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1 The Definitions

Let Prof denote the category whose objects are profinite sets, or equiva-
lently, compact, totally disconnected Hausdorff spaces, and whose morphsims
are conitinuous maps.

Definition 1.1. A finite collection of morphisms {Si → S}i of Prof with a
given codomain is a covering if

∐
i Si → S is a surjective map of topological

spaces (or equivalently of sets).

The category Prof has all limits, finite colimits, and fibered products
so that if T → S is a morphism and {Si → S}i is a covering we can form
{Si×ST → T}i. It is easily seen to be a covering. Also clearly if {Si → S}i is
a covering and, for each i, there is a covering {Si,j → Si}j , then {Si,j → S}i,j
is a covering. That is to say this notion of coverings for Prof determines a
Grothendieck site.

Definition 1.2. A condensed set is a sheaf of sets for this Grothendieck
site. This means that there is a congravariant functor T : Profop → Sets so
that for any covering {Uj → U}j the following diagram expresses the first
term as the equalizer of the two maps from the second term to he third:

T (S)
∏
j T (Sj)

∏
j,j′ T (Sj ×S Sj′)α∗

p∗1

p∗2

Replacing the target category, sets, by the category of abelian groups
produces the category of condensed abelian groups.

In more down to earth language, a condensed set is a contravariant
functor T : Prof → Sets such that:
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1. for each surjection α : S′ → S in Prof the diagram

T (S) T (S′) T (S′ ×S S′)α∗
p∗1

p∗2

expresses T (S) as the equalizer of p∗1 and p∗2, and

2. for any finite coprod
∐
i∈I Si we have an isomorphism

T (
∐
i∈I

Si) =
∏
i∈I
T (Si),

given by the product of the maps induced by the inclusions Si →∐
i∈I Si.

A morphism ϕ : T → T ′ is a family of set functions ϕS : T (S)→ T ′(S) as S
ranges over the profinite sets that are compatible under pullbacks S′ → S.

As is usual with sheaves, these are the objects of a category, the cate-
gory of condensed sets with morphisms being morphisms of sheaves on the
Grothendieck site. A condensed abelian group is a sheaf of abelian groups
for this Grothendieck site. These are the objects of a subcategory of the
category of condensed sets with morphisms being morphisms of sheaves of
groups. Condensed abelian groups are exactly the abelian group objects in
the category of condensed sets.

Definition 1.3. For any condensed set T the value T (∗), where ∗ represents
the one-point space is called the underlying set of the condensed set.

Remark 1.4. Let S be a profinite set. We define a condensed set, denoted S
by associating to the profinite set S′ the set Homcont.(S

′, S). It is a straight-
forward exercise to show that this determines a sheaf for the Grothendieck
site. These are called representable condensed sets. Clearly S(∗) = S.

Claim 1.5. Let S be a representable condensed set and T an arbitrary con-
densed set. Then

Hom(S, T ) = T (S).

Proof. This is a Yoneda limit argument.̇ Given α ∈ Hom(S, T ) we associate
α(IdS) ∈ T (S). Conversely, given an element a ∈ T (S) for each ρ : S′ → S
we have ρ∗a ∈ T (S′). These are compatible under pullback and determine
an element of T . These are easily seen to be inverse bijections.

Corollary 1.6. Hom(S, T ) = Homcont(S, T ).
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Proof. Hom(S, T ) = T (S) = T (S).

There is a generalization of S 7→ S. For any topological space X we
can define a sheaf X on Prof by defining X(S) = Hom(S,X). While these
are reasonable condensed sets (for reasonable X), they are not representable
condensed sets unless X is profinite.

2 Basic Lemmas

2.1 Relations holding in Prof that hold in Condensed sets

Lemma 2.1. There are indexed products and fibered products in the category
of κ-condensed sets.

Proof. Given condensed sets {Ti}i∈I , the presheaf S 7→
∏
i Ti(S) is easily

seen to be a sheaf. Likewise given T1, T2 mapping to T the presheaf S 7→
T1(S)×T (S) ×T2(S) is easily seen to be a sheaf.

