ GL(V )
is in O(Q) if and only if Q(Av) = Q(v) for all v ∈ V . Check that O(Q) is
a smooth submanifold of GL(V ) that closed under the product and taking
inverses and contains the identity. Applying the above lemma, we see that
it is a sub-Lie group of GL(V ) and hence is a Lie Group in its own right.

The example O(n) is the orthogonal group of the standard Euclidean
inner product on Rn. The group SO(n) is the subgroup of O(n) of matrices
of determinant 1. Show that SO(n) is the component of the identity of
O(n).

If G1 and G2 are Lie groups then the product smooth manifold G1×G2

is naturally a Lie group under the product operations. This is a categorical
product in the category of Lie Groups. Furthermore, G1×{e} and {e}×G2

are sub lie groups of G1 ×G2.

1.3 Some Counter-Examples

Consider the torus T 2 = R2/Z2. The translation structure on R2 induces
an Abelian group structure on T 2 that makes it a compact lie group. Any
sub-Lie group H ⊂ T 2 is a closed subset of T 2 and hence is compact. As
a result every connected sub lie groups of T 2 is isomorphic to one of T 2,
S1,{e}. If R ⊂ R2 is a line through the origin in an irrational direction, then
it induces an injective map R1 → T 2 map os Lie groups whose image is not
compact and hence not a sub Lie group.

Notice that there is a quotient space T 2/R1 inherits a group structure
and also is is locally isomorphic to R1 with local coordinates in which the
group structure is smooth. But the quotient is not a Lie group since it is
not Hausdorff.

There are similar examples in higher dimensional tori of all possible
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codimensions ≥ 1.
The examples show that in general if ρ : H → G is a map of Lie groups,

then the image is not necessarily a sub Lie group of G.

1.4 Actions and Representations

Definition 1.8. Let M be a smooth manifold and G a Lie group. A smooth
action of G on M is a smooth map f : G×M →M that is an action of the
group G on the set M . Thus, each g ∈ G acts by a diffeomorphism of M
and these vary smoothly with g ∈ G. Equivalently, we have a smooth map
G → Diff(M). We often leave the term smooth implicit and simply use
action to mean smooth action.

Definition 1.9. A linear representation is a smooth action G × V → V
where V is a topological vector space (usually either finite dimensional or
a Hilbert space) and the action of each g ∈ G is by continuous linear iso-
morphisms. In the finite dimensional case, a linear representation is the
same thing as a smooth map G → GL(V ). In the case of a complex-linear
action on a complex Hilbert space H an action G × H → H is unitary if
〈gx, gy〉 = 〈x, y〉 for all g ∈ G and all x, y ∈ H. That is to say the action
is given by a continuous group homomorphism from G to U(H) the infinite
dimensional group of unitary transformations of H.

2 Complex Lie groups

2.1 Basic Definitions

There is another category of Lie Groups.

Definition 2.1. A complex Lie Group consists of a finite dimensional com-
plex manifold G together with structure maps – a product and an inverse
– that are maps of complex manifolds and make G a group. A morphism
of complex Lie groups H → G is a holomorphic map that is also a group
homomorphism. These are the objects and morphisms, respectively, of the
category of complex Lie groups.

Any linear algebraic group over C is automatically a complex Lie Group.
As in the real case, we have:

Lemma 2.2. If G is a complex Lie Group and H ⊂ G is a complex sub-
manifold containing the identity element of G and closed under the product
operation and the inverse map, then H together with the restriction to H of
these structure maps is a complex Lie Group.
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2.2 Examples of complex Lie Groups

There are complex analogues of all the real Lie Groups mentioned above.
The additive group of complex numbers and the multiplicative group C∗
on non-zero complex numbers are both linear algebraic groups over C and
hence complex manifolds. If V is a finite dimensional complex vector space
then its linear automorphisms form a complex Lie Group. Of course, we can
assume that V is isomorphic to Cn for some n ≥ 0. Thus, for some n ≥ 0 the
complex Lie group GL(V ) is isomorphic to the complex Lie Group GL(n,C).
the group of invertible n × n complex matrices. The product is matrix
multiplication and the inverse is the matrix inverse. The group is an open
subset of the complex vector space M(n× n,C) of complex n× n matrices.
In fact, being the complement of the divisor where det = 0, GL(n,C) is
a Zariski open set and is a linear algebraic group over C. We also have
SL(n,C) ⊂ GL(n,C) of matrices of determinant 1 also a linear algebraic
group over C, and hence a complex Lie Group. For any non-degenerate
complex quadratic form Q on Cn we have its complex orthogonal group,
defined as in the real case. This also is a linear algebraic group over C and
hence a complex Lie group. Similarly, for a non-degenerate, skew symmetric,
complex bilinear form on Cn we have the complex symplectic group, again
a linear algebraic group over C, and hence a complex Lie group.

