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1 Local Lie Groups

1.1 Definition of a Local Lie Group

There is an intermediate category between the category of Lie groups and
that of Lie algebras. It is the category of local Lie groups and their equiva-
lence classes called germs of Lie groups (at the identity).

Definition 1.1. A local Lie Group consists of:

(i) a smooth manifold U

(ii) an element e ∈ U ,

(iii) a diffeomorphism θ : U → U fixing e with θ2 = IdU

(iv) an open subset Ω ⊂ U × U and a smooth map m : Ω → U called
multiplication,

such that

(a) for every g ∈ U the elements (e, g) and (g, e) are contained in Ω and
m(e, g) = m(g, e) = g,

(b) for every g ∈ U the pairs (θ(g), g) and (g, θ(g)) are contained in Ω and
m(θ(g), g) = m(g, θ(g)) = e,

(c) for every triple (g, h, k) of elements inG if the pairs (g, h), (h, k), (g,m(h, k))
and (m(g, h), k) are contained in Ω thenm(g,m(h, k)) = m(m(g, h), k).
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Clearly Properties (a), (b), and (c) are local versions of the identity law,
the inverse law, and the associative law for a group. The only difference is
that the domain of definition for multiplication is an open subset of U × U
and the associative law only holds on a smaller open subset of U × U × U .

From now on we denote θ(g) by g−1. Of course e−1 = e. We also write
gh for m(g, h).

The following is an elementary lemma.

Lemma 1.2. Let (U, e, θ,Ω.m) be a local Lie group. For g ∈ U there are
open subsets W ⊂ U containing e and V ⊂ U containing g such that ug
is defined for every u ∈ W , and vg−1 is defined for every v ∈ V and the
maps u 7→ ug and v 7→ vg−1 are inverse diffeomorphisms between W and
V . Furthermore, there is an open subset W ⊂ G containing e such that
W 2 × W 2 ⊂ Ω. For any w1, w2, w3 ∈ W the following two expressions
w1(w2w3) and (w1w2)w3 are defined and hence are equal.

Definition 1.3. A morphsm of local Lie groups

ρ : (U ′, e′, θ′,Ω′,m′)→ (U, e, θ,Ω,m)

is a smooth map ρ : U ′ → U with ρ(e′) = e and ρ× ρ|Ω′ : Ω′ → Ω such that
ρ(θ′(x)) = θ(ρ(x)) for all x ∈ U ′ and m(ρ(x), ρ(y)) = ρ(m′(x, y)) for all
(x, y) ∈ Ω′. It is clear that these morphisms can be composed and that each
object has the identity morphism. Hence, we have a category of local Lie
groups.

1.2 Germs of Local Lie Groups

Definition 1.4. The germ of a local Lie group is an equivalence class of
local Lie groups for the equivalence relation generated by

(U, e, θ,Ω,m) ∼ (U ′, e′, θ′,Ω′,m′)

if there is a morphism from the first to the second that is an embedding
of U onto an open subset of U ′. Such morphisms are called elementary
equivalences.

Lemma 1.5. Two local Lie groups (U, e, θ,Ω,m) and (U ′, e′, θ′,Ω′,m′) de-
termine the same germ if and only if there is a third (U ′′, e′′, θ′′,Ω′′,m′′) that
maps to each of them by an elementary equivalence.

The proof is left as an exercise.
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Definition 1.6. Let G be a Lie group and U ⊂ G an open neighborhood
of e ∈ G invariant under ι(g) = g−1. The local Lie group determined by G
and U is defined to be (U, e, ι,Ω,m|Ω) where m : G × G → G is the group
multiplication of G and Ω = m−1(U) ∩ U × U .

Corollary 1.7. Let U and U ′ be open neighborhoods of e in G invariant
under ι. Then the local Lie subgroups of G determined by U and U ′ have
the same germ.

Proof. Each of these local Lie subgroups contains the local Lie subgroup
determined by U ∩ U ′.

