
Lie Groups: Fall, 2024

Lecture XII:

Linear Representations of SL(2,C)

December 3, 2024

The purpose of this lecture is to classify all finite dimensional complex
linear representations of SL(2,C) and of its Lie algebra sl(2,C). Recall
that if g is a complex Lie algebra, then a complex linear representation
of g on a finite dimensional complex vector space V is a complex-linear
homomorphism of Lie algebras ρ : g→ EndC(V ). This means for each X ∈ g
we have a complex linear map ρ(X) : V → V satisfying; (i) ρ is a complex
linear map, and (ii) ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X).

1 Complete Reducibility

Here is the result about complete irreduciblity.

Theorem 1.1. Any finite dimensional representation of sl(2,C) is com-
pletely reducible. That is to say given ρ : sl(2,C) → EndC(V ) with V a
finite dimensional complex vector space, there is a direct sum decomposition
V ∼= ⊕iVi into complex subspaces such that:

• the action of sl(2,C) on V stabilizes each of the Vi, and

• for each i there is no non-trivial subspace of Vi stabilized by sl(2,C).

Corollary 1.2. Every finite dimensional complex linear representation of
SL(2,C) is completely reducible; i.e., for any such action µ : SL(2,C)×V →
V can be written as a direct sum of actions, each of which admits no non-
trivial invariant subspace.

Proof. (of the corollary) Let µ : SL(2,C) × V → V be a finite dimensional
complex representation. Equivalently, we can view µ as a homomorphism
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of Lie groups µ : SL(2,C) → GL(V ). Let ρ : sl(2,C) → EndC(V ) be the
induced map on Lie algebras. Using Theorem 1.1 we decompose V as ⊕iVi
with each Vi stabilized by ρ(sl(2,C)) and irreducible as an sl(2,C)-module.
That is to say ρ factors through ⊕EndC(Vi) ⊂ EndC(V ). Invoking the
theorem that any map of Lie algebras induces a map of the underlying Lie
groups (provided that the domain Lie group is simply connected), we see that
µ factors through a homomorphism µ : SL(2,C) → ⊕iGL(Vi) ⊂ GL(V ).
This proves that the SL(2,C)-module V decomposes as a direct sum of the
SL(2,C)-modules Vi.

We also need to see that each Vi is irreducible as an SL(2,C)-module. If
there is a non-trivial invariant subspace Wi ⊂ Vi invariant under SL(2,C),
then Wi is invariant under ρ(sl(2,C)), contrary to the fact that Vi is irre-
ducible as a sl(2,C) representation.

The rest of this lecture is devoted to enumerating the irreducible sl(2,C)-
representations and proving Theorem 1.1.

2 Classification of the Irreducible Representations

We define elements in sl(2,C) as follows:

H =

(
1 0
0 −1

)

X =

(
0 1
0 0

)
and

Y =

(
0 0
1 0.

)
Then these three elements form a vector space basis for sl(2,C)
Then the basic bracket relations are [H,X] = 2X and [H,Y ] = −2Y

and [X,Y ] = H.

Claim 2.1. For any finite dimensional complex representation ρ of sl(2,C)
the element ρ(H) is diagonalizable with integral eigenvalues.

Proof. The representation ρ determines a complex representation µ : SL(2,C)→
GL(V ). Of course, µ(exp(2πiH)) is the identity. This means that ρ(H) is
diagonalizable with integer eigenvalues.

2



Definition 2.2. Let sl(2,C) × V → V be a finite dimensional, complex of
sl(2,C). Then for every r ∈ Z by Er(V ) we mean the character space of V
on which H acts by multiplication by r.

Claim 2.3.
ρ(X) : Ek(V )→ Ek+2(V )

ρ(Y ) : Ek(V )→ Ek−2(V ).

Proof. Suppose H(a) = ka. Then HX(a) − XH(a) = 2X(a), so that
HX(a) = (k + 2)X(a). The other equation is proved similarly.

Here is the main theorem of this section

Theorem 2.4. For each integer k ≥ 0, up to isomorphism, there is a unique
irreducible sl(2,C)-representation of dimension k+1. Irreducible representa-
tions are characterized by the condition that ker(X) is one dimensional. The
dimension of an irreducible representation is one larger than the character
of H on ker(X).

We begin by finding irreducible sub-representations of any finite dimen-
sional representation.

Proposition 2.5. Suppose that V is a finite dimensional, complex sl(2,C)
representation and suppose that a ∈ Ek(V ) is a non-zero element in the
kernel of X. Then a, Y a, Y 2a, . . . Y k(a) are linear independent in V and
span an sl(s,C)-submodule Wk of V . Furthermore, Wk is an irreducible
sl(2,C)-module of dimension k+ 1, and the kernel of X : Wk →Wk is C(a).

Proof.

Claim 2.6. The subspace generated by {Y r(a)}0≤r<∞ is stabilized by sl(2,C)
and

X(Y r+1a)) =
r∑
s=0

(k − 2s)Y r(a).

Proof. The proof of the equation is by induction on r. For r = 0 we have
ka = H(a) = XY (a) − Y X(a) and by consruction X(a) = 0. Thus, ka =
XY (a), establishing the claim for r = 0.

Suppose by induction that the result holds for r− 1 and let us establish
it for r.

