Lie Groups: Fall, 2024 Lecture X: The Affine Weyl Chambers and the Fundamental Group

December 14, 2024

We keep our running notation: G is a compact connected Lie group, T is a maximal torus of G; \mathfrak{t} is its Lie algebra, W is the Weyl group with its natural action on T and \mathfrak{t} . There is a positive definite, symmetric inner product on \mathfrak{t} leading to an isomorphism $\mathfrak{t}^* \cong \mathfrak{t}$ and for each root α , we have an element $x_{\alpha} \in \mathfrak{t}$, the element corresponding identified with α under this isomorphism. That is to say, $x_{\alpha} \in \ker(\alpha)^{\perp}$ and $\alpha(x_{\alpha}) = \langle \alpha, \alpha \rangle$. The lattice $\Lambda \subset \mathfrak{t}$ is the fundamental lattice, meaning that $T = \mathfrak{t}/\Lambda$; the lattice Λ_0 is the translation lattice of the affine Weyl group W_{aff} , generated by the λ_{α} ; and Λ_B^* is the dual to the root lattice. We have $\Lambda_0 \subset \Lambda \subset \Lambda_B^*$.

The main result in this section is the following:

Theorem 0.1. Let G be a compact Lie group. Then Λ and Λ_0 are, as before, the fundamental lattice of G and the translation lattice for the affine Weyl group of G, respectively. Then the map $T \to G$ induces a surjection $\Lambda \to \pi_1(G)$ whose kernel is Λ_0 . Thus, the inclusion $T \to G$ induces an isomorphism $\Lambda/\Lambda_0 \cong \pi_1(G)$.

1 The Regular Elements $G_{\text{reg}} \subset G$

1.1 The Definition and Description of G_{reg}

Definition 1.1. An element $g \in G$ is said to be *regular* if it is contained in a unique maximal torus. We define by $G_{\text{reg}} \subset G$ be subspace of regular elements. For T a maximal torus, we denote by $T_{\text{reg}} \subset T$ is the set of regular element of G contained in T. These are the elements that are contained in no maximal torus except T. We define a map $\tilde{c}: G \times T \to G$ by $(g,t) \mapsto gtg^{-1}$. Since T is abelian, \tilde{c} induces a map

$$c: G/T \times T \to G$$

sending $(gT, t) \mapsto gtg^{-1}$. This map restricts to give a map $c_{\text{reg}} \colon G/T \times T_{\text{reg}} \to G_{\text{reg}}$.

Proposition 1.2. The map $c_{\text{reg}}: G/T \times T_{\text{reg}} \to G_{\text{reg}}$ is a local diffeomorphism onto G_{reg} .

Proof. It is clear that c is a smooth map. Any conjugate of an element of T_{reg} is an element of G_{rg} , Any element $g \in G_{\text{reg}}$ is conjugate to an element of $t' \in T$ and clearly $t' \in T_{\text{reg}}$. This shows that the image of c_{reg} is G_{reg} .

Let us first compute the differential of c_{reg} at points of the form (eT, t_0) . Let g(s) be a smooth path with g(0) = e and let $t_0 \in T_{\text{reg}}$. We compute

$$(g(s)t_0(g(s)^{-1})'(0) = g'(0)t_0 - t_0g'(0) = [g'(0) - t_0g'(0)t_0^{-1}] \cdot t_0 = [(1 - \operatorname{ad}(t_0))(g'(0)] \cdot t_0.$$

Since t_0 is a regular element, the kernel of $1 - \operatorname{ad}(t_0)$ is \mathfrak{t} and the image of this map is the sum of the root spaces. Thus, the kernel of $[(1 - \operatorname{ad}(t_0))(g'(0))] \cdot t_0$ is \mathfrak{t} and its image is $(\bigoplus_{\alpha_i \in R} V_{\alpha_i}) \cdot t_0$. This shows that the differential of the map $G/T \times \{t_0\}$ at (eT, t_0) is injective with image $(\bigoplus_{\alpha_i \in R} V_{\alpha_i}) \cdot t_0$. Clearly, the map $\{e\} \times T_{\operatorname{reg}} \to G$ given by $(eT, t) \mapsto t$ has injective differential at t_0 whose image is $\mathfrak{t} \cdot t_0$, which is a complementary space to the image of the differential of $G/T \times \{t_0\}$. This proves that the differential of map $G/G \times T_{\operatorname{reg}} \to G_{\operatorname{reg}}$ at (eT, t_0) is an isomorphism for every $t_0 \in T_{\operatorname{reg}}$.

We have a commutative diagram:

$$\begin{array}{ccc} G/T \times T_{\mathrm{reg}} & \stackrel{c_{\mathrm{reg}}}{\longrightarrow} & G_{\mathrm{reg}} \\ (g \cdot) \times \mathrm{Id} & & & \downarrow c_g \\ G/T \times T_{\mathrm{reg}} & \stackrel{c_{\mathrm{reg}}}{\longrightarrow} & G_{\mathrm{reg}} \end{array}$$

where c_g is conjugation by g. The vertical maps are diffeomorphisms. It follows that the differential of c_{reg} is an isomorphism at every $(gT, t_0) \in G/T \times T_{\text{reg}}$.