Definition 1.8. The germ of the Lie group G is the germ of one (and
therefore all) of its local Lie subgroups determined by an open neighborhood
of e invariant under ι.

2 The Lie Algebra of a Local Lie Group

Lemma 2.1. Any local Lie group (U, e, θ,Ω,m) has a Lie algebra whose
underlying vector space is the tangent space TeU . The differential at e of a
morphism of local Lie groups induces a homomorphism of their Lie algebras.

Proof. The argument defining the Lie algebra structure on TeU is exactly
the same as the argument in the case of a Lie group. Given X ∈ TeU there
is a vector field on U whose value at g ∈ U is g ·X. (For any g multiplication
by g is define on a neighborhood of e, and hence multiplication by g sends
TeU → TgU .) We call all such vector fields left-invariant. Then the usual
argument shows that the space of these vector fields is closed under bracket
and the space is identified with TeU . Hence, there is the induced Lie algebra
structure on TeU , which is defined to be its Lie algebra.

The other approach to the Lie bracket also works for local Lie groups. For
any g ∈ U , the element m(ge, g−1) = geg−1 is defined and hence for every
g ∈ U there is a neighborhood V of e ∈ U such that ρg(v) = gvg−1 is defined.
for all v ∈ V . Thus, the differential of this map ρg at v = e determines a
map ρg : U → GL(TeU) and restricted to sufficiently small neighborhood
of e ∈ U this map is a local homomorphism in the sense that ρhρg = ρhg
for h, g sufficiently close to the identity. Define ad(X) : TeU → TeU as the
image of X under the differential, dρe : Te(U)→ End(TeU). The Lie algebra
of the local Lie group is then [X,Y ] = ad(X)(Y ).

The proof that these two methods define the same Lie algebra follows
by the same argument as in the case of a Lie group.
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Corollary 2.2. The germ of a local Lie group has a Lie algebra well-defined
up to canonical isomorphism and a morphism of germs induces a morphism
of Lie algebras.

Proof. If µ is an embedding of one local Lie group onto an open subset of
a second local Lie group, then Dµe is an isomorphism of the tangent spaces
at the identity which induces an isomorphism of Lie algebras. It follows
immediately that a germ has a well-defined tangent space and Lie algebra
structure up to unique isomorphism. The second statement is immediate.

3 Extending maps from local Lie subgroups to the
entire group

Here is the main result.

Theorem 3.1. Suppose that G0 and G1 are connected Lie groups with G0

simply connected. Suppose given an morphism ψ from the germ of G0 to the
germ of G1. Then there is a unique map of Lie groups Ψ: G0 → G1 that
agrees with ψ on the germs.

Proof. Let U0 ⊂ G0 and U1 ⊂ G1 be open neighborhoods of the identity
such that ψ is presented by a map of local Lie groups ψ : (U0, e, ι0,Ω0,m0)→
(U1, e, ι1,Ω1,m1). Fix W0 ⊂ U0 an open neighborhood of e such that W0 ×
W0 ⊂ Ω. By replacing W0 by W0 ∩ W−1

0 , we can also assume that W0

is invariant under taking inverses. Then for any w1, w2 ∈ W0, we have
ψ(w1w2) = ψ(w1)ψ(w2).

Let g ∈ G0 and choose a smooth path ω : [0, 1] → G0 with ω(0) = e
and ω(1) = g. There are points 0 = t0 < t1 < . . . < tn = 1 such that
ω([t0, t1]) ⊂ W0 and for each 1 ≤ i < n the path ω([ti, ti+1]) ⊂ ω(ti) ·W0.
We define Ψ(g) by defining Ψ([ti, ti+1]) inductively on i. For i = 0 we set

Ψ|[t0,t1] = ψ ◦ ω|[t0,t1].

By induction on i for t ∈ [ti, ti+1], we define

Ψ(t) = Ψ(ti) · ψ((ω(ti)
−1ω(t)).

