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Lecture VI: Real Analyticity for Real Lie Groups

September 30, 2024

1 BCH Formula and Local Lie Groups

Let FL(X,Y ) be the free Lie algebra generated by X and Y . In the last lec-
ture we showed that there is a formal series, the BCH series

∑
n≥1Hn(X,Y )

where, for n ≥ 2 the term Hn(X,Y ) is a linear combination of terms of the
form

[Z1, [Z2, · · · [Zn−1, Zn]] · · · ]

where each Z ∈ {X,Y } and H1(X,Y ) = X + Y .
Now consider gl(n,R). Define a positive definite inner product on this

Lie algebra by setting

〈A,B〉 =
n∑

i,j=1

Ai,jBi,j .

The resulting norm is |A| =
√∑n

i,j=1A
2
i,j . Your homework problems were

to show that there is ε > 0 with the property for |X|, |Y | < ε the series∑
nHn(X,Y ) converges uniformly and absolutely in gl(n,R).
Let U ⊂ gl(n,R) be the ball of radius ε centered at 0. Then there is a

real analytic function
H : U × U → L

whose value at (X,Y ) is the limit of the convergent series H(X,Y ). The
identityH(0, X) = H(X, 0) = X of formal power series imply thatH(0, X) =
H(X, 0) = X. The identityH(X,−X) = H(−X,X) = 0 impliesH(X,−X) =
H(−X,X) = 0. The identity H(H(X,Y ), Z) = H(X,H(Y,Z)) implies
that if (X,Y ), (Y, Z), (H(X,Y ), Z), (X,H(Y,Z)) are all contained in Ω then
H(H(X,Y, Z) = H(X,H(Y,Z)). That is to say there is a local Lie group

(U, 0,−1,Ω,H)
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where Ω = H−1(U) ⊂ U × U .
We also have the identity of formal series exp(H(X,Y )) = exp(X)exp(Y ).

This immediately implies that for all (X,Y ) ∈ Ω we have

exp(H(X,Y )) = exp(X)exp(Y )

as elements of GL(n,R) Of course exp(0) = e and exp(−X) = exp(X)−1.
We have now established the following:

Theorem 1.1. (U, 0,−1,Ω,m) is a local Lie group. The map

exp: (U, 0,−1,Ω,m)→ GL(n,R)

is a map of local Lie groups and maps U diffeomorphically onto an open
neighborhood exp(U) ⊂ G of the identity. In particular, exp gives an isomor-
phism between (U, 0,−1,Ω,m) and the local sub Lie group of G determined
by exp(U) ⊂ G.

This is not only true for gl(n,R) but for any Lie subalgbra of gl(n,R).

Theorem 1.2. Let L ⊂ gl(n,R) be a Lie subalgebra. With U as above, let
UL = U ∩ L. Denote the restriction of H to UL × UL by HL. The image
of HL is contained in L. Setting ΩL = H−1L (UL × UL) produces a local Lie
group

(UL, 0,−1,ΩL,HL). (∗)
Let H → GL(n,R) be a map of Lie groups that is a one-one immersion

with the image of h being L. The exponential map from induces an isomor-
phism from this local Lie group given in (*) to the local Lie subgroup of H
determined by exp(UL).

Proof. This follows directly from the result for GL(n,R) by restricting once
we observe that H : UL × UL → L since L is a Lie subalgebra, so that the
terms Hn(X,Y ) ∈ L if X,Y ∈ L.

l

Corollary 1.3. Suppose that G is a Lie group with Lie algebra g. Choose
a positive definite symmetric inner product on g with resulting norm | · |.
Then there is ε > 0 such that setting U ⊂ g equal to the ball of radius ε, the
series H(X,Y ) converse uniformly and absolutely for X,Y in U . As before,
we form a local Lie group

(U, 0,−1,Ω,m).

The germ of this local Lie group is isomorphic to the germ of G by exp.
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Proof. By Ado’s theorem there is an embedding g → gl(n,R) for some n.
Let G′ → GL(n,R) be the map of Lie groups that is a one-one immersion so
that the induced map on Lie algebras, g′ → gl(n,R), maps g′ isomorphically
onto g. Then the previous result tells us that the corollary as stated holds
for G′ replacing G.

But G′ and G have the same Lie algebra and thus are isogenous. It
follows immediately that the germ of G is identified with the germ of G′ by
an isomorphism that induces the given identification of their Lie algebras.
Hence, the corollary holds for G as well as for G′.

