
Lie Groups: Fall, 2022

Lecture I

August 24, 2022

1 Lie Groups

We begin with the fundamental definitions for this course.

Definition 1.1. A Lie group is a smooth finite dimensional manifold G with
two structure maps, which are required to be smooth maps, m : G×G→ G
and ι : G→ G, together with an element e ∈ G. These structure maps define
a group structure on G with m as a product, e as the identity element, and
ι as the map g 7→ g−1.

If G is a complex manifold and the structure maps m and ι are holomor-
phic, then G is a complex Lie Group.

If k is a field, we denote by GL(n.k) the group of invertible n × n ma-
trices with entires in k. It is an affine variety defined over K whose affine
coordinates are the entries of the matrix and the inverse of the determinant
of the matrix. If G ⊂ GL(n, k) is an algebraic variety, i.e., is the zero locus
of a finite set of k-polynomial functions in the affine coordinates of GL(n, k),
and if G is closed under matrix multiplication and inverses and contains the
identity element, then G is a linear algebraic group over k.

Thus, we have defined objects of three different categories of groups. The
morphisms for these categories are smooth group homomorphisms, holomor-
phic group homomorphisms, algebraic (i.e., polynomial) group homomor-
phisms., respectively.

There is one technical issue in the definition of Lie groups and complex
Lie groups; namely what we mean by a manifold. There are two condi-
tions that are optional in the definition of a manifold: Hausdorff and 2nd

countable (which means that there is a countable basis for the topology).
Usually, manifolds are assumed to be Hausdorff and second countable. We
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shall always require that the manifolds underlying Lie groups be Hausdorff.
Normally, we shall implicitly assume that they are second countable as well,
but it is not essential as the following lemma shows.

Lemma 1.2. Let G be a connected Lie group. Then G is second countable.

Proof. Since G is a finite dimensional manifold its topology is first countable,
meaning that every point p has a countable collection of open sets Vn(p) that
form a basis for the topology at that point. That is to say that any open
subset containing the point p contains one of the Vn(p). To show that a
first countable space is second countable, one only needs show that it has
a countable dense set. Since G is a finite dimensional manifold, there is a
neighborhood U of the identity that is homeomorphic to an open ball in
Rn for some finite n. Consequently, U has a countable dense set. Consider
the subset W of G all of elements that can be written as finite products
g1 · · · gk where each gi ∈ U . Then W is clearly an open subset of G. We
claim that W is also a closed subset of G. For suppose that g is a limit point
of W . Choose a sequence, hk, converging to g so that each hk ∈ W . Then
h−1k g converges to e ∈ G and hence for some (indeed all) k sufficiently large
h−1k g ∈ U . Since, hk ∈ W and h−1k g is in U , it follows that g ∈ W . Hence,
W is both open and closed in G and is non-empty (since it contains e ∈ G).
Since G is connected, W = G.

Now consider all finite products of a countable dense subset S of U .
Since every element of G is a finite product of elements in U , a standard
diagonalization argument shows that the set of elements represented by finite
products of elements in S is dense in G.

Corollary 1.3. A Lie group is second countable if and only if it has at most
countably many connected components.

Example. Let G be any Lie group; e.g., (R,+). Then the underlying group
of G endowed with the discrete topology is a Lie group. If G is of positive
dimension, this group is not second countable.

2 Examples of Lie Groups

Groups naturally arise as symmetry groups of some mathematical structure,
so they come with their defining action. Most Lie groups, complex Lie
groups, or linear algebraic groups arise in this way.
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Any discrete group is a Lie group. If we require, as one often does, that a
manifold must be second countable, they only the countable discrete groups
are Lie groups. Of particular interest are the finite groups.

Example 1. Let Σ be the group of permutations of {1, . . . , n}, i.e., bijec-
tions of this set onto itself. the product στ is defined to be the composition
of the permutation σ followed by the permutation τ . The group axioms are
straight-forward to verify. The group is of order n!.

Example 2 Let G be a group of order n. Then G can be embedded as a
subgroup of Σn. Simply number the elements of G, i.e., set up a bijective
correspondence between the elements of G and the set {1, . . . , n}. Using
this identification right multiplication by g ∈ G becomes a permutation of
{1, . . . , n} and the permutation associated to gh is the composition of the
permutation associated to g followed by that associated to h. The identity
element of G is the identity permutation, and inverses correspond. If right
multiplication by g ∈ G is the identity, then g is the identity in G. This
proves that this correspondence embeds G as a subgroup of Σn.

