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1 Lie Algebras

1.1 The Basics

Definition 1.1. Fix a field K of characteristic 0. A Lie algebra over K is
a K-vector space V together with a bilinear map V ⊗K V → V denoted by
X⊗Y 7→ [X,Y ], called the bracket or the Lie bracket required to satisfy the
following two axioms:

1. [X,Y ] = −[Y,X].

2. [[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z], X] = 0.

The second equation is called the Jacobi Identity. It can also be interpreted
as saying that [A, ·] is a derivation with respect to [·, ·], i.e.,

[A, [B,C]] = [[A,B], C] + [B, [A,C]].

Clearly, these algebraic equations make sense for vector spaces over any
field K, though one often needs K to be of characteristic zero in many of
the arguments. (Indeed, one can work with modules over a ring, defining
what are called Lie rings, but this is beyond the scope of these lectures.) We
are primarily interested in the case of real and complex Lie algebras that
are finite dimensional.

We will explain in more detail how Lie groups and Lie Algebras are
related and where the Jacobi identity comes from, but for now we content
ourselves with giving some examples of Lie algebras.
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Lemma 1.2. Fix a field K. Suppose that (L, [·, ·]) is a Lie algebra over K
and L′ ⊂ L is a linear K-subspace that is closed under the bracket. Then L′

with the induced bracket is a Lie algebra over K.

Proof. Exercise.

Definition 1.3. With L′ ⊂ L as in the previous lemma, L′ is a sub Lie
algebra of L.

Example 4. The space M(n×n,K) of n×n matrices with entries in K is a
Lie algebra where the Lie bracket is given by [A,B] = AB−BA. Obviously,
this bilinear map is skew-symmetric. To establish the Jacobi identity, we
compute:

[A, [B,C]] = A(BC − CB)− (BC − CB)A

[C, [A,B]] = C(AB −BA)− (AB −BA)C

[B, [C,A]] = B(CA−AC)− (CA−AC)B.

Using the associativity of matrix multiplication we cancel these terms in
pairs.

Example 5. Let A be an associative algebra over K. Then the computation
in Example 4, is valid in A and shows that defining [A,B] = AB − BA for
all A,B ∈ A defines a Lie algebra structure on A. This is the Lie algebra
determined by the associative algebra. In fact, we shall show in the next
lecture the Poincaré-Birkhoff-Witt Theorem which says that associated to
a Lie algebra L there is an associative algebra U(L) called the universal
enveloping algebra of L. There is a injective linear map from L → U(L)
compatible with the Lie bracket of L and the AB − BA bracket on U(L).
That is to say, the general Lie algebra L is a sub Lie algebra of the Lie
algebra determined by an associate algebra. (The proof works over any field
of characteristic 0.)

Example 6. Let M be a smooth manifold and denote by V ect(M) the
vector space of smooth vector fields on M . The action of V ect(M) on
C∞(M) identifies this space with the space of R-linear maps D : C∞(M)→
C∞(M) that are derivations in the sense that D(fg) = D(f)g + fD(g).
This space of first-order operators generates an associative algebra D(M)
of differential operators on C∞(M), with product being composition. The
Lie bracket of vector fields is then induced from the AB − BA bracket
on D(M) making it a Lie algebra over R. For vector fields X and Y , the
composition XY is a second order operator (and hence is not a vector field);.
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Nevertheless, XY − Y X is a derivation (because the second-order terms
cancel because of the equality of cross partial derivatives). Hence, XY −Y X
is a vector field. This shows that the subspace of vector fields on M is a
sub Lie algebra of the Lie algebra on D(M) defined from the associative
multiplication on D(M). Indeed, D(M) is the universal enveloping algebra
of the Lie algebra of vector fields.

2 The Adjoint Action and the Lie Algebra of a Lie
Group

Let G be a real Lie Group. There is a natural action of G (the first copy)
on itself (the second copy) by conjugation:

AdG : G×G→ G

defined by AdG(g, g′) = gg′g−1. This is a left action of G on itself, called
the adjoint action. When G is clear from the context we denote this adjoint
map simply as Ad. The action is smooth, and in the case of a complex Lie
group, the action is holomorphic.

The adjoint action fixes e ∈ G and hence differentiating at the identity
of the second variable gives an induced linear action AdG : G×TeG→ TeG.
We use the standard notation and denote TeG by g. The adjoint action of
G on g is a representation of G as linear automorphisms of g. That is to say
we have a linear representation which is a morphism of Lie groups

G
AdG−→ GL(g).

