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Lecture IV: Lie’s Theorems

September 26, 2024

1 Lie sub algebras to Lie subgroups: The State-
ment

The first result is that a sub Lie algebra of the Lie algebra of a Lie group
G integrates to a unique group (up to isomorphism) with an one-to-one
immersion into G.

Theorem 1.1. Let G be a Lie group and h ⊂ g a sub Lie algebra. Then
there is a connected Lie group H, a Lie group map H → G that is a one-to-
one immersion whose differential at the identity identifies the Lie algebra of
H with h. The image of H is G is the subgroup generated by the restriction
of the exponential map to h.

Corollary 1.2. With the hypotheses and notation of Theorem 1.1 there is
a local Lie subgroup of G whose Lie algebra is h. Any two such local Lie
subgroups have the same germ.

Proof. (Theorem 1.1 implies the corollary) Given h ⊂ g, according to The-
orem 1.1 there is a Lie group H and a one-one immersion of H → G whose
Lie algbra is h. Any local Lie subgroup of H given by a sufficiently small
open subset of H is as stated in the corollary.

Conversely, given a connected local sub Lie group with Lie algebra h,
we have shown it extends uniquely to a connected, one-one immersed sub
group. Theorem 1.1 says that that sub group is the immersion H → G and
hence the local Lie group is a sub local group of H. Thus, all local sub Lie
groups of G with Lie algebra h represent the germ of H in G.
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2 Maps of Lie algebras to Maps of Lie Groups:
The Statement

Theorem 2.1. Let G1 and G2 be connected Lie groups with G1 simply
connected, and let ϕ : g1 → g2 be a Lie algebra homomorphism.Then there
is a unique homomorphism ψ : G1 → G2 with deψ = ϕ : g1 → g2.

Theorem 2.2. Let G1 and G2 be simply connected Lie groups. Suppose that
ϕ : g1 → g2 is an isomorphism then there is a unique Lie group isomorphism
G1 → G2 that induces ϕ on their Lie algebras.

Proof. (Theorem 2.1 impies Theorem 2.2) Applying Theorem 2.1, there is
a map of Lie groups ψ : G1 → G2 whose differential at the identity is ϕ. In
particular ψ is local diffeomorphism at the identity. This implies that the
kernel of ψ is a discrete normal subgroup K and ψ factors to give an injective
Lie group map ψ : G1/K → G2. Since ψ is onto a neighborhood of the
identity in G2 and G2 is connected, it follows that ψ is onto. Thus, ψ is onto.
Also ψ is a local diffeomorphism and one-one. Thus, ψ is a diffeomorphism
and a group isomorphism. That is to say ψ is a Lie group isomorphism.
The last thing to note is that π1(G1/K) ∼= K and π1(G2) = {e}. Since
ψ : G1/K → G2 is a diffeomorphism, this implies that K = {1}. This
proves the existence of a map of Lie groups as required.

We turn to uniqueness. If ρ : R → G1 is a one-parameter subgroup
tangent to X ∈ g1, then ψ ◦ ρ is the one-parameter subgroup in G2 tangent
to ϕ(X). Thus, ψ is determined by ϕ on the image of the exponential map
of G1. This image generates G1, hence ψ is determined by ϕ.

3 Proof of Theorem 1.1

Before proving Theorem 1.1 we need to discuss distributions and foliations.

Definition 3.1. A distribution of dimension k in a smooth manifold M is a
smoothly varying family of tangent k-planes a Dk(x) ⊂ TxM for every x ∈
M . Smooth variation means that in a neighborhood U each x ∈M there are
local vector fields χ1, · · · , χk such that for each y ∈ U the χi(y) are contained
in Dk(y) and are linearly independent implying that they generate Dk(y).
An integral submanifold for a distribution is a k-dimensional submanifold
P ⊂M such that TpP = Dk(p) for every p ∈ P . Not every distribution has
integral submanifolds. There is an obvious necessary condition. Namely,
the distribution must be what is called involutive.
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Definition 3.2. A distribution Dk is involutive if for every pair of vector
fields ξ, ζ tangent to the distribution meaning that ξ(x), ζ(x) are contained.
in Dk(x) for every x, the Lie bracket [ξ, ζ] must be contained in Dk.

If P is an integral submanifold and ξ and ζ are vector fields tangent
to P , then since Lie bracket of vector fields is natural under smooth maps,
it follows that [ξ, ζ] is also tangent to P . Thus, for Dk to have integral
submanifolds through each point, the distribution must be involutive. A
theorem of Frobenius states the converse.

Theorem 3.3. (Frobenius) A distribution D in M has a (local) integral
submanifold through every point of p ∈M if and only if it is involutive; i.e.,
if and only if the space of vector fields tangent to D is a Lie subalgebra of the
space of all vector fields on M . In this case any two integral submanifolds
through x coincide in a neighborhood of x.

