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1 The basics

We fix a compact, connected Lie group G. A finite-dimensional real repre-
sentation of G is a finite dimensional real vector space V and a linear action
ρ : G × V → V . Implicitly that ρ a smooth map and for every g ∈ G the
map ρ(g) : V → V is a linear isomorphism.

Here is the first basic result.

Theorem 1.1. Fix a finite-dimensional real linear representation ρ : G ×
V → V . If W ⊂ V is a linear subspace stabilized by the action, then is
another subspace W ′ ⊂ V , stabilized by the G-action such that V = W ⊕W ′.
Thus, the G action on V is the direct sum of the G actions on W and W ′.

Proof. The left-invariant vector fields on G determine a bundle isomorphism
TG ≡ G× g. This isomorphism is left-invariant in the sense that under the
isomorphism d(g·) : TG→ TG sends (h, t) 7→ (gh, t). Fix a positive definite,
symmetric inner product 〈·, ·〉 on g. Using the left-invariant trivialization,
we extend this inner product to a left-invariant Riemannian metric on G,
left-invariant in the sense that 〈τ1, τ2〉 = 〈gτ1, gτ2〉 for all g, h ∈ G and all
τ1, τ2 ∈ ThG.

Choose an orientation for g and hence a left-invariant orientation for TG.
Let n be the dimension of G. There is a left-invariant, nowhere vanishing n-
form ω on G, left-invariant in the sense that have (g·)∗(ω) = ω, whose value
on a τ1 ∧ · · · ∧ τn is the signed n-dimensional volume of the parallepiped
spanned by (τ1, . . . , τn) as measured using the Riemannian metric (to give
the absolute value) and the orientation (to give the sign). We define the
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measure of any open subset of G to be∫
U
ω,

when U is given the induced orientation. This leads to a Borel measure
on G, denoted dµG, that is invariant under the left action of G on itself,
meaning that for any open subset U of G the measure of U and gU are
equal. This differential form and measure are unique up to multiplication
by a positive scalar. It follows that for any measurable function f and any
g ∈ G we have ∫

G
g∗f(h)dµG =

∫
G
f(h)dµG,

where by definition g∗f(h) = f(g−1h).
Denote by Rg : G → G the map sending h 7→ hg. Since right and left

multiplication of G on itself commute, R∗gω is a left-invariant and hence
is a positive multiple of ω. But

∫
GR

∗
hω =

∫
G ω since Rh : G → G is an

orientation-preserving diffeomorphism. Thus, R∗hhω = ω so that ω an the
measure are also right-invariant.

Now let ρ : G×V → V be a finite dimensional linear representation. Fix
a positive definite inner product 〈·, ·〉 on V .

Define a new inner product

〈·, ·〉′ =
∫
G
〈hv, hv〉dµG.

Clearly, we have 〈v, v〉′ = 〈gv, gv〉′ for any g ∈ G so that the inner product
is G-invariant. Being an average of positive definite inner products, it is
positive definite. Using this inner product we set W ′ = W⊥. Since W
is stabilized by G and the inner product is stabilized by G, the subspace
W ′ is also stabilized by G. Since the inner product is positive definite,
V = W ⊕W ′.

Remark 1.2. On a topological group, a left-invariant, right-invariant, or
bi-invariant measure that takes finite values on compact subsets is called a
left-invariant, right-invariant, or bi-invariant Haar measure. We have just
seen that any compact Lie group has a unique left-invariant Haar measure up
to multiplication by a positive scalar. Furthermore, any such left-invariant
Haar measure bi-invariant. The last statement holds for any compact topo-
logical group.
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Definition 1.3. A finite dimensional representation is irreducible if the
only subspaces stabilized by the action are {0} and the entire space. A
finite dimensional representation is completely reducible if it is a direct sum
of irreducible representations.

Corollary 1.4. Let G be a compact Lie group. Every finite-dimensional real
representation of G is a direct sum of irreducible representations, i.e., every
finite dimensional representation of G is completely reducible. Likewise, any
finite dimensional complex representation of G is completely reducible as a
complex representation

Proof. Any one-dimensional representation is irreducible. Now we induct on
the dimension of the representation. Suppose that we have an n-dimensional
representation and the result is know for representations of dimension< n. If
the n-dimensional representation is not irreducible, then it has a non-trivial
invariant subspace. By Theorem 1.1 this leads to a non-trivial direct sum
decomposition of the representation. Each of the summands has dimension
less than n and hence is a direct sum of irreducible representations. It follows
that the n-dimensional representation is completely reducible.

For a finite dimensional complex representation of G, by an analogous
argument we find a G-invariant hermitian metric and use it to find a G-
invariant hermitian orthogonal complement to a G-invariant complex sub-
space. With this, the argument above proves that the finite dimensional
complex representation decomposes as a direct sum of complex representa-
tions, each of which has no non-trivial G-invariant complex subspace.
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