In the case of a complex Lie group this is a complex linear representation
of G on the complex vector space g, i.e., it determines a holomorphic map
G→ GLC(g).

In either case, we can differentiate this Lie group morphism at the iden-
tity of G and obtain a (real or complex) linear map from g to the endomor-
phism ring of g

adG : g→ End(g).

Proposition 2.1. The adjoint action

adGL(n,R) : gl(n,R)⊗ gl(n,R)→ gl(n,R)

defines a Lie algebra structure on gl(n,R). Furthermore, identifying gl(n,R)
with M(n× n,R) we have

adGL(n,R)(X)(Y ) = XY − Y X.
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Proof. Differentiating the conjugation action of G on itself at the iden-
tity (in the second variable) produces the usual conjugation action of G
on gl(n,R) = M(n × n,R). We compute the differential of this action at
e ∈ G. Let γ(t) be a one-parameter family in GL(n,R) with γ(0) = Id and
denote by A ∈ M(n × n,R) the derivative of this family at t = 0. Then
(γ−1)′(0) = −A. Fix B ∈M(n× n,R). Then we have

d(γ(t)Bγ(t)−1)

dt

∣∣
t=0

= AB −BA.

Corollary 2.2. The map

adGL(n,R) : gl(n,R)⊗ gl(n,R)→ gl(n,R)

determines a Lie algebra over R. Analogously, the map

adGL(n,C) : gl(n,C)⊗ gl(n,C)→ gl(n,C)

determines a Lie algebra over C. In both cases, the identification of the
Lie algebra with n × n matrices (over R or C) identifies the Lie bracket of
gl(n,R) or gl(n,C) coming from the adjoint representation with the usual
bracket of matrices, i.e., the AB −BA bracket.

Definition 2.3. The Lie algebra structure on gl(n,R) (or gl(n,C)) given
by adGL(n,R) (or adGL(n,C)) is THE Lie algebra of GL(n,R) (or GL(n,C)).

Corollary 2.4. Suppose that H ⊂ GL(n,R) is a sub-Lie group. Let h ⊂
M(n × n,R) be the tangent space to H at the identity. Then h is closed
under Lie bracket of matrices; and

adH : h⊗ h→ h

is given by
adH(X)(Y ) = XY − Y X.

In particular, adH induces a Lie algebra structure on h.

Proof. The restriction of AdGL(n,R) : GL(n,R)× gl(n,R)→ gl(n,R) to H ⊂
GL(n,R) is AdH : gl(n,R) → gl(n,R). This restriction leaves h ⊂ gl(n,R)
invariant and this restriction is AdH : H × h→ h. Hence, the restriction of
adgl(n,R) : gl(n,R)× gl(n,R)→ gl(n,R) to h× h is adh.
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Definition 2.5. The subspace h ⊂ gl(n,R) together with the induced Lie
bracket is THE Lie algebra of H.

For a general Lie group G the adjoint action of g on itself is defined as
above in terms of the adjoint action of G on g. What remains to show is
that this defines a Lie group structure on g in the case when G is not a
subgroup of GL(n,R) for some n.

2.1 The Lie Algebra of a General Lie Group

2.1.1 Vector Fields

Recall that the (infinite dimensional) space of smooth vector fields on a
manifold has a Lie bracket. If X and Y are vector fields, then their bracket
[X,Y ] is defined by giving its value on a general function f by [X,Y ](f) =
X(Y (f))− Y (X(f)). As we checked in the last lecture by direct computa-
tion, the second order derivative terms in X(Y (f)) cancel those of Y (X(f))
(basically this is equality of cross partials) so that the bracket is again a
vector field. Invoking the fact that the bracket is written XY − Y X in
the associative algebra of all differential operators, we conclude that this
bracket defines the structure of a Lie algebra on the (infinite dimensional)
vector space of vector fields..

Definition 2.6. A vector field χ on G is left-invariant if for each g, h ∈ G,
D(g·)(χ(h)) = χ(gh).

Lemma 2.7. 1. Given X ∈ g there is a unique left-invariant vector field
χX whose value at the identity is X.
2. If X and Y are left-invariant vector fields, then so is [X,Y ].

Proof. If χ is a left-invariant vector field then χ(g) = D(g·)χ(e). This
proves the uniqueness of a left-invariant vector field with a given value at
the identity. Since the action G×TG→ TG given by defining the action of
g to be D(g·) is a smooth map, for any X ∈ g, the formula χ(g) = D(g·)X
defines a smooth vector field, proving the existence.