We turn now to co-products in the category of condensed sets. Suppose
that {Ti}i∈I is an indexed family of condensed sets. Then the contravariant
functor S 7→

∐
∈I Ti(S) is a presheaf on Prof . But if the cardinality of I is

greater than one, it is not a sheaf since

∐
i∈I

Ti

(
S1
∐
· · ·
∐

Sk

)
=
∐
i∈I

 k∏
j=1

Ti(Sj)

 6= k∏
j=1

(∐
i∈I

Ti(Sj)

)
.

We denote by
∐
iXi the sheafification of the above presheaf. Using the

universal property of sheafification and the fact that the co-product in the
category of presheaves is a categorical co-product, it is straightforward to
show that this sheaf satisfies the categorical co-product axiom in the cate-
gory of sheaves on Prof .

Since the Ti are sheaves, for any covering {Sj → S} the pullbback

∐
i

Ti(S)→
∏
j

(∐
i

Ti(Sj)

)

is an injection and hence the value of the sheaf
∐
i Ti(S) is the coilmit over

the indexed set of coverings {Sj → S} of the equalizer of
∏
j(
∐
i Ti(Sj) under

the pullback under the two projection mappings to
∏
j,j′
(∐

i Ti(Sj ×S Sj′)
)
.

3



Lemma 2.2. Let T = T1
∐
· · ·
∐
Tn be decomposition of a profinite set T

into a finite disjoint union of open and closed subsets. Then in the category
of condensed sets there is a natural identification of condensed sets T =
T1
∐
· · ·
∐
Tn.

Proof. Let U be the presheaf of Prof defined by

S 7→ U(S) = T1(S)
∐
· · ·
∐

Tn(S).

Clearly, for every profinite set S, there is an embedding U(S) ⊂ T (S),
making U a sub-presheaf of T . Thus, the sheafification of U is a subsheaf
of T . Recall that in this case the sheafification of U is defined by sending S
to the colimit over all covers {S′j → S}j of the equalizer

∏
j U(S′j)

∏
j,k U(S′j ×S S′k)

p∗1

p∗2

Thus, to prove that the sheafification of U is equal to T we need only
show that for every profinite set S and every α ∈ T (S) = Hom(S, T ) there
is a covering {S′i → S}i and an element a of the equalizer of

∏
j U(S′j)

∏
j,k U(S′j ×S S′k)

p∗1

p∗2

such that a maps to α, under the natural identication of T (S) with the
equlalizer of ∏

i T (S′j)
∏
j,k T (S′j ×S S′k).

p∗1

p∗2

and the inclusion from the first equalizer to the second. For then the element
a represents an element in the colimit that is the definition of the value of the
sheafification of U on S and under the natural inclusion of the sheafification
of U into T , this element maps to α ∈ T (S).

We take a decomosition S =
∐
Sj such that under α ∈ T (S) = Hom(S, T )

each Sj maps to one of the components Ti(j). Then define the covering to be
{Si ⊂ S}i. The equalizer in question is simply

∏
i U(Sj) =

∏
j(
∐
i T i(Sj)).

Since for each j there is i(j) such that α(Sj) ⊂ Ti(j), it follows immediately
that α is contained in

∏
j U(Sj) ⊂

∏
j T (Sj).

Since profinite sets are compact, the same argument works for all indexed
co-products (∐

i

Ti

)
sh

=
∐
i

Ti,
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but of course these are not representable sheaves.

Lemma 2.3. For profinite sets T1, T, T2 and maps αi : Ti → T we have

T1 ×T T2 = T1 ×T T2.

Proof. By the basic properties of fibered products, for any profinite set S
we have

Hom(S, T1 ×T T2) = Hom(S, T1)×Hom(S,T ) Hom(S, T2).

Technical Aside. For set theoretic reasons one needs to work in a universe
where the cardinality of the profinite sets under consideration is bounded.
Fix an uncountable strong limit cardinal κ (strong limit cardinal meaning
for any cardinal C < κ it is also true that 2C < κ). We consider the category
Profκ of profinite sets of cardinality less than that of κ, and the resulting
category of κ-condensed sets, groups, etc. Later we shall see the relationship
between the various Profκ, and eventually we will take a limit over all strong
limit cardinals. Here we remark that all the results in this section hold in
Profκ for any strong limit cardinal κ. The resulting category of sheaves on
this Grothendieck site is called the category of κ-condensed sets.