2 Real Analyticity of Real Lie groups

Theorem 2.1. Every Lie group inherits a natural real analytic structure
that makes it a real analytic Lie group. Every Lie group homomorphism is
real analytic with respect to these structures.

Proof. For any finite dimensional real Lie algebra L there is a neighborhood
U of 0 invariant under X 7→ −X on which the series H converges to give an
analytic function U × U → L, leading to an analytic map HL : ΩL → UL.

Now suppose that L = g for some Lie group G. Possibly after replacing
U by a smaller open set the exponential map from L → G identifies this
local Lie group with a local sub Lie group of G generated by exp(U). Let W
be a neighborhood of the identity such that W 2 ×W 2 ⊂ Ω. The usual real
analytic structure on L (determined by its real linear structure) restricts to
U so that the multiplication on W 2 ×W 2 → U is a real analytic map as
the map W 2 → W 2 given by w 7→ w−1. We transported the real analytic
structure on W by the exponential map to a real analytic structure on
W = exp(W ) ⊂ G. On W , the multiplication and inverse mappings of G
are analytic maps in this transported structure.

Now we define a real analytic structure in a neighborhood gW of g ∈
G by transporting the real analytic structure just defined on W via left
multiplication by g. This gives analytic charts covering G.

We check that on the overlap of two charts the analytic structures agree.
Suppose that gW ∩ hW 6= ∅, say gv0 = hw0 with v0, w0 ∈ W . Then
h−1g = w0v

−1
0 and the overlap function is given by multiplication by w0v

−1
0 .

Set V = (W ∩ (v0w
−1
0 W ). Then v0 ∈ V so that V is an open neighborhood

of v0. Since the element w0v
−1
0 ∈ W 2

and w0v
−1
0 V ⊂ W , multiplication by

w0v
−1
0 on V is real analytic. This shows that the two real analytic charts

give the same real analytic structure on the overlaps and hence define a

3



global real analytic structure on G. We call this the real analytic structure
generated by the BCH formula.

Let us consider multiplication near (g, h) ∈ G×G. The analytic structure
on gW ×hW ⊂ G×G is given by (gw, hv) with the analytic structure on w
and v as defined previously. The product is given by gwhv = gh(h−1wh)v.
Of course Ad(h−1) is the transport to W by exp of a linear map on L (which,
of course, is real analytic on L). For w sufficiently close to e ∈W , the image

L(w) ∈ W . Hence. the restriction of Ad(h−1) to a neighborhood W
′

of

e ∈ W is analytic function W
′ → W . Since we know the product in G is

analytic on W ×W , it follows that the product (h−1wh)v is analytic in v

and w near for w ∈W ′ and v ∈W . This proves that the product structure
on G is real analytic in the real analytic structure generated by the BCH
formula.

Lastly, let us consider the inverse map. Near g it sends gw to w−1g−1 =
g−1(gw−1g−1). For w ∈ W the map w 7→ w−1 is analytic. Also, for w
sufficiently close to the identity gw−1g−1 is in W . As before, since Ad(g) is
the transport of a linear map and therefore analytic near the identity, the
inverse map, which near g is the composition of the inverse on W and Ad(g),
is analytic near g.

This proves that G with the analytic structure generated by the Baker-
Campbell-Hausdorff formula is a real analytic Lie group.

Now suppose that ψ : G→ H is a Lie group homomorphism. It induces
a linear map deψ : g → h which is obviously real analytic. Transporting by
the exponential mapping, deψ induces a map on the germs of the local Lie
groups in g and h. We have a commutative diagram

g
deψ−−−−→ h

exp

y yexp

G
ψ−−−−→ H

Since the real analytic structure near e ∈ G and e ∈ H are transported
from the usual real analytic structure on g and h and since deψ is linear and
hence real analytic, it follows that, near the identity in G, the map ψ is real
analytic.

Now let us consider ψ in a neighborhood of g ∈ G. In a neighborhood
of g, the map is given by ψ(gw) = ψ(g)ψ(w) for w near the identity in
G. Since multiplication by g in G and multiplication by ψ(g) in H are real
analytic isomorphisms, and w 7→ ψ(w) is a real analytic map by what we
just observed, it follows that ψ is real analytic near g, an consequently, is a
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real analytic map.
This shows that the category of real analytic Lie groups is equivalent to

the category of smooth Lie groups. (Assuming, of course, Ado’s theorem.)
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