Suppose that X and Y are left-invariant vector fields. Since g· is a
diffeomorphism it commutes with the Lie bracket of vector fields. Thus,
D(g·)[X,Y ] = [D(g·)X,D(g·)Y ].

The left-invariant vector fields on a Lie group G form a finite dimensional
Lie algebra. Associating to each such vector field its value at the identity
element of the group gives a linear isomorphism between the left-invariant
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vector fields and g. Transferring the Lie algebra structure from the space of
left invariant vector fields to g defines a Lie algebra structure on g. This is
THE Lie algebra of G. The symbol g denotes this Lie algebra structure on
TeG. If G is a complex Lie group this process defines a complex Lie algebra
structure on g.

It remains to show that Lie algebra structure on g just defined, we have
[X,Y ] = ad(X)(Y ).

Proposition 2.8. Let G be a Lie group with Lie algebra g as defined above.
For X,Y ∈ g we have ad(X)(Y ) = [X,Y ], the bracket coming from the Lie
bracket of the left-invariant extensions of X and Y . In particular, X⊗Y 7→
ad(X)(Y ) defines the Lie algebra structure on g.

Proof. Let X and Y be elements of g. If X and Y are linearly dependent,
say Y = aX then [X,Y ] = 0 and adG(X)(Y ) = 0 since the one-parameter
subgroups generated by X and Y commute with each other. Thus, it suffices
to assume that X and Y are linearly independent in g.

Extend them to left-invariant vector fields on G, denoted X̃ and Ỹ ,
respectively. Let ξ(s) be the integral curve for X̃ though e and let ϕ(t) be
the integral curve for Ỹ through e. Then ϕ′(t) = ϕ(t)Y and ξ′(s) = ξ(s)X.
Let U ⊂ R2 be an open neighborhood of the origin and define T : U → Σ
by T (s, t) = ϕ(t)ξ(s). By the implicit function theorem, if U is sufficiently
small, T is an embedding onto a smooth, locally closed surface Σ ⊂ G.

We view (s, t) as coordinates on this surface Σ in G. Then

(∂/∂s)(s,t) = ϕ(t)ξ(s)X = T (s, t)X,

so that ∂/∂s is the restriction of X̃ to the surface Σ. Since Y(0,0) = Y , it
follows that

Ỹ(0,0)(X̃(0,t)) = (∂2/∂t∂s)(0,0).

On the other hand,

(∂/∂t)(s,t) = ϕ(t)Y ξ(s),

and in particular,
(∂/∂t)(s,0) = Y ξ(s).

Thus,

Ỹ (s, 0) = ξ(s)Y = ξ(s)
(
(∂/∂t)(s,0)ξ

−1(s)
)

= AdG(ξ(s))
(
(∂/∂t)(s,0)

)
.
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This gives

X̃(0,0)Ỹ(s,0) = (∂/∂s)s=0(Ỹ(s,0))

= adg(X)
(
(∂/∂t)(0,0)

)
+ (∂/∂s)s=0

(
(∂/∂t)(s,0)

)
= adg(X)(Y ) + (∂2/∂s∂t)(0,0).

The equality of cross partials yields

(X̃Ỹ − Ỹ X̃)(0,0) = adg(X)(Y ).

For a complex Lie group G, its Lie algebra g is a complex vector space
and AdG : G × g → g is a holomorphic map. The same arguments show
that adG : g× g→ g is a complex bilinear pairing producing a complex Lie
algebra structure on g and in the case when G ⊂ gl(n,C) this complex Lie
algebra structure agrees with the one coming from Lie bracket of complex
matrices.

2.2 Naturality of Lie Algebra of a Lie Group

Proposition 2.9. Let ϕ : H → G be a Lie group homomorphism. Then its
differential at the identity dϕe : h→ g is a map of Lie algebras, i.e., a linear
map commuting with the Lie bracket operations.

Proof. We have a commutative diagram

H ×H AdH−−−−→ H

ϕ×ϕ
y yϕ

G×G AdG−−−−→ G.

Differentiating at e ∈ H and at e ∈ G in the second factor produces a
commutative diagram

H × h
AdH−−−−→ h

ϕ×dϕe

y ydϕe

G× g
AdG−−−−→ g.
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Lastly, differentiating at the identity in the first variable gives a commutative
diagram

h× h
adH−−−−→ h

dϕe×dϕe

y ydϕe

g× g
adG−−−−→ g.

