
Lie Groups: Fall, 2024

Lecture IX:

The Affine Weyl Group

December 14, 2024

We keep our standard notation for this lecture: G is a compact Lie group,
T is a maximal torus of G. The Lie algebras of these Lie groups are denoted
g and t, respectively. The roots of G are characters α : G → S1, or their
differentials (also denoted by the same name) α : t→ R. The set of roots is
R. For each root α there is a reflection wα : T → T or wα : t → t that fixes
the kernel of α and acts as a reflection. In the case of the Lie algebra the
kernel of each wα, called the wall of α is a codimension-1 linear subspace of t.
These walls divide t into the Weyl chambers. The Weyl group, which is the
normalizer of T , denoted N(T ), modulo T is denoted W and is generated by
the reflection in the kernels of the roots. It acts simply transitively on the
set of Weyl chambers. We have also fixed a Weyl invariant inner product
on t.

The fundamental lattice, Λ, is the kernel of the map t→ T .

1 The Affine Weyl Chambers and the Affine Weyl
Group

1.1 The Definition and First Results

Definition 1.1. LetWaff be the set of walls in t given by {α = k}(α,k)∈R×Z.
These are called the affine walls. (The subset {α = 0}α∈R are exactly
the walls of the Weyl chambers.) There are infinitely many walls but only
finitely many meet any compact set. The affine Weyl group, denoted Waff

is the group generated by reflections in all the affine walls. The affine Weyl
chambers are the components of the complement in t of the union of the
affine walls.
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Theorem 1.2. • The set of affine walls is discrete in the sense that
there are only finitely many walls meeting any given compact set.

• The set of affine walls is stablilized by the action of the affine Weyl
group.

• The affine Weyl group acts as a discrete group of affine linear trans-
formations of t.

• It acts simply transitively on the affine Weyl chambers and the quotient
of this action is a single chamber.

The proof of the various statements is contained in the next subsection.

1.2 The Image of the Affine Walls and Chambers in T

Recall that for each root α, the kernel of α : T → S1 is denoted by Ûα. The
component of the identity Uα is a sub-torus of codimension 1 and Ûα ⊂ T
is either one or two componentw,

Proposition 1.3. The affine walls in t are the pre-image of ∪αi∈RÛ
αi ⊂ T .

Proof. t ∈ Ûα if and only if it is covered by an element t̃ in t on which α
takes an integral value if and only if α takes integral values on the pre-image
of t in t. Result is immediate from this

The lattice1 in t where all the roots take integral values is the dual
lattice to the root lattice. It contains the fundamental lattice since roots
take integral values on Λ.

2 Proof of Theorem 1.2

We divide the proof into the proof of five different statements.

2.1 Discreteness of the Affine Walls

Let X ⊂ t be a compact set. Then there is K < ∞ such that for each
root α ∈ R α(X) ⊂ [−K,K]. If an affine wall {α = k} meets X, then
−K ≤ k ≤ K. Since there only finitely many roots, this is a finite set of
affine walls.

1This is a lattice in the technical sense only when the center of G is finite. In other
cases, it is the product of the Lie algebra of the center and a full lattice in the orthogonal
complement
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Corollary 2.1. Every point p ∈ t has a neighborhood that meets only finite
many Weyl chambers.

Proof. Let U be a connected neighborhood of p with compact closure. Then
U meets only finitely many affine walls, say r walls. The complement of these
r walls in t has at most 2r connected components. [Exercise to prove this
by induction.] The intersection of U with any one of these components is
contained in a chamber, so U meets at most 2r affine Weyl chambers.

2.2 The action of the affine Weyl Group is a linear action
stabilizing the union of the Affine Walls

Reflections are orthogonal transformations of t, so the affine Weyl group is
a group of linear transformations of t.

An easy exercise establishes the following claim.

Claim 2.2. The formula for reflection in {α = k} is given by

x 7→ x− (k − α(x))
2xα
〈α, α〉

,

where xα is perpendicular to the wall, Wα, associated to α and α(xα) =
〈α, α〉.