Consider a maximal lattice Λ ⊂ C. By definition Λ is generated by
two elements that are linearly independent over R. The quotient C/Λ is a
compact complex curve diffeomorphic to S1 × S1. Addition on C induces a
group structure on C/Λ that makes it a complex Lie group.

2.3 Actions and Representations

Definition 2.3. Let G be a complex Lie group and M a holomorphic man-
ifold. An holomorphic action of G on M is a holomorphic map G×M →M
that defines in the group theoretic sense an action of G on M . A complex
linear representation is a holomorphic action G × V → V on a complex
vector space with the property that every g ∈ G acs by a complex linear
transformation.

A complex linear representation of a complex Lie group G on a complex
vector space VC is the same thing as a homomorphism of complex Lie groups
G→ GL(VC).
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3 The Adjoint Action and the Lie Algebra

Let G be a real Lie Group. There is a natural action of G (the first copy)
on itself (the second copy) by conjugation:

AdG : G×G→ G

defined by AdG(g, g′) = gg′g−1. This is a left action of G on itself, called
the adjoint action. When G is clear from the context we denote this adjoint
map simply as Ad. The action is smooth and In the case of a complex Lie
group the action is holomorphic.

The adjoint action fixes e ∈ G and hence differentiating at the identity
of the second variable gives an induced linear action AdG : G×TeG→ TeG.
We use the standard notation and denote TeG by g. The adjoint action of
G on g is a representation of G as linear automorphisms of g. That is to say
we have a linear representation which is a morphism of Lie groups

G
AdG−→ GL(g).

In the case of a complex Lie group this is a complex linear representation
of G on the complex vector space g, i.e., it determines a holomorphic map
G→ GLC(g). We can differentiate this Lie group morphism at the identity
of G and obtain a linear map from g to the endomorphism ring of g

adG : g→ End(g).

Example. Let G = GL(n,R). Then g, which is denoted gl(n,R) in this
case, is the vector space M(n× n,R) of n× n real matrices. Differentiating
the conjugation action of G on itself at the identity (in the second variable)
produces the usual conjugation action of G on gl(n,R) = M(n× n,R). We
compute the differential of this action at e ∈ G. Let A(t) be a one-parameter
family in GL(n,R) with A(0) = Id and denote by A0 ∈ M(n × n,R) the
derivative of this family at t = 0. Then (A−1)′(0) = −A0. Fix B ∈ M(n×
n,R). Then we have

d(A(t)BA(t)−1)

dt

∣∣
t=0

= A0B −BA0.

Thus,
ad: gl(n,R)→ End(gl(n,R))

sends A0 ∈M(n× n,R) to the endomorphism [A0, ·], where [A,B] = AB −
BA is the usual Lie bracket of n×nmatrices. Said another way adG(A)(B) =
[A,B], the Lie algebra bracket of gl(n,R). One also writes adG(A,B) for
adG(A)(B).
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Proposition 3.1. Suppose that H ⊂ GL(n,R) is a sub-Lie group. Let
h ⊂M(n×n,R) be the tangent space to H at the identity. Then h is closed
under Lie bracket of matrices; and the resulting action h → End(h) sends
X ∈ h to the endomorphism of h given by [X, ·], so that the Lie algebra
structure on h is given by the restriction of the Lie algebra structure on
gl(n,R).

Proof. Consider the restriction of AdGL(n,R) : GL(n,R)×gl(n,R)→ gl(n,R)
to H ⊂ GL(n,R) is AdH : gl(n,R) → gl(n,R). This restriction leaves h ⊂
gl(n,R) invariant and this restriction is AdH : H × h → h. Hence, the
restriction of adgl(n,R) : gl(n,R)× gl(n,R)→ gl(n,R) to h× H is adh.

Definition 3.2. The subspace h ⊂ gl(n,R) together with the induced Lie
bracket is the Lie algebra of H.

The adjoint action of GL(n,C) on itself is as automorphisms of the com-
plex Lie group varying holomorphically with g ∈ GL(n,C). In particular,
the Lie algebra gl(n,C) = M(n × n,C) is a complex vector space and the
adjoint action of GL(n,C) on gl(n,C) is the conjugation action of GL(nC)
on M(n × n,C). Thus, the Lie algebra gl(n,C) of GL(n,C) is the space
M(n× n,C) with the bracket being given by [A,B] = AB − BA, this time
of complex matrices..

3.1 The Lie Algebra of a General Lie Group

We have been able to evaluate the Lie Algebra for GL(n,R) and for all its
Lie subgroups. In particular, we have shown that for such groups H the
map h × h → h given by (X,Y ) 7→ ad(X)(Y ) is a Lie usual Lie bracket of
matrices. We turn now to extending this to arbitrary Lie groups.