Hence, the map a local diffeomorphism. In particular, G_{reg} is an open subset of G.

This map is not a diffeomorphism. But after dividing out by the natural action of the Weyl group it becomes one.

Lemma 1.3. Define an action of the Weyl group W on $G/T \times T$ by

$$w * (gT, t) = (gw^{-1}T, wtw^{-1})$$

These formulas give a well-defined left action of W stabilizing $G/T \times T_{reg}$. The map $c: G/T \times T \to G$ is Weyl invariant and the quotient map

$$\overline{c}_{\mathrm{reg}} \colon ((G/T) \times T_{\mathrm{reg}})/W \to G_{\mathrm{reg}}$$

is a diffeomorphism

Proof. Let $w \in W$ and let $\widetilde{w}, \widetilde{w}' \in N(T)$ be two lifts of w. Then $g\widetilde{w}^{-1}T = g(\widetilde{w}')^{-1}T$ This shows that the formulas lead to a well-defined map. It is clearly a left action of W on $(G/T) \times T$ that stabilizes $(G/T) \times T_{\text{reg}}$.

We claim that the W-action on G/T is a free action. For, if $g\tilde{w}^{-1}T = gT$, then $\tilde{w}^{-1}T = T$ implying that $\tilde{w} \in T$. Thus, \tilde{w} represents the trivial element in W. This means that the action of W on $G/T \times T$ is a free action and hence $(G/T) \times T)_{\text{reg}} \to ((G/T) \times T_{\text{reg}})/W$ is covering projection.

Since for $g \in G$ and $t \in T$, we have $gtg^{-1} = g\widetilde{w}^{-1}(\widetilde{w}t\widetilde{w}^{-1})\widetilde{w}g^{-1}$, it follows that the map $c \colon (G/T) \times T \to G$ is W-invariant so that there is an induced map

$$\overline{c} \colon ((G/T) \times T)/W \to G.$$

The restricting we have a map

$$\overline{c}_{\mathrm{reg}} : ((G/T) \times T_{\mathrm{reg}})/W \to G_{\mathrm{reg}}$$

which is a local diffeomorphism, since before dividing out by the free W-action it is a local diffeomorphism.

The last thing to check is that this quotient map \overline{c}_{rg} is one-to-one. Suppose that t_0, t'_0 are elements of T_{reg} and $g, g' \in G$ and we have $gt_0g^{-1} = g't'_0(g')^{-1}$. Then $g^{-1}g'$ conjugates t'_0 to t_0 . Since these are elements of T_{reg} it follows that $g^{-1}g' \in N(T)$. Let w be the element of the Weyl group represented by $g^{-1}g'$. Then $wt'_0w^{-1} = t_0$ and $wT = g^{-1}gT$ so that gwT = g'T. This proves that $w * (g'T, t'_0) = (gT, t_0)$.

Lemma 1.4. The complement $G \setminus G_{\text{reg}}$ is a finite union of the images in G of smooth maps from manifolds of dimension 3 less than the dimension of G.

Proof. The regular elements in maximal torus are the complement of $\bigcup_{\alpha} \hat{U}_{\alpha}$. Thus, the complement of G_{reg} in G is the union over the roots α of the conjugates of \hat{U}_{α} .

Let *n* be the dimension of *G* and *k* its rank. Then \hat{U}_{α} is a (k-1)manifold and its conjugates are the image of $(G/N(\hat{U}_{\alpha})) \times \hat{U}_{\alpha} \to G$ induced by $(g, u) \mapsto gug^{-1}$. The normalizer $N(\hat{U}_{\alpha})$ has dimension k + 2 so that $(G/N(\hat{U}_{\alpha})) \times \hat{U}_{\alpha}$ has dimension n - 3.

Corollary 1.5. For any $g \in G_{\text{reg}}$, the inclusion $G_{\text{reg}} \subset G$ induces an isomorphism $\pi_1(G_{\text{reg}}, g) \to \pi_1(G, g)$.

Proof. Since the complement of G_{reg} in G has codimension 3, any loop in G based at g deforms, relative to the base point, into G_{reg} and if a map of the 2-disk into G has the image of the boundary contained in G_{reg} then the map deforms relative to its boundary into G_{reg} .

1.2 G/T is simply connected

Proposition 1.6. Let T be a maximal torus of G. Then $\pi_1(G/T) = \{1\}$.

Corollary 1.7. The inclusion $T \to G$ induces a surjection $\pi_1(T) \to \pi_1(G)$.

Proof. (of the corollary) Since we have a fibration $T \to G \to G/T$, there is a long exact sequence of homotopy groups ending in

$$\pi_1(T) \to \pi_1(G) \to \pi_1(G/T).$$

But we have just seen that $\pi_1(G/T) = \{e\}$. The result follows.