Example 3. Symmetries of any mathematical structure naturally form a
group under compositioin. For example, the symmetries of a square in the
plane, meaning a Euclidean isometry of the square onto itself consists of
rotations through multiples of π/2 around the central point of the square,
together with flips, either about a line bisecting two opposite sides or a
line passing through two opposite vertices. These form a group of order
8 with a normal subgroup being the group of 4 rotations. Similarly, the
Euclidean symmetries of a regular n-gon in the plane is a group of order 2n
with a normal subgroup being the n rotational symmetries. These groups
are dihedral groups because the action of the quotient group of order two
acts on the rotations by sending every rotation to its inverse.

Example 4. Let P ⊂ R3 be a regular solid. These are the regular tetra-
hedron, the cube, the octagon, the dodecahedron, and icosahedron. Then
Euclidean symmetries of P is a finite subgroup. Problem: Compute the
order of the symmetry group for each regular solid. Compute the order the
the symmetry group for the n-cube.

Example 5. The Euclidean symmetries of the circle have a normal sub-
group consisting of the rotations of the circle (a group isomorphic to the
circle). The quotient is a group of order 2 that acts on S1 by inverting the
rotation. Show that the isometry group of the unit circle is O(2), the group
of 2 × 2 orthogonal matrices. More generally, the group of linear symme-
tries of the Euclidean distance on Rn is denoted O(n) ⊂ GL(n,R). This
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group has two connected components, those of determinant 1 and those of
determine −1. by SO(n) we mean the component of the identity, namely
the orientation-preserving subgroup of O(n).

Example 6. The isometry group of the unit 2-sphere in R3 is the group
of 3 × 3 orthogonal matrices, denoted O(3). More generally, the isometry
group of Sn−1 is the group of n] × n orthogonal matrices O(n). Compute
the dimension of O(n). Compute the tangent space to O(n) at the identity
inside the vector space of n× n matrices.

Example 7. Let H ⊂ C be the upper half plane H = {z ∈ C | m(z) >
0}. Then the group PSL(2,R) = SL(2,R)/{±1} )with SL(2,R) being the
group of real two-by-two matrices over R of determinant 1) is the group of
symmetries of the complex manifold H. The action is(

a b
c d

)
· z 7→ az + b

cz + d
.

I have given a series of exercises to show that this defines an effective holo-
morphic action of PSL(2,R) on H and that PSL(2,R) is the full group of
holomorphic symmetries of H.

Example 8. A diffeomorphism of the unit 2-sphere is conformal if at each
point its differential is the product of an orientation-preseving orthogonal
transformation of the tangent space and a scaling by a positive factor. Said
another way a diffeomorphism is conformal if it is holomoprhic in the usual
complex structure on S2. The group of conformal transformations of the unit
S2 is the group PSL(2,C) = SL(2,C)/{±1}, where SL(2,C) is the group of
complex 2× 2 matrices of determinant 1. The action is the projective linear
action. We represent a point of S2 as a pair [z, ζ] of complex numbers, not
both zero, modulo the equivalence relation [z, ζ] = [λz, λζ] for any ζ ∈ C∗.
The matrix (

a b
c d

)
acts by sending [z, ζ] to [az + bζ, cz + dζ]. One often identifies the open set
where ζ = 0 with the complex plan with coordinate w = z/ζ. Using this
coordinate the action of the above matrix is

w 7→ aw + b

cw + d
.

One checks easily that this is an action by conformal transformations and
only ±1 act trivially. One again I have given exercises to show this is the
full group of conformal symmetries of S2.
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Example 9. Consider the non-degenerate form

Q(x0, . . . , xn) = −x20 +
n∑

i=1

x2i

on Rn+1. The locus {Q = 0} is a double cone with singularity at the
origin. The locus {Q = −1} is a two-sheeted hyperboloid. The isometry
group O(Q) of linear transformations A of Rn+1 that preserve Q in the sense
that Q(A(x)) = Q(x) for all x ∈ Rn+1. is a group with four components.
They are determined by (i) the determinant of A, which must be ±1, and
whether A preserves or reverses the two connected components of {Q = −1}.
By SO+(Q) we mean the connected component of the identity in O(Q),
i.e., the symmetries of Q of determinant +1 that preserve the component
{Q = −1} ∩ {x0 > 0}. of Q = −1}. We denote this sheet by Hn and call it
hyperbolic space of dimension n. The restriction of the quadratic form Q to
TpHn is positive definite, so that this restriction defines a Riemannian metric
on Hn. Clearly, SO+(Q) acts an orientation-preserving group of symmetries
of this Riemannian manifold. It acts transitively, and the isotropy group of
(1, 0, . . . , 0) is (

1 0
0 A

)
where A is an arbitrary element in SO(n). It follows by general principles
that SO+(Q) is the orientation-preserving isometry group of H and that H
has a metric of constant curvature. Direct computation shows the sectional
curvatures are all −1.