3.1.1 Vector Fields

Recall that the (infinite dimensional) space of smooth vector fields on a
manifold has a Lie bracket. If X and Y are vector fields, then their bracket
[X,Y ] is defined by giving its value on a general function f by [X,Y ](f) =
X(Y (f))− Y (X(f)). As we checked in the last lecture by direct computa-
tion, the second order derivative terms in X(Y (f)) cancel those of Y (X(f))
(basically this is equality of cross partials) so that the bracket is again a vec-
tor field. Then we can invoke the fact that the bracket is written XY −Y X
in the associative algebra of all differential operators and hence this bracket
defines a Lie algebra.
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Definition 3.3. A vector field χ on G is left-invariant if for each g ∈ G and
each x ∈ G, D(g·)(χ(x)) = χ(gx).

Lemma 3.4. 1. Given X ∈ g there is a unique left-invariant vector field
χX whose value at the identity is X.
2. If X and Y are left-invariant vector fields, then so is [X,Y ].

Proof. If χ is a left-inavariant vector field then χ(g) = D(g·)χ(e). This
proves the uniqueness of a left-invariant vector field with a given value at
the identity. Since the action G×TG→ TG given by defining the action of
g to be D(g·) is a smooth map, for any X ∈ g, the formula χ(g) = D(g·)X
defines a smooth vector field, proving the existence.

Suppose that X and Y are left-invariant vector fields. Since g· is a
diffeomorphism it commutes with the Lie bracket of vector fields. Thus,
g · [X,Y ] = [g ·X, g · Y ].

The left-invariant vector fields on a Lie group G form a finite dimensional
Lie algebra. Associating to each such vector field its value at the identity
element of the group gives a linear isomorphism between the left-invariant
vector fields and g. Transferring the Lie algebra structure from the space
of left invariant vector fields to g defines a Lie algebra structure on g. This
is the Lie algebra of G the symbol g denotes this Lie algebra structure on
TeG. If G is a complex Lie group this process defines a complex Lie algebra
structure on g.

We now have two definitions of the Lie algebra associated to a sub Lie
group of GL(n,R): one coming from the Lie algebra associated to the as-
sociative mutltplcation of matrices and the other the Lie bracket of left-
invariant vector fields. We have shown that the first Lie bracket agrees with
adG(X)(Y ). Thus, to show that the two definitions agree, it suffices to show
that the second is also given by the same formula using adG. That is the
consequence of the following proposition.

Proposition 3.5. For X,Y ∈ g we have ad(X)(Y ) = [X,Y ], the bracket
coming from the Lie bracket of the left-invariant extensions of X and Y . In
particular, X ⊗ Y 7→ ad(X)(Y ) defines a Lie algebra structure on g.

Proof. Let G be a Lie group with Lie Algebra g. Let X and Y be elements
of g. Extend them to left-invariant vector fields on G, denoted X̃ and Ỹ ,
respectively. For each g ∈ G, let ξ(s) be the integral curve for X̃ though
e and let ϕ(t) be the integral curve for Ỹ through e. Then ϕ′(t) = ϕ(t)Y
and ξ′(s) = ξ(s)X. We define a map T from a neighborhood of the origin

10



in (s, t)-space to G by setting T (s, t) = ϕ(t)ξ(s). Then

(∂T/∂s)(s, t) = ϕ(t)ξ′(s) = ϕ(t)ξ(s)X = T (s, t)X,

so that (∂T/∂s) is the restriction of X̃ to the surface T (s, t).
On the other hand,

(∂T/∂t)(s, t) = ϕ′(t)ξ(s) = ϕ(t)Y ξ(s).

Thus, we have
Ỹ |T (0,t) = (∂T/∂t)(0, t)

Ỹ |T (s,0) = Ad(ξ(s))

(
∂T

∂t
(s, 0)

)
It follows immediately that on this surface we have X̃|T (s,t) = (∂T/∂s)(s, t),

Ỹ |T (0,t) = (∂T/∂t)(0, t).
Thus,

Ỹ (X̃(f))(0, 0) =(∂T/∂t)t=0(∂T/∂s)(0,t)(f)

=(∂/∂t)t=0(∂/∂s)(0,t)(T
∗f) =

∂2(T ∗f)

∂t∂s
(0, 0)

and

X̃(Ỹ )(f)(0, 0) =(∂T/∂s))s=0[Ad(ξ(s))(∂T/∂t)(s,0)].