Clearly, reflection in the wall {α = k} of the wall {α = r} is reflection
in the wall {α = 2k − r}.

Consider now the case of reflecting the wall {β = r} in the wall {α = k}
where α and β are linearly independent. These walls meet along an affine
linear codimension-2 subspace of t. Choose a point x this subspace and
translate by −x so that the subspace passes through the origin. Denote
the images after translation of {α = k} by Wa and {β = r} by Wb. Then
Wa and Wb are two of the walls of the Weyl chamber structure. Thus, the
reflection in Wa of Wb is another wall Wc of the Weyl chamber structure,
say associated to a root γ. The last thing we need to see is that γ(x) ∈ Z,
so that there is an affine wall parallel to Wc passing through x, for this is
the image of {β = r} under reflection in {α = k}. But

γ = β − 2〈α, β〉α
〈α, α〉

.

Since α and β take integral values on x and

2〈α, β〉
〈α, α〉

∈ Z,
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this is immediate.
Since Waff stabilizes the union of the affine walls, it stabilizes the com-

plement which is the disjoint union of the Weyl chambers. But stabilizing
this union means that it stabilizes the set of its connected components which
are the affine Weyl chambers.

2.3 Reflections in the walls of a fixed affine chamber C0 gen-
erate Waff which acts transitively on set of the affine Weyl
Chambers

We have to fix our conventions for groups acting. We choose to have them
act from the left, so that (ab) · C = a · (b · C)

Fix an affine Weyl chamber C0.

Claim 2.3. The subgroup generated by reflections in the walls of C0 acts
transitively on the set of affine Weyl chambers.

Proof. Given a chamber C there is a smooth path in t from an interior
point of C0 to an interior point of C that misses all intersections of two
distinct walls (which is a locally finite union of codimension-2 affine linear
subspaces) and with each intersection point with a wall being a transverse
point of intersection. Enumerate in order the chambers this path crosses
C0, C1 . . . , Ck = C ′. Reflection wα1 in the wall of C0 that is also a wall of
C1 sends C0 to C1. The next wall-crossing point from C1 to C2 is in the
common wall W1 of C1 and C2. Being a wall of wα1 · C0 his wall is of the
form wα1 ·Wα2 for some wall Wα2 of C0. Thus, the product of

(wα1wα2w
−1
α1

)wα1 = wα1wα2

acts carrying C0 to C2. Suppose by induction on i that there is a product γi
of reflections in walls of C0 carrying C0 to Ci. Then the wall common to Ci
and Ci+1, say Wi+1, is of the form γi ·Wαi+1 for Wαi+1 a wall of C0. Thus,
reflection in this wall is the product γi ·wαi+1 ·γ−1

i and the product γi ·wαi+1

carries C0 to Ci+1. This completes the induction. As a result, there is a
product of reflections in the walls of C0 that carries C0 to Ck = C ′, proving
the claim.

Corollary 2.4. The reflections in the walls of C0 generate Waff .

Proof. By construction, the generators of Waff are the reflections in all affine
walls. Any such reflection is the reflection in a wallW of some Weyl chamber,
say C. We have just seen that there is a product γ of reflections in the walls
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of C0 that moves C0 to C. The wall W is then γ ·Wα for some wall Wα of C0

and arguing as before, we see that reflection in W is the product γ ·wα ·γ−1

of reflections in walls of C0.

Here is what we have just shown. Given an element γ ∈ Waff and given
a chamber C0 we write this element as a product w1w2 · · ·wk where the wi
are reflections in walls Wi of C0. Set γi = w1 · · ·wi. Let Ci = γiC0 for all
i ≤ k. Then γk = γ and C0, C1, . . . , Ck is a path of chambers with Ci−1 and
Ci sharing the wall that is the image γi−1Wi.