Definition 3.4. A k-dimensional foliation of M is a decomposition of M as
a collection of connected k-dimensional submanifolds one-one immersed in
M . These are the leaves of the foliation. Near each point m ∈M there is a
flow box; i.e., coordinate system Uk × V ` such that each leaf of the foliation
meets U ×V is a subset of the form U ×∆ where ∆ is an at most countable,
totally disconnected subset of V . Thus, the slices {U×{v}}v∈V are the local
leaves of the foliation, meaning each slice is a component of the intersection
of leaf of the foliation with the flow box. Each global leaf of the foliation
is given the leaf topology (which is not in general the subspace topology).
This is the topology generated by the open sets that a component of the
intersection of the leaf with any flow box. With the leaf topology, each
leaf inherits a smooth manifold structure from M and is a smooth manifold
smoothly one-one immersed in M .

Theorem 3.5. If Dk is an involutive distribution on M , then through every
point there is a global integral submanifold. In fact, the collection of integral
submanifolds foliates M .

Theorems 3.3 and 3.5 are not a deep theorems. The problems associated
to this lecture lead you through proofs of them.

Proof. (of Theorem 1.1) Now we apply this theory to the case of a sub Lie
algebra h ⊂ g of the Lie algebra of a group G. The distribution we take is
the left invariant distribution whose value at e is h.

Take a basis for {X1, . . . , Xk} for h. They generate left invariant vector
fields ξ1, . . . , ξk that are a basis at each point for the distribution at every
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point. The bracket of [ξi, ξj ] is a left invariant vector field, and its value
at the origin is [Xi, Xj ]. Since Xi, Xj ∈ h and h is a sub Lie algebra,
[Xi.Xj ] ∈ h and hence [ξi, ξj ] is tangent to the distribution. The general
vector fields tangent to this distribution are of the form

∑
i fiξi for some

smooth functions f1, . . . , fk. Then

[
∑
i

fiξi,
∑
j

gjξkj] =
∑
i,j

fiξi(gj)ξj − gjξj(fi)ξi + figj [ξi, ξj ].

The first two terms are visibly in Dk, being functions times the ξi and the
last term is in Dk by what we just showed above.

Thus, this distribution integrates to a foliation. Let H be the (global)
leaf of this foliation containing the origin. With its leaf topology it is a
k-dimensional manifold smoothly one-one immersed in G. Its tangent space
at the origin in h.

Since the foliation is invariant under left multiplication, if h ∈ H, then h·
H ⊂ H; that is to say H is closed under multiplication. For a neighborhood
U ⊂ H of e ∈ H that is in the image of the exponential map, for every
element u ∈ U , it is also true that u−1 ∈ H. Hence, the subset of h ∈ H
with h−1 ∈ H is both an open and closed subset of H in the leaf topology.
Since H is connected, it follows that H is closed under inverses. Thus, H is
a subgroup of G and with the leaf topology it is a Lie group. The immersion
is a map of Lie groups. Its Lie algebra is h.

The uniqueness statement follows from the uniqueness in Frobenius’s
theorem..

4 Proof of Theorem 2.1

Let G1 and G2 be groups with G1 simply connected, and let ϕ : g1 → g2
be a Lie algebra homomorphism. Consider the product Lie group G1 ×G2.
Its Lie algebra is g1 ⊕ g2 with the direct sum bracket. The graph of ϕ is
a linear subspace V ⊂ g1 ⊕ g2 whose projection onto the first factor is a
linear isomorphism. Since ϕ is a Lie algebra homomorphism V ⊂ g1 ⊕ g2 is
a Lie subalgebra. According to Theorem 1.1, there is a connected Lie group
H and a one-one immersion H → G1 × G2 that is a homomorphism of Lie
groups. In addition the Lie algebra of H is V . The manifold H is a leaf
of the left-invariant distribution whose tangent plane at the identity is V .
Thus, the projection G1×G2 → G1 is an isomorphism on each tangent plane
of the distribution. This means that the composition H → G1 ×G2 → G1,
denoted ρ, is a homomorphism of Lie groups that is local diffeomorphism.
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Since G1 is connected this implies that ρ is surjective with discrete kernel.
Since G1 is simply connected and H is connected, the kernel of ρ is trivial.
That is to say the composite ρ : H → G1 is an isomorphism of Lie groups.
Hence, the composite, ψ = π2◦ρ−1 : G1 → G2, is a Lie group homomorphism
whose graph is H ⊂ G1×G2. This implies that the graph of de(ψ) in g1×g2
is V which, recall, is the graph of ϕ : g1 → g2. It follow that de(ψ) = ϕ.