Differentiating Ad(ξ(s)) using ∂T/∂s at s = 0 yields ad(X) so that since
(∂T/∂t)(0, 0) = Y differentiation of this term in the entire expression yields
ad(X)(Y )(f)(0, 0). Since Ad(ξ(0)) = Id, the other term in the differentia-
tion using ∂T/∂s yields

(∂T/∂s)(∂T/∂t)(f)(0, 0) =
∂2(T ∗f)

∂s∂t
(0, 0).

The equality of the cross partials then implies that

X̃(Ỹ (f))(0, 0)− Ỹ (X̃(f))(0, 0) = ad(X)(Y )(f),

showing that [X̃, Ỹ ](0, 0) = ad(X)(Y ), as claimed.

For a complex Lie group G, its Lie algebra g is a complex vector space
and AdG : G × g → g is a holomorphic map. The same arguments show
that adG : g× g→ g is a complex bilinear pairing producing a complex Lie
algebra structure on g and in the case when G ⊂ gl(n,C) this complex Lie
algebra structure agrees with the one coming from Lie bracket of complex
matrices.
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3.2 Naturalness of Lie Algebra of a Lie Group

Proposition 3.6. Let ϕ : H → G be a Lie group homomorphism. Then its
differential at the identity dϕe : h→ g is a map of Lie algebras, i.e., a linear
map commuting with the Lie bracket operations.

Proof. We have a commutative diagram

H ×H AdH−−−−→ H

ϕ×ϕ
y yϕ

G×G AdG−−−−→ G.

Differentiating at e ∈ H in the second factor produces a commutative dia-
gram

H × h
AdH−−−−→ h

ϕ×dϕe

y ydϕe

G× g
AdG−−−−→ g.

Lastly, differentiating at the identity in the first variable gives a commutative
diagram

h× h
adH−−−−→ h

dϕe×dϕe

y ydϕe

g× g
adG−−−−→ g.

This diagram says that for X,Y ∈ h, we have

dϕe(adH(X)(Y )) = adG(dϕe(X), dϕe(Y )).

By definition of the bracket, this translates to

dϕe([X,Y ]) = [dϕe(X), dϕe(Y )],

which is the statement that dϕe commutes withs the Lie bracket operations.

Corollary 3.7. Let V be a finite dimensional real vector space and suppose
that ρ : G → GL(V ) is a homomorphism of Lie groups. Said another way,
suppose that we have a smooth action G × V → V where each g ∈ G acts
by a linear transformation. Taking the differential ρ at the identity in G
determines a map dρe : g → gl(V ). This map is a homomorphism of Lie
Algebras, i.e., it is a linear map sending the Lie bracket for g to the bracket
of endomorphisms, which is [A,B] = A ◦B −B ◦A.
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Proposition 3.8. Given a smooth action f : G × M → M for each ele-
ment X ∈ g we set X equal to the vector field whose value at m ∈ M is
Df(e,m)(X). This map is an anti-homomorphism of Lie algebras, in the
sense that [X,Y ] 7→ −[X ,Y].

Proof. Denote the association X 7→ X by X 7→ ψ(X).
First let us consider the case when G ×M → M is a free action. Fix

x ∈ M and consider the map ϕx : G → M defined by g 7→ gx. For X ∈
g the vecgtor field ψ(X) is tangent to the orbit Gx and its value at gx
is (dϕx)g(Xg). Thus ϕx maps the right-invariant vector field Xg to the
restriction to Gx of ψ(X). It follows that along the orbit Gx the bracket is
given by [ψ(X), ψ(Y )] = ψ([Xg, Y g](e)).

Claim 3.9. The bracket of right-invariant vector fields is right-invariant
and hence defines a Lie algebra structure on g. This is the opposite Lie
algebra from the one determined by left-invariant vector fields.

This claim is left as an exercise.
Applying this claim we see that [ψ(X), ψ(Y )] = ψ([Xg, Y g](e)) = −ψ[X,Y ],

proving the result when the action is free.
For a general action G ×M → M we form the action G × (G ×M) →

(G × M) given as the product of the left action of G on itself and the
given action of G on M . This is a free action, so that it for this action
[ψ(X), ψ(Y )] = −ψ([X,Y ]). Projecting the action and this equation from
G×M to M gives the result in the general case.

There is also the complex analogues of these results.

Proposition 3.10. Let ϕ : H → G be a homomorphism of complex Lie
groups. The dϕe : h→ g is a morphism of complex Lie algebras.

Corollary 3.11. Let V be a finite dimensional complex vector space, let G
be a complex Lie group and let G×V → V be a complex linear representation
in the sense that ρ : G→ GL(V ) is a map of complex Lie groups. Then the
differential of ρ at the identity, dρe : g → gl(V ) is a complex linear map
sending the Lie bracket of g to the bracket of complex linear endomorphisms
given by [A,B] = A ◦B −B ◦A.
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