Corollary 2.5. Given γ ∈ Waff for any wall C0, let Ci be as described
immediately above. Let W ′i be the wall common to Ci−1 and Ci.. Then there
is a path ω : [0, 1]→ t and points 0 = t0 < t1 < t2 < · · · < tk < tk+1 = 1 such
that ω(0) ∈ C0, ω(1) ∈ Ck and for each 1 ≤ i, the open path ω((ti−1, ti)) ⊂
Ci−1 and ω(ti) ∈ W ′i . Furthermore, the product rW ′krW

′
k−1
· · · rW ′2rW ′1 = γ,

where rW ′i denotes the reflection in the wall W ′i .

2.4 Waff action on the set of affine Weyl chambers is simply
transitive

Given what has already been established, we need only show that given two
products of reflections in the walls of C0 carry C0 to C ′, these products
give the same element of Waff . Each of these products represent a ‘path’ of
chambers from C0 to C ′. As described in the previous corollary, we represent
these two ’paths’ by smooth curves in t from a point of C0 to a point of C ′,
smooth curves ξ1 and ξ2 that miss all codimension-2 intersections of walls
and crosses transversely in order the walls between successive elements of
the path of chambers.

Consider the rectangle made sides ξ1, ξ2, top, the arc, Ainitial, connecting
the initial points of ξ1 and ξ2 by a path in C0, and bottom, the arc, Afinal,
connecting the final points of ξ1 and ξ2 by a path in C ′.

Since this is taking place in the vector space t, this map extends to
a smooth map of solid rectangle R into t. By small deformation relative
to its boundary, we can assume that the smooth map R → t misses all
codimension-3 intersections of three distinct walls, and is transverse to each
wall and each the codimension-2 intersections of two distinct walls. The
pre-image of the union of the walls is a one-dimensional graph Γ embedded
in R. The edges of Γ either end at the sides of R (the top and bottom of
R are disjoint from the affine walls) or at nodes, points of intersection with
the codimension-2 where 4, 6, or 12 arcs meet.
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The product of reflections in the walls of C0 represented by ξi is read
off from the points of intersection of ξi-side of R with Γ, together with the
walls that contain the points of intersection.

The argument proceeds by changing the map of R into t so as to simplify
Γ, without changing the element of Waff represented by the product of ele-
ments associated with of each side of R. The goal is to simplify Γ until the
only components of γ that meet the sides of R are arcs with one endpoint in
each side of R. At that point will we have modified the words represented by
the sides until they are the same word, without having changed the elements
in the affine Weyl group the sides represent. This will prove that the original
products represent the same elements in the affine Weyl group. Since this
is true for arbitrary products of reflections in walls of C0 that carry C0 to
C ′, this will show that there is a unique element in Waff carrying C0 to C ′.

Removing Simple Closed Curve Components of Γ.
If there is a simple closed curve component S of Γ. Then S bounds a

disk D in the rectangle. (It is possible that D contains other components
of Γ.) The image of S lies in a wall W and is disjoint from codimension-2
intersections of walls. The intersection of a small neighborhood of S with
R \D maps into a chamber, say C− with W as a wall. Let S′ be embedded
curve that is a small deformation of S in this neighborhood. Its image in
C−. The simple closed curve S′ bounds a disk D” containing D in R. Since
C− is convex, there is a map D′ → C− that agrees with the given map of
S′ → C−. We can choose this map so that together with the original map
R \ intD′) it forms a new smooth map R→ t.

This operation has removed from Γ the simple closed curve S together
with any components of Γ that lie in D. Since this map has not changed
ξ1 nor ξ2, it has not changed the words in the reflections in the walls of C0

that these paths represent.
In this way we remove all simple closed curve components from Γ. If

in future moves we create simple closed curve components, we immediately
remove them in the same way.

Removing certain arc components with boundary points in the
same side.