This completes the induction and gives us a value Ψ(g), which, a priori,
depends on the path ω from e to g, the choice of n and the points 0 = t0 <
t1 < · · · < tn−1 < tn.
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Claim 3.2. Fixing the path ω, using two different divisions 0 = t0 < · · · <
tn = 1 and 0 = u0 < u1 < · · · < um = 1, as above, to define Ψ(g) give the
same value.

Proof. By taking a common refinement of two subdivisions it suffices to
assume that each interval [uj , uj+1] is contained in one of the intervals
[ti(j), ti(j)+1]. Let Ψ1, resp., Ψ2, be the function on [0, 1] defined by ω and
the partition {ti}i, resp., the partition {uj}j . Suppose by induction on j
that Ψ1 = Ψ2 on the interval [0, uj ]. For j = 0, this is clear. Let i be such
that [uj , uj+1] ⊂ [ti, ti+1]. Then for t ∈ [uj , uj+1]:

Ψ2(t) = Ψ2(uj)ψ(ω(u−1
j )ω(t)).

By the inductive hypothesis

Ψ2(uj) = Ψ1(uj) = Ψ1(ti)ψ(ω(ti)
−1ω(uj)),

so that
Ψ2(t) = Ψ1(ti)ψ(ω(ti)

−1ω(uj))ψ(ω(uj)
−1ω(t)).

But (ω(ti)
−1ω(uj)), (ω(uj)

−1ω(t)) are contained in W0 as is their product
ω(ti)

−1ω(t) so that

ψ(ω(ti)
−1ω(t)) = ψ(ω(ti)

−1ω(uj)))ψ(ω(uj)
−1ω(t)).

Thus,
Ψ2(t) = Ψ1(ti)ψ(ω(ti)

−1ω(t)) = Ψ1(t),

for all t ∈ [uj , uj=1]. This completes the inductive proof of the claim.

Definition 3.3. Given a path ω in G from e to an element g ∈ G, the
unique map as given in Claim 3.2 is denoted by Ψω. When ω is clear from
context, we often drop the subscript and denote this unique path by Ψ.

Corollary 3.4. Given a path ω from e to some g ∈ G, the resulting func-
tion Ψω : [0, 1] → G as in the previous theorem is the unique function that
satisfies:

• Ψω(0) = e, and

• for each t ∈ [0, 1] there is a neighborhood V of t such that for all s ∈ V ,
Ψω(t)−1Ψω(s) ∈W0 and Ψω(s) = Ψω(t)ψ(Ψω(t)−1Ψω(s)).
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Proof. Suppose that Ψ′ is a function satisfying the two conditions in the
statement of the corollary. Then, it is easy to find a partition 0 = t0 < · · · <
tn = 1 as in the proof of Theorem 3.1 for Ψ′, which, by the above claim,
proves that Ψ′ = Ψω.

Now let ωs be a one-parameter family of paths in G0 from e to g wth
ω0 = ω. For each s we construct, as above a map Ψωs : I → G1. For ω0 we
have a decomposition 0 = t0 < t1 < · · · < tn = 1 with ω0(ti)

−1ω0(t) ∈ W0

for all i = 0, . . . , n and all t ∈ [ti, ti+1].
From now on, we denote Ψωs by Ψs.

Claim 3.5. There is ε > 0, such that for all |s| < ε, for all i ≤ n− 1, and
for all t ∈ [ti, .ti+1] we have

Ψs(t) = Ψ0(ti)ψ(ω0(ti)
−1ωs(t)).

Proof. The proof is by induction on i. For i = 0 it is clear since ωs(0) =
ω0(0) = e ∈ G0. Suppose that we have established the result for i − 1 and
we consider t ∈ [ti−1, ti]. By definition

Ψs(t) = Ψs(ti−1)ψ(ωs(ti−1)−1ωs(t)).