2.2 Quasi-compact Condensed Sets

In this section we fix a strong limit cardinal κ. A map between κ-condensed
sets f : X → Y is surjective if for evey profinite set S and an element
α ∈ Y (S) there is a covering {ϕi : Si → S}i such ϕ∗iα ∈ Y (Si) is in the image
of f(Si) : X(Si)→ Y (Si) for each i. A map f : X → Y of κ-condensed sets is
said to be imjective if for every profinite set S the map f(S) : X(S)→ Y (S)
is injective.

Definition 2.4. A κ-condensed set T is quasi-compact (qc) if for any surjec-
tion (in the category of condensed sets)

∐
i∈I Ti → T there is a finite subset

{i1, . . . , ik} ⊂ I such lhat
∐k
j=1 Tij → T is surjective.

Proposition 2.5. A κ-condensed set T is qc if and only if there is a κ-
condensed set S and a surjection S → T .

Proof. We begin with a lemma.
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Lemma 2.6. Suppose we have a morphism of κ-condensed sets f : T → S.
Then f is a surjection if and only if there is a covering {ϕi : Si → S}i∈I such
that αi ∈ ϕ∗i (IdS) ∈ S(Si) is the image of f(Si)(βi) for some βi ∈ T (Si) for
every i ∈ I

Proof. Necessity is obvious. Let us show the condition is sufficient to estab-
lish surjectivity. Given a κ-condensed set S′ and γ ∈ S(S′), the element γ
corresponds to a map γ : S′ → S that pulls back IdS to γ ∈ S(S′). Form
the diagram

U ×S Si
π−−−−→ Si

gi

y yfi
S′

γ−−−−→ S.

We see that π∗2αi = g∗i γ and π∗2αi is the image of π∗2βi. This proves that
f is surjective.

Lemma 2.7. Any representable κ-condensed S is qc.

Proof. Let f :
∐
i Ti → S be a surjection. By surjectivity there is a covering

ϕj : Sj → Sj such that setting αj = ϕ∗j (IdS), there are elements in βj ∈∐
i Ti(Sj) with f(Sj)(βj) = αj . We must show that there is a finite co-

product of the Ti that contains all the elements βj for then by the previous
lemma the restriction of f to this finite co-product will also be a surjection.
Of course, it suffices to prove that each βj is contained in a finite co-product
because the finite co-product of these finite co-produdts will contain all the
βj .

Consider the element βj ∈
∐
i Ti(Sj). By the definition of the co-product

this means that there is a covering {fk : Sk → Sj}nj=1 and an element in
(γ1, . . . , γn) ∈

∏n
k=1 (

∐
i Ti(Sk)) which is in the equalizer of two pull backs

to
∏
k,k′
(∐

i Ti(Sk ×Sj Sk′)
)

and which represents βj in the co-product of
such equalizers, which is the construction of the sheafification of the co-
product evaluated on Sj . But each γk lies in Xi(k)(Sk) for some i(k). Thus,
(γ1, . . . , γk) represents an element in

∐
i∈I Xi(Sj) where I = {i(1), . . . , i(n)}.

This element maps to βj in the full co-product so that its image in S(Sj) is
αj .

This completes the proof of the existence of a fine sub-co-product map-
ping surjectively to S. This proves that S is qc.

We can now establish one direction of the proposition.

Corollary 2.8. The quotient of a representable κ-condensed set is qc.
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Proof. Let T be a κ-condensed set that is the quotient of a representable κ-
condensed set S → T . Let

∐
iXi → T be a a surjection. Then S×T

∐
iXi →

S is a surjection. Also,

S ×T
∐
i

Xi =
∐
i

(S ×T Xi).

By what we just proved there is a finite co-product
∐
i∈I S×T Xi so that the

restriction of the map to this sub-co-product is a surjectively map to X. It
follows that the restriction of the map of

∐
iXi → T to the finite co-product∐

i∈I Xi is a surjective map to T .

Now we consider the converse. We suppose that T is qc.

Claim 2.9. Each κ-condensed set T is the image of a co-product (in the
category) of representable κ-condensed sets.