Let ρ : R → t be map producing a graph Γ. Suppose that A is an
arc component of Γ with both endpoints in the same side of R, say for
definiteness, the ξ1 side. This arc is the frontier of a disk D ⊂ R that meets
only The ξ1 side of R. Denote by I the intersection of D with this side of
R. We suppose that there are no endpoints of Γ in the interior of I, though
they can well be components of Γ in D. Let A′ ⊂ R be a small deformation
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of A away from D, a deformation that keeps the endpoints in the side of R
and that is small enough that the track of the homotopy is disjoint from Γ
except for its initial position A. Let A′ be the result of this deformation.
It is disjoint from Γ. Let D′ be the disk cut off by A′ that contains D We
remove the relative interior of D′ from R producing a new rectangle R

′
. Let

ρ′ : R
′ → t be the restriction of ρ. There is a diffeomorphism from R → R

′

that sends I ′ to the relative frontier of D′ in R and is the identity on the
rest of ∂R. The composition of this diffeomorphism followed by ρ′ is a new
map of R whose graph is obtained from Γ by removing the arc A and all
components of Γ contained in the relative interior of D.

The image of A lies in a wall W . Let C− be the affine Weyl chamber
that contains the image of A′. The new map R→ t restricted to the ξ1-side
we have replaced an arc that goes from C− crosses W to the neighboring
chamber C+ and then returns by crossing W to C− by an arc that remains
in C−. In the associated word we have removed successive reflections in
the wall W .. Of course, while this changes the word, it does not change
the element of Waff represented by the square of reflection is W is trivial in
Waff .

The path ξ2 and the word it represents are unchanged by this operation.

Removing certain points of intersection with codimension-2 inter-
sections of walls.

Again suppose that ρ : R→ t produces a graph Γ. Let p ∈ R be a node
of Γ; i.e.; a point in the pre-image of a codimension-2 intersection of walls.
Suppose that we can connect p to a side, say ξ1 for definiteness, by an arc A
that meets Γ only in p. Let D be a small relative regular neighborhood of A.
Then D meets the ξ1-side in an arc I that maps to the interior of a chamber.
We cut out the relative interior of D from R producing a subspace R

′
of R

diffeomorphic to R by a diffeomorphism which is the identity on ∂R \ I and
sends I to the relative frontier J of D in R. The new map of R → t is
the composition of this diffeomorphism followed by the restriction of ρ to
R
′

Thus, we have produced a new map of R → t whose associated graph
is identified with the subgraph Γ′ of Γ with a small neighborhood of the
node removed. On the ξ1-side we have replaced an arc that has no points of
intersection with Γ by an arc the multiple intersections with the truncated
subgraph Γ′. This inserts a product of reflections in walls of C0 into the
word represented by this side.

But this product is the product, in order, of reflections in the successive
walls around the codimension-2 intersection. This product represents the
trivial element of Waff . So, while we have changed the word represented by
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the ξ1-side, we have not changed the element in Waff it determines.
The ξ2-side and the word it represents are unchanged by this operation.

Arranging that the only components of Γ that meet the sides are
arcs from one side to the other.

For any graph Γ ⊂ R that is the pre-image of the union of the affine
walls under a map, generic as above, define P (Γ) = (d1, d2) where d1 is the
number of nodes of Γ; i.e.; pre-images of codimension-2 intersections of walls
and d2 is the number of components of Γ that are arcs with both endpoints
in the same side. We order lexicographically the P (Γ) by (d1, d2) < (d′1, d

′
2)

if either d1 < d′1 or d1 = d′1 and d2 < d′2.

Claim 2.6. Let ρ : R → t be a map as above producing a graph Γ ⊂ R. If
Γ either has an edge that connects a node to the side of R or if Γ has a
component that is an arc with both endpoints in the same side, then we can
perform one of the two operations above replacing ρ by a map ρ′ : R → t
giving a graph Γ′ with P (Γ′) < P (Γ) while keeping the elements of Waff

represented by the sides of the maps the same.