By induction there is ε > 0, such that for all |s| < ε

Ψs(ti−1) = Ψ0(ti−1)ψ(ω0(ti−1)−1ωs(t)).

Thus,

Ψs(t) = Ψ0(ti−1)ψ(ω0(ti−1)−1ωs(ti−1)) · ψ(ωs(t
−1
i−1)ωs(t)).

By a standard compactness argument, there is 0 < ε′ ≤ ε such that for
any s with |s| < ε′, for every i = 0, . . . , n, and for every t ∈ [ti, ti+1] we have
(ω0(ti)

−1ωs(ti), ωs(ti)
−1ωs(t), and ω0(ti)

−1ωs(t) are all in W0. Hence, for
all i and all t ∈ [ti, ti+1] and all s with |s| < ε, we have

ψ(ω0(ti−1)−1ωs(t)) = ψ(ω0(ti−1)−1ωs(ti−1))ψ(ωs(ti−1)−1ωs(t)).

Thus:

Ψs(t) = Ψ0(ti−1)ψ(ω0(ti−1)−1ωs(t)).

Now replace ε by ε′. This completes the inductive proof of the claim.
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Applying this claim with t = tn, we see that for |s| < ε

Ψs(tn) = Ψ0(tn)ψ(ω0(tn)−1ωs(tn)) = Ψ0(tn)ψ(g−1g) = Ψ0(tn).

This shows that Ψs(g) is a locally constant function of s.
Since G0 is simply connected, any two paths ω and ω′ from e to g are

connected by a one-parameter family {ωs}0≤s≤1 of paths from e to g. We
have just seen that the value of Ψs(g) is locally constant in s, and hence is
the same at the end points s = 0 and s = 1. Thus, this process yields a
well-defined function Ψ: G0 → G1 agreeing with ψ on W0.

Furthermore, it is immediate from the construction that for any g ∈
G0 and any u in the connected component of the identity of W0, we have
Ψ(gu) = Ψ(g)ψ(u). Thus, Ψ is a smooth map.

Let ω be a path from e to g. Then the path µ defined by µ(t) = ω(t)−1

is a path from e to g−1. Since W0 is closed under taking inverses and
ψ(u−1) = ψ(u)−1, it is clear that Ψω(t)−1 = Ψµ(t) for all t, and in particular
Ψ(g)−1 = Ψ(g−1).

Lastly, we show that Ψ sends multiplication in G0 to multiplication in
G1. Fix g ∈ G0 and consider the subset Xg ⊂ G0 of g′ ∈ G0 such that
Ψ(g)Ψ(g′) = Ψ(gg′). Clearly, since multiplication in G0 and G1 and Ψ
are continuous, Xg is a topologically closed subset of G.. For any w in
the component of the identity of W0, we have Ψ(gg′w) = Ψ(g)Ψ(g′w) =
Ψ(g)Ψ(g′)w and composing in the other order Ψ(gg′w) = Ψ(gg′)ψ(w). Thus,
if g′ ∈ Xg the a neighborhood of g′ ∈ G0 is also contained in Xg, proving
that Xg is open. Clearly, e ∈ Xg. Since G0 is connected, Xg = G0. Since
this is true for every g ∈ G0. the map Ψ preserves the multiplications.

Proposition 3.6. If G0 and G1 are connected Lie groups with the same
germs and G0 is simply connected, then there is a unique Lie group homo-
morphism Ψ: G0 → G1 extending the identification of their germs. This
map is a covering map. If G1 is also simply connected, then this map is an
isomorphism of Lie groups