Proof. For each κ-profinite set S and each α ∈ T (S) there is a morphism
S → T that sends IdS to α. Thus, we take the set of one of κ-condensed
set from each isomorphism class, {Si}, and for each Si the set of elements
αi,j ∈ T (Si). For each αi,j we have a morphism ai,j : Si → T such that
ai,j(IdSi) ∈ Si(Si) = αi,j ∈ T (Si). The co-product of these maps as we range
over all Si and for each Si range over all α ∈ T (Si) is surjective. This proves
that every κ-condensed set is the image of a co-product of representable
κ-condensed sets.

Take a surjection
∐
i Si → T . Since T is qc, there is a surjection from∐k

j=1 Si(j) → T , meaning that there is a surjection from Si(1)
∐
· · ·
∐
Si(k) →

T . This completes the proof of the proposition.

2.3 Quasi separated condensed sets

Definition 2.10. A κ-condensed set T is quasi-separated (qs) if the diagonal
map is quasi-compact; i.e., if for any pair of maps f, g : S → T the fibered
product S ×T S is quasi-compact.

Proposition 2.11. T is quasi-separated if and only if for any representable
κ-condensed set, S, and any pair of maps f, g : S → T the product S ×T S
is represented by a closed subset of S × S.

Proof. The ’if’ direction is clear. Consider the ’only if’ direction. This
follows immediately from the more general statement in the following lemma.
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Lemma 2.12. Let T be a subsheaf of S for some κ-condensed set S. Then
T is qc if and only if T is represented by a closed subset of S.

Proof. Again the ’if’ direction is immediate, and we are left to suppose that
T ⊂ S is qc. Since T ⊂ S, for any U ∈ Profκ the elements of T (U) are
identified with continuous functions U → S. We are assuming that T is qc,
so there is a surjective map S′ → T , which is a continous map f : S′ → S.
Since S′ → T is surjective for any U ∈ Profκ there is a covering {Uj → U}
such that for each j the map hj = h|Uj lifts to a map h̃ : Uj → S′. Lifting

means that f ◦ h̃j = hj . In particular the image of hj is contained in the
closed subset f(S′) ⊂ S. Since this is true for all hj it is also true that the
image h(U) ⊂ f(S′). Since U is an arbitrary κ-condensed set and h is an
arbitrary element of T (U), it follows that T ⊂ f(S′). On the other hand,

we have the composition S′ → T → f(S′) which is f : S′ → f(S′).

Claim 2.13. f : S′ → S is surjective.

Proof. Since f : S′ → f(S′) is a surjection, it is a covering in the Grothendieck
topology. The pull back by this map of Idf(S′) is f ∈ S(S′). Clearly this is
the f(IdS′). Invoking Lemma 2.6 we see that f is surjective.

Since f is surjective and factors though the inclusion T → f(S′), this
implies that T → f(S′) is also surjective and hence that T → f(S′) is an
isomoprhism of condensed sets.

This completes the proof of the proposition.

2.4 Weak Topologies

Given any space X we can define a second topology on X, the compactly
generated topology on X. Consider the compact Hausdorff spaces K with
continuous maps to X. In the compactly generated topology and subset
of X is open if and only if its pre-image under each map from a compact
Hausdorff space to X that is continuous in the original topology is open.
It is easy to see that this forms a (possibly new) topology on X, denoted
Xcg. Since every open set in the original topology is an open subset in the
compactly generated topology, the identity map Xcg → X is continuous, but
not necessarily a homeomorphism. Nevertheless, the induced map Xcg → X
is an isomorphism of sheaves since maps from a profinite spae (which is a
compact Hausdorff) into X is continuous using one of the topologies on X
if and only if it is continuous using the other.
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We can describe the compactly generated topology in another way. Con-
sider all continuous maps S → X where S is a profinite space. We define the
weak topology on X determined by this family of maps. It is the topology
whose open subsets are exactly those whose re-image under each map from
a profinite set is open in that finite set. This topology is the same as the
compactly generated topology since every compact Hausdorff space is the
quotient of a profinite space.

We can also put bound on the cardinality of the compact Hausdorff
spaces or profinite sets used to defining the weak topology. For any cardi-
nality κ we define the κ-compactly generated topology to the be topology
defined by continuous maps (meaning continuous with respect to the given
topology) from compact Hausdorff spaces of cardinality less than κ to X.
This κ-compactly generated topology on X is denoted Xκ−cg.