This diagram says that for X,Y ∈ h, we have

dϕe(adH(X)(Y )) = adG(dϕe(X), dϕe(Y )).

By definition of the bracket, this translates to

dϕe([X,Y ]) = [dϕe(X), dϕe(Y )].

Proposition 2.10. Let ϕ : H → G be a homomorphism of complex Lie
groups. The dϕe : h→ g is a morphism of complex Lie algebras.

Corollary 2.11. Let V be a finite dimensional complex vector space, let G
be a complex Lie group and let G×V → V be a complex linear representation
in the sense that ρ : G→ GL(V ) is a map of complex Lie groups. Then the
differential of ρ at the identity, dρe : g → gl(V ) is a complex linear map
sending the Lie bracket of g to the bracket of complex linear endomorphisms
given by [A,B] = AB −BA.

3 The Exponential Mapping.

We have shown how to pass from a Lie group to its Lie algebra by differen-
tiating at the identity element (twice) the conjugation map of G on itself.
The basic construction passing from a Lie algebra g to G is the exponential
mapping. This mapping identifies a neighborhood of the origin in g with a
neighborhood of the identity in G.

3.1 The case of GLn(R)

Since GL(n,R) is an open subset of M(n×n,R), any A ∈M(n×n,R) deter-
mines a tangent vector to GL(n,R) at the identity element. This identifies
M(n× n,R) with gl(n,R). The power series

exp(tA) =

∞∑
n=0

tnAn

n!
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converges absolutely for all t ∈ R and hence defines a smooth curve γA(t)
in M(n × n,R). By construction it satisfies γA(0) = Id and γ′A(0) = A.
The usual power series manipulations show that for all t1, t2 ∈ R we have
γA(t1)γA(t2) = γA(t1 + t2). Since γA(t) ∈ GL(n,R) for all |t| sufficiently
small, it follows that, for all t ∈ R the matrix γA(t) is contained in GL(n,R),
and furthermore, γA is a homomorphism of Lie groups (R,+)→ GL(n,R).
We define the exponential map

exp: M(n× n,R)→ GL(n,R)

by
exp(A) = γA(1) = eA.

This is a smooth map from M(n × n,R) → GL(n,R) whose differential
at the origin is the identity. By the implicit function theorem there is a
neighborhood U of 0 ∈ M(n × n,R) that maps diffeomorphically onto an
open subset exp(U) of the identity in GL(n,R). The inverse map is the
logarithm log : exp(U)→ U .

In the case of GL(n,C) the exponential map (given by the same power
series) associates to each A ∈ M(n × n,C) a homomorphism of Lie groups
γA : (C,+) → GL(n,C) with γ′A(0) : C → M(n × n,C) the complex linear
map sending 1 ∈ C to A. We define a holomorphic map exp: gl(n,C) →
GL(n,C) to send A to eA. Analogously, the differential of this map at
0 ∈ gl(n,C) is the identity so that it is a local holomorphic isomorphism
from some neighborhood of 0 in gl(n,C) to an open neighborhood of the
identity in GL(n,C).

3.2 The Exponential Map for a General Lie Group

Theorem 3.1. Let G be a Lie group. Then for every A ∈ g there is a unique
morphsim of Lie groups γA : (R,+)→ G with the property that γ′A(0) = A.

Proof. Fix A ∈ g. Let χA be the left-invariant vector field whose value at
g ∈ G is g · A. By the existence and uniqueness results for ODEs, for some
ε > 0, there is a unique integral curve γA : (−ε, ε) → G for this vector field
whose value at 0 is e.

Claim 3.2. The maximal interval of definition for the integral curve γA is
the entire real line.

Proof. By the existence theorem for solutions to ODEs, there is ε > 0 such
that γA is defined on (−ε, ε). By uniqueness of solutions to ODEs, if I and J
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are intervals of definition for an integral curve of χA, both containing 0, then
the integral curves defined on these two intervals agree on the intersection
of the intervals and hence the two curves define an integral curve on I ∪ J .
From this it is easy to see that there is a maximal interval of definition for
the integral curve γA. We must show that this is R.