This completes the proof of Theorem 2.1.

5 Isogeny of Lie Groups

We begin by discussing covering groups of connected Lie groups.

Definition 5.1. A map of connected Lie groups ϕ : G1 → G2 is a covering
Lie group if the map is a covering projection and a homomorphism of Lie
groups.

As an example, suppose that G is a connected Lie group and K ⊂ G is
a discrete, normal subgroup. Then G→ G/K is a covering group.

Lemma 5.2. A morphism of connected Lie groups ϕ : G1 → G2 is a covering
Lie group if and only if it induces an isomorphism of Lie algebras.

Proof. If ϕ is a covering Lie group, then it is a local diffeomorphism and deϕ
is a linear isomorphism. Since ϕ is a Lie group map, deϕ is a homomorphism
of Lie algebras and hence an isomorphism of Lie algebras.

Conversely, if deϕ is an isomorphism, then ϕ is a local diffeomorphism at
the identity. That is to say, there is a neighborhood U1 of the identity in G1

such that ϕ|U1 is a diffeomorphism onto an open subset U2 of the identity
in G2. Since G2 is connected it is generated by U2. Thus, ϕ is onto.

Let K ⊂ G1 be the kernel of ϕ. It is a normal subgroup. Since ϕ|U1 is
injective, K ∩ U1 = {e}. Let W ⊂ U1 be a smaller open neighborhood of
the identity with the property that W = W−1 and W 2 ⊂ U . We claim that
kW ∩ k′W = ∅ for all k 6= k′ elements of K. For if w0 ∈ kW ∩ k′W then we
have kw = k′w′ for some w,w′ ∈ W . This implies that k−1k′ = w(w′)−1 ∈
W 2 ⊂ U . Since k−1k′ ∈ K and K ∩ U = {e}, it follows that k = k′. This
shows that K is a discrete subgroup of G1.

Since K ⊂ G1 is a normal group we have a Lie group homomorphism
π : G1 → G1/K. The above argument shows that π evenly covers the image,
W ⊂ G1/K, of W . Clearly, W is an open neighborhood of the identity in
G1/K Now consider g ∈ G1/K. Left translation by g maps the image of W
isomorphically to gW a neighborhood of g in G1/K. Multiplication by a lift
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g ∈ G1 of g and maps π−1(W ) isomorphically to π−1(gW ) =
∐

k∈K gkW .
This shows that ϕ is also a covering map on gW for every g ∈ G1/K. Thus,
G1 → G1/K is a covering projection.

Since K = ker(ϕ), the map ϕ factors through π : G1 → G1/K to give
a map ϕ : G1/K → G2. This map is a group homomorphism and smooth
so it is a map of Lie groups with trivial kernel. Since G2 is connected, it is
generated by the neighborhood ϕ(W ) of the identity. Hence ϕ is surjective.
Thus, ϕ is a bijective, local diffeomorphsim and hence a diffeomorphism It
is also a homomorphism of Lie groups, and hence an isomorphism of Lie
groups. Hence, ϕ : G1 → G2 is also a covering Lie group.

5.1 The Universal Covering Group

Proposition 5.3. Let G be a connected Lie group and let G̃ be the universal
covering of G and fix ẽ ∈ G̃ a point above e ∈ G. Then there is a unique Lie
group structure on G̃ with the properties that (i) ẽ is the identity element and
(ii) the projection G̃→ G is a Lie group homomorphism. The kernel of this
homomorphism is a discrete subgroup K ⊂ G̃ and the covering projection
induces a Lie group isomorphism G̃/K → G. In particular, the Lie algebras
of G̃ and G are canonically identified.

Proof. Given g1, g2 ∈ G̃, let ω1(t) and ω2(t) be paths defined on [0, 1] in G̃,
each beginning at ẽ with ωi(1) = gi. Let ω1(t) and ω2(t) be the images of
these paths in G, and let µ(t) = ω1(t)ω2(t). This is a path beginning at e.
Using unique path lifting, lift µ to a path µ(t) beginning at ẽ. We define
g1g2 = µ(1).

A standard argument with covering spaces shows that if we choose differ-
ent paths ω′1(t) and ω′2(t) from ẽ to g1 and g2, respectively, the two definitions
of g1g2 agree. [Show that as we vary the paths, the notion of g1g2 is locally
constant. Since G̃ is simply connected two pairs of paths from ẽ to g1 and
g2 came be joined by a connected family of such pairs of paths. This and
the local constancy of the resulting product, show that the product g1g2 is
well defined.] It is direct to see that ẽ acts as a two-sided identity for this
multiplication and that this multiplication is associative.