In a formal sense, one can view Hn as the sphere of radius i in Rn+1.

Example 10. There is a natural inclusion SO(n − 1) ⊂ SO(n) whose
image fixes en. There is also a natural map SO(n)→ Sn−1 by sending A to
Aen. The subgroup that fixes en is SO(n− 1) so that this action induces an
isomorphism SO(n)/SO(n − 1) → Sn−1 and presents SO(n) as a fibration
over Sn−1 with fibers being left cosets of SO(n − 1), i.e., the gSO(n − 1).
In particular, we have a long exact sequence of homotopy groups

· · · → πk(SO(n− 1))→ πk(SO(n))→ πk(Sn−1)→ πk−1(SO(n− 1))→ · · · .

Since π1(S
n−1) = π2(S

n−1) = 0 for all n ≥ 4, it follows that π1(SO(n)) =
π1(SO(3)) for all n ≥ 3. Furthermore SO(3) is identified with pairs of unit
vectors (x, y) with y orthogonal to x. The space of these pairs is identified
with the unit circle tangent bundle of S2 (x determines the point in S2 and
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y is a unit tangent vector at this point). This means we have a long exact
sequence

· · · → π2(S
2)→ π1(SO(2))→ π1(SO(3))→ 0.

The map π2(S
2) → π1(SO(2)) is a map between groups identified with

Z, and hence is multiplication by some integer. That integer is the Euler
characteristic of S2, which is 2. hence π1(SO(3)) = Z/2Z, and the same
isomorphism holds for SO(n) for all n ≥ 3.

Lemma 2.1. Let G be a connected Lie group and let π : G̃ → G be a con-
nected covering of G and fix ẽ ∈ π−1(e). Then there is a unique group
structure on G̃ with ẽ as the identity element such that π is homomorphism.
Also, give G̃ the unique smooth structure so that π is a local diffeomorphism.
This smooth structure and group structure make G̃ a Lie group in such a
way that π is a homomorphism of Lie groups. The kernel of π is contained
in the center of G̃.

The proof is left as an exercise.

Example 11. It follows from the previous examples that for all n ≥ 3 the
Lie group SO(n) has a universal covering that is a double cover. The double
cove group of SO(n) is defined to be Spin(n). As we shall see, Spin(n) most
naturally constructed using Clifford Algebras.

3 Lie Algebras

3.1 The Basics

Definition 3.1. Fix a field K. A Lie algebra over K is a K-vector space
V together with a bilienar map V ⊗K V → V denoted by X ⊗ Y 7→ [X,Y ],
called the bracket or the Lie bracket required to satisfy the following two
axioms:

1. [X,Y ] = −[Y,X].

2. [[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0.

The second equation is called the Jacobi Identity. It can also be interpreted
as saying that [A, ·] is a derivation with respect to [·, ·], i.e.,

[A, [B,C]] = [[A,B], C] + [B, [A,C]].
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Clearly, these algebraic equations make sense for vector spaces over any
field K, though one often needs K to be of characteristic zero in many of
the arguments. (Indeed, one can work with modules over a ring, defining
what are called Lie rings, but this is beyond the scope of these lectures.)
We are primarily (exclusively?) interested in the case of real and complex
Lie algebras that are finite dimensional.

We will explain in the next lecture in more detail how Lie groups and
Lie Algebras are related and where the Jacobi identity comes from, but for
now we content ourselves with giving some examples.

Example 12. The space M(n × n,K) of n × n matrices with entries in
K is a Lie algebra where the Lie bracket is given by [A,B] = AB − BA.
Obviously, this bilinear map is skew-symmetric. To establish the Jacobi
identity, we compute:

[A, [B,C]] = A(BC − CB)− (BC − CB)A

[C, [A,B]] = C(AB −BA)− (AB −BA)C

[B, [C,A]] = B(CA−AC)− (CA−AC)B.

