Problem Set IX for Lie Groups: Fall 2024

November 19, 2024

Problem 1. Compute the translation lattice Λ_0 for W_{aff} , the co-weight lattice Λ and the dual to the root lattice Λ_R^* for SO(8) and SO(5). Compute $\pi_1(SO(5))$ and $\pi_1(SO(8))$.

Problem 2. Let G be a compact connected Lie group and $T \subset G$ a maximal torus. Show that the center of G, denoted Z(G), is contained in T. Show that $Z(G) = \bigcap_{\alpha} \ker(\alpha)$, where α ranges over all roots of T. Show that if the roots generate \mathfrak{t}^* over the reals, then the center of G is identified with the quotient of the dual to the weight lattice by the co-weight lattice.

Problem 3. Suppose G is a compact, connected Lie group. Show that the image of G under the adjoint representation is G/Z(G). Show that if G has finite center, then in the adjoint form, ad(G), the dual to the root lattice is equal to the co-weight lattice.

Problem 4. Suppose that G is a compact, connected Lie group. Show that the Lie algebra of the center of G is the subspace of t on which the Weyl group acts trivially, which is also the orthogonal complement of the subspace generated by the roots of T.

Problem 5. Suppose that G is a compact simply connected Lie group. Suppose that the Dynkin diagram D for G has connected components D_1, \ldots, D_k . Show that there are compact, simply connected Lie groups G_1, \ldots, G_k with D_i being the Dynkin diagram of G_i and $G \cong G_1 \times \cdots \times G_k$.

More generally, suppose instead of being simply connected, G is compact with finite center. What is the analogous result?

Problem 6. Fix a notion of positive roots. A root β is a highest root if $\alpha + \beta$ is not a root for every simple root α . Show that a highest root lies in the closure of the fundamental Weyl chamber

Problem 7. Show that for SU(n) and SO(2n), $n \ge 3$, there is a unique root contained in the closure of the fudamental Weyl chamber and hence a unique highest root. Find the highest root.

Problem 8. Show that for SO(2n+1), $n \ge 2$, there are two roots contained in the closure of the fundamental Weyl chamber, one long and one short. Find them. Show that there is a unique highest root for SO(2n+1).