(k−2r)Y ra = H(Y ra) = XY r+1(a)−Y X(Y r(a)) = XY r+1(a)−Y (
r−1∑
s=0

(k−2s)Y r−1(a)).
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Thus,

r∑
s=0

(k − 2s)Y r(a) = XY r+1(a). (2.1)

This shows that the subspace spanned by the {Y r(a)}∞r=0 is stabilized
by X. It is obviously stabilized by Y , and since it is generated by elements
in the various Ek−2r(V ), it is also stable under H. Hence, it is a sl(2,C)
submodule of V . We denote it Wk

Notice that the coefficient of Y r(a) in Expression 2.1 is non-zero unless
r = k. It follows that for any r 6= k if Y r(a) 6= 0 then Y r+1(a) 6= 0. Since
Y 0(a) = a is non-zero, it follows that Y r(a) 6= 0 for 0 ≤ r ≤ k. By the
same argument if Y k+1(a) 6= 0, then Y r(a) 6= 0 for all r ≥ 0. This is
impossible, since these elements lie in Ek−2r(V ) and V is finite dimensional.
This proves that Y r(a) 6= 0 exactly for 0 ≤ r ≤ k. Since Y r(a) ∈ Ek−2r(V )
these elements are independent.

Thus, Wk is an sl(2,C)-representation of dimension k + 1. If b ∈ Wk is
non-zero, then there is a smallest integer ` ≥ 0 such that X`+1b = 0. Then
X`(v) is a non-zero element in the kernel of X. This means that X`(b) is
a non-zero multiple of a. Hence, {Y r(b)}kr=0 span all of Wk. This shows
that Wk is irredudible. It follows from the Equation 2.1 that the kernel of
X : Wk →Wk is C(a)

This completes the proof of the proposition.

Corollary 2.7. For each integer k ≥ 1 there is, up to isomorphism, one
irreducible sl(2,C)-module of dimension k + 1.

Proof. Let V be an irreducible sl(2,C)-module. Let k be the largest integer
such that Ek(V ) 6= 0. Then any a 6= 0 in Ek(V ) is in the kernel of X. By
the previous proposition there is a submodule Wk ⊂ V of dimension k + 1
spanned over C by {a, Y (a), . . . , Y k(a)}. Since V is irreducible it must be
equal to Wk. This proves that every irreducible sl(2,C) is isomorphic to
some Wk as constructed above.

Conversely, given k ≥ 0 we let U be a graded vector space with Er(U)
non-zero for all r with −k ≤ r ≤ k and r ≡ k (mod 2). These Uk−2r are
one-dimensional and generated by ak−2r. We define the action of sl(2,C) by
setting H(ak−2r) = (k − 2r)ak−2r, Y (ak−2r) = ak−2(r+1)) and

X(ak−2(r−1)) =

r∑
s=0

(k − 2s)ak−2r.
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Then the computations leading to Equation 2.1 can be read in the other
order to show that this is an sl(2,C)-representation. Thus, each Wk indeed
exists as an irreducible sl(2,C)-module.

We have shown that an sl(2,C)-module V is irreducible if and only if
the kernel of X : V → V is one-dimensional. Furthermore, the isomorphism
class of irreducible sl(2,C)-modules is determined by the integer that is the
eigenvalue of H on ker(X). The dimension of the irreducible representation
is one larger than this eigenvalue. In particular, there is, up to isomorphism,
a unique irreducible representation of dimension k+1 for each integer k ≥ 0.

3 Complete Reducibility

Theorem 3.1. Any finite dimensional complex representation V of sl(2,C)
is a direct sum of irreducible representations.

Proof. The proof is by induction on the dimension of the representation. If
the dimension is 1, then the action of sl(2,C) is trivial and the representation
is irreducible. Suppose V is of dimension n and we have established the
result for all representations of dimension less than n.

Since V is finite dimensional there is a largest k such that Ek(V ) 6= 0.
Take a ∈ Ek(V ) a non-zero element. Then X(a) ∈ Ek+2(V ) = 0. According
to Proposition 2.5 there is an embedding i : Wk ⊂ V , with Wk an irreducible
sl(2,C)-module of V .

Let V = V/i(Wk). Since the dimension of V is less than that of V it is
a direct sum of irreducible sl(2,C)modules V ∼= ⊕iWki .

Claim 3.2. The projection V → V maps ker(X : V → V ) onto ker(X : V →
V )

Proof. Clearly, if a ∈ V is in ker(X : V → V ), then its image a ∈ V is in
the ker(X : V → V ). In an irreducible sl(2,C)-module any homogeneous
element b in ker(X) has H(b) = rb for some r ≥ 0.

Suppose that a ∈ ker(X : V → V ) is a homogeneous element. Lift a to
a homogeneous element a ∈ V . Then X(a) ∈ i(Wk). If this element is zero,
then a ∈ ker(X) as required. Suppose it is non-zero. It is homogeneous
of degree ≥ 1. Thus, XYX(a) is a non-zero multiple, say t, of X(a) and
a− (1/t)Y X(a) is in the kernel of X and projects to a in V .

By taking a direct sum of maps produced by Proposition 2.5, we define an
sl(2,C)-map from V (which is a direct sum of irreducible representations)

5



to V , say ψ : V → V , with the property that the map ψ induces from
ker(X : V → V ) to ker(X : V → V ) splits the map induced by the projection
ker(X : V → V )→ ker(X : V → V ).

The sl(2,C)-map

Wk ⊕ V
i⊕ψ−→ V

induces an isomorphism on the kernels of X. Thus, the kernel of this map
is an sl(2,C)-module with the property that X acts without kernel. Such
a module is automatically the trivial module. This implies that i⊕ ψ is an
injection. But the dimensions of the domain and range of this map are the
same, so it is an isomorphism of sl(2,C)-representations.

Notice that what we have proved is the following. Associating to an
sl(2,C)-representation the kernel of X is a functor from the category of finite
dimensional complex sl(2,C)-representations to the category of finite dimen-
sional graded complex vector spaces with non-trivial graded summands only
in non-negative degrees, and this functor is an equivalence of categories.
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