Proof. By the previous result there is a unique Lie group homomorphism
Ψ: G0 → G1 that identifies the germs of G0 and G1. In particular Ψ is a
local diffeomorphism from an open neighborhood W0 of e ∈ G0 to an open
neighborhood U1 of e ∈ G1. By equivariance, Ψ is a local diffeomorphism
from G0 to G1. The kernel K of Ψ is a discrete normal subgroup. We
have a covering map G0 → G0/K, and the map Ψ factors to give a map
Ψ: G0/K → G1 that is one-to-one local diffeomorphism whose image con-
tains a neighborhood U1 of the identity. Since the image of Ψ contains a
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neighborhood of the identity if {xm} is a sequence in Im(Ψ) and xm 7→ x as
m 7→ ∞, then x−1

m x ∈ U1 for all m sufficiently large. Hence xm and x−1
m x

are contained in the image of Ψ. It follows that x ∈ Im(Ψ). This shows that
Im(Ψ) is closed. Since G1 is connected, Im(Ψ) = G1.

Corollary 3.7. There is at most one simply connected Lie group up to
canonical isomorphism with a given germ.

Remark 3.8. We shall eventually see that every germ of a local Lie group
extends to Lie group.

4 Extending local Lie Subgroups of a Lie group

Let’s begin by showing how to enhance a local Lie sub group of a Lie group
G to a Lie group that is one-to-one immersed in G.

Theorem 4.1. 1.) Let G be a Lie group and let (U, e, θ,Ω,m) be a local
Lie sub group of G. (This means that there is a morphism of local Lie
groups (U, e, θ,Ω,m)→ G which is a locally closed embedding on U .) Then
there is a Lie group N and an identification of (U, e, θ,Ω,m) with the local
Lie subgroup of N determined by a neighborhood U0 of the identity in N .
Furthermore, there is a one-to-one immersion of N → G whose restriction
to U is the given identification of U with U0. The subgroup of G generated
by U is an open subgroup of N . If U is connected, then this subgroup is the
connected component of the identity, N0, of N .
2.) The universal covering of N0 is a simply connected Lie group with the
given germ.

Proof. Let N ⊂ G be the set of elements g ∈ G such that gUg−1 contains
an open neighborhood of the identity in U .

Claim 4.2. For any g ∈ N , there is an open neighborhood V of the identity
in U such that the map V → G given by v 7→ gvg−1 is a diffeomorphism of
V onto an open subset V ′ ⊂ U containing the identity.

Proof. By the definition of N there is an open subset V ′ ⊂ U containing the
identity with V ′ ⊂ gUg−1. Thus, V = g−1V ′g ⊂ U . Since conjugation by
g−1 is a diffeomorphism of G, the map v′ 7→ g−1v′g is a smooth map from
V ′ → U whose image is V . Being the restriction of a diffeomorphism to a
smooth submanifold of G, this map is one-to-one has injective differential
at each point. It follows that as a map V ′ → U it has surjective differential
at each point and hence is a diffeomorphism onto an open subset V of U .
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This shows that V is an open subset of U containing e. Conjugation by g is
the inverse diffeomorphism from V ⊂ U to V ′ ⊂ U .

Claim 4.3. N is a subgroup of G.

Proof. Suppose that g ∈ N . Then according to the previous claim there
is an open neighborhood V ⊂ U of e such that conjugation by g maps
it diffeomorphically onto an open neighborhood V ′ ⊂ U of e. Of course,
conjugation by g−1 takes V ′ to V , establishing that g−1 ∈ N .

Now suppose that g1, g2 ∈ N . For i = 1, 2, let Vi ⊂ U be an open
neighborhood of the identity with the property that V ′i = giVig

−1
i is also

an open neighborhood of e in U . Then V1 ∩ V ′2 is an open neighborhood of
the identity in U and g−1

2 (V1 ∩ V ′2)g2 ⊂ V2 is an open neighborhood of the
identity in U . Analogously,

(g1g2)[g−1
2 (V1 ∩ V ′2)g2](g−1

2 g−1
1 ) = g1(V1 ∩ V ′2)g−1

1 ⊂ V ′1

is also a neighborhood of the identity in U , proving that g1g2 ∈ N .