Let I ⊂ R be the maximal interval of definition for γA and suppose
that I is bounded above. Fix t0 within ε/2 of the least upper bound of I.
Consider the curve µ(t0 + t) = γA(t0)γA(t) for t ∈ (−ε, ε). Then µ′(t0 + t) =
γA(t0)γ

′
A(t) = γA(t0)γA(t) · A. This shows that µ is an integral curve for

χA. Since it and γA agree at t0, they agree on their common domain of
definition. This is a contradiction since it allows us to extend the domain
of definition beyond the least upper bound of I and I was assumed to be
the maximal interval of definition for the integral curve. Consequently, the
interval I has no upper bound. Symmetrically, I has no lower bound. The
only interval with no upper and no lower bound is R.

Fix t and let s be variable. Consider the integral curve for χA given by
µ(s) = γA(t)γA(s). The curve γA(t+s) also is an integral curve for χA. Both
these integral curves take the value γA(t) at s = 0. Thus, γ(t)γ(s) = µ(s) =
γA(t+ s) for all s. Since this true for all t and all s and since γA(0) = e, the
map γA : R→ G is a homomorphism from the additive Lie group of reals to
G.

Claim 3.3. Suppose that γ : (R,+)→ G is a homomorphism of Lie groups
and suppose that γ′(0) = A. Then γ(t) = γA(t) for all t ∈ R.

Proof. Since γ is a homomorphism, it follows that γ′(t) = γ(t)γ′(0), and
thus γ is an integral curve for χA whose value at t = 0 is the identity. There
is only one such integral curve and it is γA.

This completes the proof of Theorem 3.1

Definition 3.4. We define the exponential map, expG : g → G by sending
A ∈ g to γA(1) where γA is the one-parameter subgroup whose tangent
vector at the identity is A.

The following is clear from the definition.

Proposition 3.5. The exponential mapping is a smooth map whose differ-
ential at 0 ∈ g is the identity. Hence, there is a neighborhood U ⊂ g of 0 such
that expG is a diffeomorphism from U to an open neighborhood expG(U) of
the identity in G. We denote the inverse by log : exp(U)→ U .
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Proof. The exponential is a smooth map since integral curves of a smooth
family of vector fields with a smooth family of initial conditions vary smoothly.
To compute the differential of exp, first note that γA(st) = γtA(s) since they
are both integral curves for tχA and take the value e at s = 0. Thus,

D(exp)e(A) = (
d

dt
)|t=0(γtA(1)) = (

d

dt
)|t=0(γA(t)) = A.

The local diffeomorphism then follows from the Inverse Function Theorem.

Corollary 3.6. If H ⊂ G is a Lie subgroup with Lie algebra h ⊂ g, then
expG|h = expH . Any particular, any one-parameter subgroup tangent to H
at the origin is contained in H.

More generally, if ϕ : H → G is a map of Lie groups, then for any A ∈ h
the map of the additive one-parameter subgroup γA : (R,+)→ H tangent to
A has image in G that is the map of the additive one-parameter subgroup
tangent to dϕe(A).

Proof. For H ⊂ G, for any A ∈ h the left-invariant vector field gA is tangent
to H. Hence the integral curve γA that passes through e at t = 0 lies in H.
The second statement is left as an exercise.

Theorem 3.7. Let G and H be connected Lie groups and α, β : G→ H two
Lie group homomorphisms. Then α = β if and only if α and β induce the
same map g→ h.

Proof. The ‘only if’; direction of the implication is clear. We establish the
‘if’ direction. Suppose De(α) = De(β) : g → h. Fix A ∈ G and consider
the one-parameter subgroup exp(tA) ⊂ G. Its image under α is the one-
parameter subgroup exp(tDe(α)) and analogously for β. It follows that α
and β agree on all the images of all these one-parameter subgroups, i.e., on
the image of exp. Since the exponential map is onto a neighborhood U of
the identity, it follows that α|U = β|U .

Claim 3.8. Each element of G is a finite product of elements in U .

Proof. Without loss of generality, we can assume that U is closed under
g 7→ g−1 Clearly, the subset of elements of G that can be written as a finite
product of elements of U is an open, non-empty subset of G. We claim that
it is also closed. For suppose that limn7→∞gn = g and each gn is a finite
product of elements in U . To prove that the subset of elements that can be
written as a finite product of elements in U is closed, we prove that g is a
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product of finitely many element in U . But for some n the element gn ∈ gU ,
i.e., g−1gn ∈ U , and hence g−1n g ∈ U . Since g = gn(g−1n g), and gn is a finite
product of elements in U , so is g.

Being open and closed and non-empty, the subset consisting of all finite
products of elements in U is all of the connected space G.