Proof. If there is a node connected by an arc of Γ to a side, then there is arc
in R connecting this node to the same side that meets Γ at only the node.
Using the second move above we produce a new map with graph Γ′ which
has fewer nodes than Γ leaving the elements in Waff represented by the sides
unchanged. Since Γ′ has fewer nodes than Γ, we have P (Γ′) < P (Γ).

Suppose that there are no such nodes, but there is an arc component A
of Γ that has both endpoints in the same side. Let I be the interval in this
side between the endpoints of A and let D be the disk with frontier A that
contains I. If there are no endpoints of Γ in the interior of I, then we can
use the first move above to change the map so as to remove this arc and
all components of Γ inside the disk cut off by A. This reduces P (Γ), while
leaving the elements in Waff represented by the two sides the same.

If there are endpoints in the interior of Γ, then, by our assumption that
no node of Γ is connected by an edge of Γ to either side of R, any such
endpoints must be from arc components of Γ, and those arcs are contained
in D. We can replace the arc A by an arc component A1 of Γ contained
in the relative interior of D and repeat the argument. Since there are only
finitely many components of Γ contained in D, we can repeat this argument
only finitely many times until we arrive at an arc Ak bounding a disk Dk for
which there are no endpoints of Γ in the interval D′ ∩ ∂R, and then argue
as in the previous paragraph using Ak .

Completion of the Proof that the Action is Simply Transitive
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Any strictly monotone decreasing string for the given lexicographic or-
dering on pairs (d1, d2) of non-negative numbers must be finite. Thus, start-
ing a graph Γ associated with a map R→ t as above, after a finite number
of steps with the process of simplification described in the previous lemma
must terminate. But the process only terminates if the graph produced by
the last step has no node connected to the boundary no arc component of Γ
with both ends in the same side. This means that every component of the
graph that meets the sides of R is an arc with one endpoint in each side.

It follows that in this case the words in the reflections in walls of C0

represented by the two sides of the solid rectangle are the same. Since our
moves leave invariant the elements in the Weyl group represented by the
words coming from the sides, this means that the original words given by ξ1

and ξ2 represent the same element in Waff .

2.5 The Waff action is discrete with quotient equal to the
closure of a single affine Weyl chamber

The first statement is immediate from the fact that the Waff action is simply
transitive on the set of affine Weyl chambers and the set of Weyl chambers
is locally finite in the sense that every point has a neighborhood meeting
only finite many chambers.

Now fix an affine Weyl chamber C0. Define a map from any affine Weyl
chamber C to C0. It is the map given by the unique element in Waff that
sends C to C0. In this way we define isomorphisms of each closed Weyl
chamber onto the closure of C0. We claim that this gives a well-defined
function from t to the closure of C0. To prove this we need only see that if
C and C ′ share a wall then the maps we have given C → C0 and C ′ → C0

agree on the intersection of their closures. Let C and C ′ share an affine wall
W and suppose that γC and γC′ there the unique elements of the affine Wel
group carrying C and C ′, respectively, to C0. Then by the uniqueness of
these elements we see that the Weyl element γC = γC′w, where w is the
reflection in W . Thus, γC and γC′ agree on W and hence on the intersection
of the closures of C and C ′. Thus, we have a continuous map t→ C0

The same argument, using the uniqueness of the affine Weyl elements,
shows that this map is a Waff -inavariant on t→ C0 whose fibers are exactly
the orbits of the Waff action.
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3 The Structure of Waff and its Translations Sub-
group

3.1 The Structure of Waff

Associating to an affine linear transformation its differential defines a ho-
momorphism

ρ : Waff →W.

Proposition 3.1. • The affine Weyl group sits in an exact sequence

{1} → Λ0 →Waff
ρ−→W → {1},

where Λ0 is a lattice of translations in t.

• The natural inclusion of W into Waff spits this sequence so that Waff

is a semi-direct product Λ0 oW with the action of W on Λ0 induced
from the defining action of W on t.