Given g ∈ G̃, one defines g−1 by choosing a path ω from ẽ to g, projecting
ω to a path ω in G, forming the path ω−1(t) = (ω(t))−1 and lifting ω−1 to a
path µ beginning at ẽ. We define g−1 = µ(1). It is clear from the definitions
that gg−1 = g−1g = ẽ. Thus, we have defined a group structure on G̃ with ẽ
as the identity element. Clearly, the projection mapping is a homomorphism
of groups
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One defines the smooth structure on G̃ by requiring the projection map
to be a local diffeomorphism. One checks easily group multiplication and
inverse are smooth mappings in this smooth structure. Thus, the projection
is a smooth map and a group homomorphism; that is to say the projection
is morphism of Lie groups.

5.2 All Covering Groups

Lemma 5.4. Any discrete, normal subgroup of a connected Lie group is
abelian and central.

Proof. Let G be a connected Lie group and K ⊂ G a discrete normal sub-
group. Since K is normal, gKg−1 = K for all g ∈ G. That is to say
conjugation by G induces a map G → Auto(K). But since K is discrete,
so is Auto(K). But G is connected, so any map G→ Auto(K) is constant,
meaning that the adjoint action of G on K is trivial. Thus, K is contained
in the center of G and a fortiori is abelian.

Corollary 5.5. Let G be a connected Lie group and M a connected mani-
fold. Suppose that π : M → G is a covering projection. Then there is a Lie
group structure on M such that π : M → G is a covering Lie group.

Proof. Every connected covering of G corresponds to a subgroup of π1(G, e).
The universal covering Lie group G̃→ G corresponds to the trivial subgroup
The kernel of the projection mapping G̃→ G is a discrete normal subgroup
K of G̃ isomorphic to π1(G). By the previous lemma K is central in G̃.

All other connected covering spaces of G are isomorphic to G̃/K ′ where
K ′ is a subgroup of K. Since K is central, K ′ is also central, and a fortiori
is a normal subgroup. Thus, G̃/K inherits the structure of a Lie group from
G̃. Clearly, then he projection G/K → G is a covering Lie group.

Definition 5.6. Two connected Lie groups G1 and G2 are isogenous if
there is a Lie group G and Lie group maps ϕi : G → Gi, for i = 1, 2, that
are covering Lie groups.

Corollary 5.7. Let G1 and G2 be connected Lie groups. Then the following
are equivalent:

• G1 and G2 are isogenous.

• The Lie algebras g1 and g2 are isomorphic.

• The germs of G1 and G2 are isomorphic.
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• The universal covering groups of G1 and G2 are isomorphic as Lie
groups.

Proof. If G is a covering group of both G1 and G2, the the universal covering
group of G is also the universal covering group of G1 and G2. This shows the
first item implies the fourth. The fourth obviously implies the first, second,
and third. The third implies the second since germs have Lie algebras. The
second implies the fourth by Theorem 2.1.

6 Ado’s Theorem

To complete the picture of the general theory of Lie groups we need a non-
trivial result from the theory of Lie algebras.

Theorem 6.1. (Ado’s Theorem) Every finite dimensional real Lie algebra
has a faithful finite dimension linear representation

The proof of this theorem requires a detour through some of the more
detailed parts of general Lie algebra theory. I will not prove it in this course.
Nevertheless, I will use the following consequence.

Theorem 6.2. Let G be a connected Lie group. Then there is an isogenous
Lie group G′ that admits a faithful finite dimensional representation; i.e.,
for some n there is a Lie group homomorphism G′ → GL(n,R) that is a
one-one immersion.

Proof. (Assumping Ado’s Theorem) By Ado’s theorem, there is n > 0 and
an embedding ι : g ⊂ gl(n,R) of Lie algebras. By Theorem 2.1 there is
a group G′ and a Lie group homomorphism ψ : G′ → GL(n,R) that is
a one-one immersion and whose differential deψ : g′ → gl(n,R) maps g′

isomorphically onto ι(g). Since G and G′ have the isomorphic Lie algebras
by Corollary 5.7 they are isogenous.

Remark 6.3. It is not true that every Lie group has a faithful finite dimen-
sional representation. In fact π1(SL(2,R)) ∼= Z and the universal covering

group of ˜SL(2,R) does not have a faithful finite dimensional representation.

Theorem 6.4. Every finite dimensional Lie algebra is (up to isomorphism)
the Lie algebra of a group, indeed of a simply connected group.

Proof. (Assuming Ado’s Theorem) Let L be a finite dimensional real Lie
algebra. Then according to Ado’s Theorem, there is an embedding L ⊂
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gl(n,R) for some n. Applying Theorem 1.1 there is a Lie group H and a
one-one immersion H → GL(n,R) so that L is the Lie algebra of H. The
universal covering group of H is a simply connected Lie group with Lie
algebra L.
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