Since α|U = β|U , it follows that α = β.

Remark 3.9. Given Lie groups G and H and a map between their Lie
algebras ψ : g→ h there may not be a map G→ H extending the map ψ on
the Lie algebras. For example, an isomorphism from the Lie algebra of S1

to the Lie algebra of R does not extend to a map of Lie groups. In a later
lecture we shall show that in the special case when G is simply connected
any map of Lie algebras g → h extends (uniquely) to a map of Lie groups
G→ H.

3.3 Important Technical Result

This technical result is both important and the first indication of the power
of the exponential map.

Theorem 3.10. Let G be a Lie group and suppose that H ⊂ G is a topo-
logically closed subgroup. Then H is a sub Lie group,

Proof.

Claim 3.11. Fix a positive definite symmetric inner product on g. Denote
by |h| for h ∈ g the associated norm on g. Suppose that hn ∈ g is a sequence
of elements converging to 0 with exp(hn) ∈ H for all n. Suppose that as
n 7→ ∞ the sequence hn

|hn| converges to a unit vector v ∈ g. Then exp(tv) ∈ H
for all t ∈ R.

Proof. The result is clear for t = 0. Fix t > 0 in R. Let mn be the
greatest integer less than t/|hn|. Then mnhn 7→ tv as n 7→ ∞. Since
exp(mnhn) = exp(hn)mn ∈ H and H is closed, it follows that for all t ≥ 0
we have exp(tv) ∈ H. Since exp(−tv) = exp(tv)−1, the result follows for all
t ∈ R.

Claim 3.12. Let W ⊂ V be the set of w for which exp(tw) ∈ H for all
t ∈ R. Then W is a real linear subspace of V .
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Proof. By construction if w ∈W then tw ∈W for all t ∈ R. Thus, to show
that W is a real linear subspace, it suffices to show that if w1, w2 ∈W with
w1 +w2 6= 0, then (w1 +w2) ∈W . For all t sufficient close to zero, we have
exp(tw1)exp(tw2)) = exp(f(t)) for a smooth function f(t) with f(0) = 0
and f ′(0 = (exp(tw1)exp(tw2)

′(0)) = w1 + w2. In particular,

limt7→0f(t)/t = w1 + w2.

Because w1, w2 ∈ W , from the definition of W and the fact that H is a
group, exp(f(t)) ∈ H for all t sufficiently close to 0. The limit statement
above shows for n sufficiently large, f(1/n) = 1

n(w1 + w2) + o(1/n). For all

n sufficiently large, set hn = f(1/n). We see that hn
|hn| converges to w1+w2

|w1+w2|
as n 7→ ∞. The Claim 3.11 now implies that w1 + w2 ∈W .

Claim 3.13. A neighborhood of 0 in W maps via the exponential mapping
isomorphically onto the intersection of H with a neighborhood U of e ∈ G.

Proof. Let W ′ ⊂ g be the orthogonal complement of W in g. We have
W ⊕W ′ = g. Let ψ(w,w′) = exp(w)exp(w′). The map ρ = ψ−1 is a diffeo-
morphism from an open neighborhood U ⊂ G of e to an open neighborhood
ρ(U) of 0 ∈W⊕W ′. If there is no smaller neighborhood U ′ ⊂ U of the iden-
tity as claimed, then there is a sequence (wn, w

′
n) tending to (0, 0) such that

for all n we have exp(wn)exp(w′n) ∈ H and w′n 6= 0. Since H is a group and
exp(wn) ∈ H, it follows that exp(w′n) ∈ H for all n. Choosing a subsequence,

we can assume that w′
n
|w′

n|
converges to a unit vector in v ∈W ′. Applying the

first claim, we see that v ∈W . This contradiction shows that there is some
neighborhood U ′ ⊂ G of e and a diffeomorphism U → ρ(U) ⊂W ⊕W ′ onto
an open neighborhood of (0, 0) such that ρ(H ∩ U)) = W ∩ ρ(U).

This shows that W ∩ U is a smooth submanifold of U .

Now for any h ∈ H we see that h ·U is an open neighborhood of h in G
and the intersection H ∩ hU maps via ρ ◦ h−1 to W ∩ ρ(U) ⊂ ρ(U). Since
this holds for every h ∈ H and since H is a closed subset of G , it follows
that H is a smooth submanifold of G.

We have already seen that a subset of G that is a subgroup and a sub-
manifold (in this strong sense) is a sub Lie group.
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