Proof. Since Waff is generated by reflections in walls parallel to walls of the
Weyl chamber, the differential of any element of Waff is an element of W .
x The kernel of the map from linear transformations to GL(n,R) given by
taking the differential is the subgroup of translations. Thus, the kernel of
ρ, Λ0, is a group of translations of t. A translation of t is identified with
an element of t. The group Λ0 is naturally an additive subgroup of t. (We
will see a generating set later.) Since Waff is a discrete group of affine
transformations, Λ0, is a lattice in t.

The natural inclusion W ⊂ Waff as the subgroup of reflections in walls
passing through 0 gives a splitting of ρ so that Waff = Λ0 oW , meaning
that Λ0 is a Weyl invariant lattice in t.

3.2 The Subgroup Λ0 of translations

Here is the first result.

Proposition 3.2. For each root α let λα be the image of 0 under reflection
in {α = 1}. For every α ∈ R, λα ∈ Λ0 and {λα}α∈R generates Λ0. Also,
Λ0 is a sub lattice of the co-weight lattice Λ. That is to say every the arc in
t connecting 0 to λα projects to a loop in T . This loop bounds a disk in G.

Proof. First, notice that we can rewrite the formula in Claim 2.2 for reflec-
tion in {α = k} acting on x as

x 7→ x+ (k − α(x))λα.
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The composition of reflection in {α = 0} followed by reflection in {α = 1}
is translation by λα. This shows each λα ∈ Λ0.

For a root α, there is a 3-dimensional Lie group H ⊂ G whose Lie
algebra tH ⊕ Vr maps isomorphically onto R(λα)⊕ Vα preserving the direct
sum decomposition. This map sends the element λr ∈ tH associated to the
root r to the element λα ∈ t.

There are two possibilities for H: either SO(3) and S3. In the first case
the generator x of the co-weight lattice, Λx, satisfies r(x) = ±1, so that the
co-weight lattice is the dual to the root lattice and λr is 2x. In the second
case the generator y of the co-weight lattice satisfies r(y) = ±2, so that the
co-weight lattice is twice the dual of the of the root lattice. and λr = y.
Since, in both cases, r(λr) = 2, we have λr ∈ ΛH . In the first case the arc
connecting 0 to λr projects to the square of the generator of π1(TH) and in
the second it projects to the generator of π1(TH). In both cases this element
in trivial in π1(H)

By naturality both statements pass from H to G: the element λα ∈ Λ
and the arc in t connecting 0 to λα projects to a loop in T that represents
the trivial element in π1(G).

Now let us show by induction on the length of products of reflections that
for any γ ∈ Waff we have γ(0) =

∑
α nαλα for integers nα. Clearly, the result

holds for any single reflection: Reflection of 0 in {α = k} is kλα. Suppose
ξ = wξ′ where ξ′ has shorter length than ξ and w is a reflection. Then by
induction ξ′(0) =

∑
α nαλα. Suppose that w is reflection in {β = k}. Then

this reflection sends
∑

α nαλα to∑
α

nαλα + (k −
∑
α

nαβ(λα))λβ.

Since the λα ∈ Λ, β(λα) ∈ Z and hence this expression is an integral linear
combination of the λα.

Applying this to the subgroup Λ0 of translations, we see that every
element in Λ0 is a translation by an integral linear combination of the λα.

This proves that the λα generate Λ0. Since each λα ∈ Λ, it follows that
Λ0 ⊂ Λ.

Actually, we have proved more:

Corollary 3.3. The lattice Λ0 ⊂ t is contained in Λ = π1(T ) and is con-
tained in the kernel of the map π1(T )→ π1(G).

Proof. In the above proof we established that each λα represents a loop
in T that bounds in G. Since these elements generate Λ0, the corollary
follows.
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Remark 3.4. For each root α, the element λα = 2xα/〈α, α〉 as defined
before. In the literature λα is denoted α∨ and is called the coroot dual to α.
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