There is an open neighborhood V ⊂ U of e such that V × V ⊂ Ω, and,
there is an open neighborhood W ⊂ V of e such that m(W,W ) ⊂ V . Now
we define a topology on N that makes it a smooth manifold of the dimension
of U . Namely, for any g ∈ N we define gW to be an open neighborhood
of g ∈ N with the topology and smooth structure it inherits from W ⊂ U
translated by left multiplication by g.

To show that these choices define a topology and a smooth manifold
structure on N we need only show that on two-fold overlaps the smooth
structures are compatible, meaning that the overlap function from one neigh-
borhood to the other is a diffeomorphism. So let gW and g′W be two smooth
patches with gW ∩ g′W 6= ∅. Take a point x in the intersection. Then there
are w,w′ ∈ W with x = gw = g′w′. It follows that g−1g′ = w(w′)−1, and
hence g−1g′ ∈ W 2 ⊂ V . This means that multiplication by g−1g′ : W → W
is a multiplication in the local Lie group, and hence multiplication by g−1g′

is a smooth map from W → U . This smooth map carries the open subset
(g′)−1(g′W ∩ gW ) ⊂W to the open subset g−1(gW ∩ g′W ) ⊂W and is ex-
actly the overlap transformation in one direction. The symmetric argument
show that the inverse overlap function is also smooth. Since these maps are
inverses of each other, each is a diffeomorphism.

This completes the proof that we have defined a smooth manifold struc-
ture on N . It has the property that the restriction of this smooth structure
to U ⊂ N agrees with the smooth structure U already has. Thus, U is a
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neighborhood of e in N . Notice that the inclusion map N → G is smooth
immersion and is one-to-one. It follows that since G is a Hausdorff space,
so is N .

Next we show that with this smooth structure the group multiplication
on N inherited from the G-multiplication is smooth. We fix g1, g2 ∈ N and
consider the product map g1W × g2W → N . By restricting to a smaller
neighborhood of the identity W ′ ⊂ W we can suppose that the image of
multiplication g1W

′ × g2W
′ lies in g1g2W . The map is given by

(g1w)(g2w
′) = (g1g2)(g−1

2 wg2))w′.

Since g2 ∈ N , if we restrict to a sufficiently small neighborhood T of e in
W conjugation by g−1

2 sends T diffeomorphically onto T ′ ⊂ W . Since the
product W ×W → U is smooth, it follows that

(g1w)g2(w′) 7→ g1g2(g−1
2 wg2)w′

is a smooth map in some neighborhood of (e, e), and consequently that
multiplication on N is smooth.

Lastly, we show that g 7→ g−1 is a smooth map N → N . We fix g ∈
N and consider the inverse map from gW to N . The map sends gw to
g−1gw−1g−1. As before, since g ∈ N , restricting w to lie in a smaller
neighborhood of e in W conjugation of g sends that neighborhood V ⊂ W
of e diffeomorphically onto another neighborhood of e in W . Then since the
inverse in W is given by θ, it is also smooth, showing that w → gw−1g−1

is a smooth map of V to N . By the definition of the topology on N , this
means that the map gw → g−1(gwg−1) is a smooth map of gV → N . This
completes the proof of the first statement of the theorem.

The second statement of the theorem is clear.

While N may not be second countable, if U is second countable, then
the subgroup of N generated by U is second countable. In particular, the
connected component of the identity N0 ⊂ N is a second countable Lie
group.

Remark 4.4. We shall give a sketch of a proof in a later in the course
that every local Lie group is a sub local Lie group of a Lie group. As a
consequence, the above theorem holds for all local Lie groups, meaning that
the germ of every local Lie group is the germ of a simply connected Lie
group.
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Example. Let G be a Lie group and U = {e}. It is a sub local Lie
group. Then N = G and the topology on N is the discrete topology. The
immersion N → G is the identity map, which is a surjective, one-to-one
immersion, but far from a diffeomorphism. Any time the local Lie group
has a positive dimensional normalizer in G, then the Lie algebra N will have
uncountably many components.