Using the associativity of matrix multiplication we cancel these terms in
pairs.

Example 13. Let A be an associative algebra over K. Then the computa-
tion in Example 12, is valid in A and shows that defining [A,B] = AB−BA
for all A,B ∈ A defines a Lie algebra structure on A. This is the Lie algebra
determined by the associative algebra. In fact, we shall show later in the
course the Poincaré-Birkhoff-Witt Theorem which says that associated to
a Lie algebra L there is an associative algebra U(L) called the universal
enveloping algebra of L. There is a injective linear map from L → U(L)
compatible with the Lie bracket of L and the AB − BA bracket on U(L).
This shows that the general Lie algebra L is a sub Lie algebra of the Lie
algebra determined by an associate algebra. (The proof works over any field
of characteristic 0.)

Example 14. Certain subspaces of M(n × n,R) are closed under the Lie
bracket. For example, let o(n) be the linear space of skew symmetric n× n
real matrices,i.e., {X | Xtr = −X} (where Xtr denotes the transpose of X).
Then if X and Y are skew symmetric we have

(XY − Y X)tr = (Y trXtr −XtrY tr) = Y X −XY,

showing that [X,Y ] is also skew symmetric.
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Example 15. Another example is n×n matrices of trace zero. The point is
that Trace(XY ) = Trace(Y X), and hence Trace([X,Y ]) = 0 for any pair
of matrices X and Y .

Example 16. Let M be a smooth manifold and denote by V ect(M) the
vector space of smooth vector fields. The action of V ect(M) on C∞(M)
identifies this space with the space of R-linear maps D : C∞(M)→ C∞(M)
that are derivations in the sense that D(fg) = D(f)g + fD(g). This space
of first-order operators generates an associative algebra D(M) of differential
operators on C∞(M), with product being composition. The Lie bracket of
vector fields is then induced from the AB − BA bracket on D(M) making
it a Lie algebra over R. For vector fields X and Y , the composition XY
is a second order operator (and hence is not a vector field);. Nevertheless,
XY − Y X is a derivation (because the second-order terms cancel because
of the equality of cross partial derivatives). Hence, XY − Y X is a vector
field. This shows that the subspace of vector fields on M is a sub Lie algebra
of the Lie algebra on D(M) defined from the associative multiplication on
D(M). Indeed, D(M) is the universal enveloping algebra of the Lie algebra
of vector fields.

Example 17.
Let G be a real Lie group and define

Ad: G×G→ G

by (g, g′) 7→ gg′g−1. This is a smooth action of G (the first factor) on G (the
second factor) preserving the identity element of the second factor. Differ-
entiating at the identity of the second factor gives a linear representation
AdG : G×TeG→ TeG. Differentiating this at the identity determines a map
adG : TeG×TeG→ TeG. In the next lecture, we shall prove that adG(X,Y )
is a Lie bracket, giving TeG the structure of a Lie algebra. It is called the
Lie algebra of G and is denoted g. We shall show furthermore that in the
case of GL(n,R) the two definitions we have given of a Lie algebra structure
on its tangent space are the same.

Example 18. The Lie algebra of GL(n.R) as defined in Example 16 is
M(n × n,R) with its Lie bracket being the bracket from Example 12. It is
denoted gl(n,R). It follows from this and the result stated in Example 17,
that ifH ⊂ GL(n,R) is a Lie subgroup, then its tangent space at the identity,
h ⊂ gl(n,R) is closed under the AB−BA bracket on gl(n,R) = M(n×n,R)
and the induced Lie algebra is the one given in Example 16 for the Lie group
H.
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3.2 Complex Lie algebras

A Lie algebra (L, [·, ·]) is a complex Lie algebra if L is a complex vector space
and if the pairing

[·, ·] : L× L→ L

is complex linear.
All of Examples 12 through 18 have comnplex analgoues:M(n× n,C) is

a complex Lie algebra under the bracket [A,B] = AB−BA. An associative
algebra over C determines a complex Lie algebra by the same formula. The
Lie algebra of any complex Lie group is naturally a complex Lie algebra. The
Lie algebra of GLn(C) is M(n × n,C). The:ie algebra of C∞ vector fields
on a complex manifold are a complex Lie algebra. The various subalgebras
have complex analogous; e.g., o(QC) where QC is a non-degenerate complex
quadratic form on a finite dimensional complex vector space.
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