We can also consider the weak topology defined by all continuous maps
of profinite sets of cardinality less than κ to X. If κ is a strong limit cardinal,
then these two topologies agree. The reason is that an examination of the
proof that every compact Hausdorff space is the quotient of an extremely
disconnected set shows that if the cardinality of the compact Hausdorff space
is C, then the cardinality of the extremely disconnected set mapping onto
it can be taken to be 22

C
. But if κ is a strong limit cardinal then C < κ

implies 22
C
< κ.

Proposition 2.14. The map X 7→ X from topological spaces to κ-condensed
sets is a faithful functor. It is fully faithful on the full subcategorty of κ-
compactly generated spaces. Its left adjoint is the map is given by A 7→ A(∗).
equipped with the quotient topology of

∐
S→A S → A(∗) where

∐
S→A runs

over all maps of all profinite sets of cardinality less than κ. The natural
map X(∗) → X is the inclusion X with its κ-compactly generated topology
into X with its original topology.

Proof. A continuous map f : X → Y gives rise to f : X → Y and the map
f is recovered as the set function f(∗), showing that this functor is faithful.

Fix a topological space X and a condensed set A. Then A(∗) is the value
of A on the one-point space. We give it a weak topology as follows. For each
profinite set S of cardinality less than κ recall that the set of morphisms
S → A is identified with A(S) by sending a morphism ψ to ψ(IdS) ∈ A(S).
On the other hand, a morphism ψ : S → A induces a set function ψ(∗) : S →
A(∗). We say that a subset U of A(∗) is open if and only if for every profinite
set S of cardinality less than κ and every element α ∈ A(S) the pre-image
of U under the resulting function ψα(∗) : S → A(∗) is an open subset of S.

9



This clearly defines a topology on A(∗), the weak topology determined by
all elements of A(S) for all profinite sets S of cardinality less than κ.

Let us define maps both ways between HomtopA(∗), X) and Morphκ−cond(A,X),
Fix a continuous map ϕ : A(∗)→ X. For a profinite set S of cardinality less
than κ we define ϕ(S) : A(S)→ X(S) as follows. For each α ∈ A(S) we have
the associated function α(∗) : S → A(∗) which is continuous by the definition
of the topology on A(∗). We let ϕ(S)(α) be the composition ϕ(S) ◦ α(∗).
Being a composition of continuous maps it is continuous and hence is an
element of X(S). Fuctorality of ϕ in S is immediate, so we have defined a
morphism in κ-condensed sets from A to X.

In the opposite direction, given a morphism of κ-condensed sets ψ : A→
X we associate the function ψ(∗) : A(∗) → X. To prove continuity of ψ(∗)
is to show that ψ(∗)−1(U) is open for every open set U ⊂ X. Fix an open
subset U ⊂ X. To show ψ(∗)−1(U) is open we need to show that for every
profinite set S of cardinality less than κ and every α ∈ A(S) under the
resulting map α(∗) : S → A(∗) the pre-image of ψ(∗)−1(U) is open. But
since ψ is a morphism of κ-condensed sets ψ(α) ∈ X(S). The map S → X
that results from ψ(α) is ψ(∗) ◦ α(∗). Since ψ(α) is an element of X(S), it
follows that ψ(∗)◦α(∗) is continuous and hence the pre-image of U under this
map is an open subset of S. It follows immediately the the pre-image under
α(∗) of ψ(∗)−1(U) is open in S. Since this is true for all profinite sets S of
cardinality less than κ and all α ∈ A(S), it follows from the definition of the
topology on A(∗) that ψ(∗)−1(U) is open, proving that ψ(∗) is continuous.

It is direct to see that the functions are inverses of each other.
Now if X has a κ-compactly generated topology, then, since every κ-

compact Hausdorff space is the quotient of a profinite space of cardinality
less than κ, it also has the weak topology generated by all continuous maps
S → X for S ranging over profinite spaces of cardinality less than κ. In
this case the topology of X and X(∗) agree and we see that X → X is fully
faithful on the subcategory of κ-compactly generated spaces.
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