5 From Lie Algebras to Local Lie Groups

The purpose of the rest of this lecture is to state a theorem defining a map
from Lie algebras to local Lie groups. This theorem will be proved in the
following lectures.

5.1 The Baker-Campbell-Hausdorff Formula

We have shown that for any Lie group G there is a local Lie group that
is a neighborhood of the identity in G and whose underlying submanifold
U is the diffeomorphic image of an open subset in the Lie algebra under
the exponential mapping. The question naturally arises as to whether the
multiplication in a local Lie group that is a sufficiently small neighborhood of
the identity in G is determined by the Lie bracket (and the linear structure)
on the Lie algebra. The answer is ‘yes,’ and in fact the multiplication for the
local Lie group structure is given by the Baker-Campbel-Hausdorff formula.

One way to view the question is to consider two elements eA and eB in
G for A,B ∈ g sufficiently close to zero. The goal is to write the product
eAeB as eH(A,B) where H(A,B) is a convergent power series (with some
positive radius of convergence) whose nth order terms are universal linear
combinations of all possible brackets of A and B of order n, that is to say
linear combinations of brackets of n terms each of which is either A or B.

Let us examine the first two terms in the case of GLn(R) to see how this
would work. We write

eAeB =
∑
n,m

AnBm

n!m!
= 1 + (A+B) + (A2/2 +AB +B2/2)

+ (A3/6 +A2B/2 +AB2/2 +B3/6) + · · · .

Thus, the power series for H(A,B) begins

H(A,B) = (A+B) + · · · .
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Let us compute the quadratic term Q(A,B) in H(A,B). It must satisfy the
equation

A2/2 +AB +B2/2 = (A+B)2/2 +Q(A,B).

Thus,

Q(A,B) = AB − (AB +BA)/2 = (AB −BA)/2 =
1

2
[A,B].

A homework problem is to evaluate the cubic and quartic terms in a similar
manner.

Theorem 5.1. (Baker-Campbell-Hausdorff Formula) Let L be the free Lie
algebra generated by X and Y . There is a formal infinite sum H(X,Y ) in
two variables where the nth term in the sum is a linear combination with
rational coefficients of the Lie brackets of order n of X and Y

[Z1, [Z2, · · · ., [Zn−1, Zn]] · · · ]

where the Zi range over X and Y , such that there is an equality of formal
power series

log(exp(X)exp(Y )) = H(X,Y ).

For any finite dimensional real Lie algebra L, fixing a positive definite
inner product 〈·, ·〉 on L with associated norm | · |, there is r > 0 so that
defining U ⊂ L by U = {X ∈ L | |X| < r}, the power series H(A,B)
converges absolutely for (A,B) ∈ U × U and defines an analytic function
H : U×U → L. The open set U is invariant under X 7→ −X. Let Ω ⊂ U×U
be H−1(U)∩ (U ×U). Defining θ(A) = −A and m(A,B) = H(A,B), makes
(U, 0, θ,Ω,m) is a local Lie group. If L = g for a Lie group G, and possibly
replacing r by r′ with 0 < r′ < r so that exp|U is a diffeomorphism onto
an open subset of G, the restriction of the exponential mapping to U defines
an embedding of (U, 0, θ,Ω,m) onto a local Lie sub group of G that is a
neighborhood of the identity.

We call any such local Lie group defined on an open set U ⊂ L of 0,
invariant underX 7→ −X, sufficiently small so that the BCH series converges
and a local Lie group determined by the Lie algebra L. Any two such have
the same germ.

There is an explicit formula due to Hausdorff. But the actually coef-
ficients are not important. The only important thing is that such a series
exists and has a positive radius of convergence. We shall give the proof in the
next lecture. It uses the Poincaré-Birkhoff-Witt Theorem. The convergence
is a direct computation that we leave to the exercises.
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