Proof. (of the proposition) The inclusion of $G_{\text{reg}} \to G$ induces an isomorphism on fundamental groups. The map $(G/T) \times T_{\text{reg}} \to G_{\text{reg}}$ is a covering space and hence injective on fundamental groups. Fix $t_0 \in T_{\text{reg}}$. Then the inclusion $G/T \times \{t_0\} \to G/T \times T_{\text{reg}}$ is injective on the fundamental group based at (eT, t_0) . Thus, the composed map $G/T \times \{t_0\} \to G$ is injective on fundamental groups based at t_0 .

But fixing a path in T from t_0 to e, we see that the map $G/T \to G$ given by $gT \mapsto gt_0g^{-1}$ is homotopic to the map $G/T \to G$ given by $gT \mapsto geg^{-1} = e$. Thus, any map $S^1 \to (G/T) \times \{t_0\} \to G$ and bounds a disk mapping to G. Together with the fact that the map $\pi_1((G/T \times \{t_0\}) \to \pi_1(G))$ is injective, this proves the result. \Box

2 The Case of Finite Center

2.1 The Results

Proposition 2.1. Let G be a compact, connected Lie group with finite center. Then $\pi_1(G)$ is finite, and thus the universal covering group of G is also compact.

Proof. The Lie algebra of the center of G is the subspace of \mathfrak{t} on which all the roots vanish. Since the center of G is finite, this subspace is trivial. That is to say, the roots span \mathfrak{t}^* over \mathbb{R} . Consequently the elements x_{α} identified with roots α under the isomorphism $\mathfrak{t}^* \cong \mathfrak{t}$ span \mathfrak{t} of \mathbb{R} . The same is true of the $\lambda_{\alpha} = 2x_{\alpha}/\langle \alpha, \alpha \rangle$ On the other hand, by Proposition 3.2 of the previous lecture, all these elements lie in the lattice Λ_0 . Thus, Λ_0 is a finitely generated subgroup of \mathfrak{t} and spans \mathfrak{t} over \mathbb{R} ; i.e., Λ_0 is a full lattice in \mathfrak{t} in the sense that \mathfrak{t}/Λ_0 is a torus.

Since Λ is discrete and $\Lambda_0 \subset \Lambda$, it follows that Λ/Λ_0 is a finite group. Again by Proposition 3.2 of the previous lecture, the lattice Λ_0 is contained in the kernel of the map $\Lambda \to \pi_1(G)$. By Corollary 1.7 the map $\Lambda \to \pi_1(G)$ is surjective. Hence, $\pi_1(G)$ is a quotient of Λ/Λ_0 and hence is finite. \Box

In fact, the next theorem says that Theorem 0.1 holds when the center of G is finite. That is to say, the map $\Lambda/\Lambda_0 \to \pi_1(G)$ is an isomorphism in the special case.

Theorem 2.2. Let G be a compact, connected Lie group with finite center. Let T be a maximal torus and $\Lambda \subset \mathfrak{t}$ the co-weight lattice. Then the inclusion $T \subset G$ induces an isomorphism $\Lambda/\Lambda_0 \cong \pi_1(G)$.

Before beginning the proof proper of the theorem we need some preliminary results.

2.2 Preliminary Results

Claim 2.3. Since the center of G is finite, the affine Weyl chambers have compact closure in \mathfrak{t} .

Proof. Since the affine Weyl group acts transitively on the set of affine Weyl chambers, it suffices to prove this result for one affine Weyl chamber. Fix a fundamental Weyl chamber C_0 with walls given by $\{\alpha_1 = 0\}, \ldots, \{\alpha_k = 0\}$, with the $\alpha_i > 0$ on C_0 . This gives a notion of positive roots and the α_i are the simple roots. Hence, the α_i are an \mathbb{R} -basis for the subspace spanned over \mathbb{R} by the roots. Since the center is finite, this subspace is all of t. That

is to say the $\{\alpha_i\}_i$ are an \mathbb{R} -basis for t. Consider the unique affine Weyl chamber X contained in C_0 whose closure contains 0. Then

$$\overline{X} \subset \cap_{i=1}^k \{ 0 \le \alpha_i \le 1 \}$$

Since, according to results in Lecture 8, the α_i form a basis for \mathfrak{t} , this is a compact set.

Corollary 2.4. The action of Λ_0 on the set of affine Weyl chambers is free.

Proof. If some non-zero element $\lambda \in \Lambda_0$ stabilized a chamber, then all powers of λ would stabilize that chamber. This is impossible since the chamber is contained in a compact subset of \mathfrak{t} and λ is a non-trivial translation of \mathfrak{t} . \Box

Claim 2.5. Let $T' = t/\Lambda_0$. The images in T' of the affine walls in t divide T' into Weyl chambers, each one of which is the isomorphic image of an affine Weyl chamber in t. The Weyl group action on t descends to an action on T'. The action of W on T' is simply transitively on the set of Weyl chambers of T'.

Proof. Since the action of Λ_0 on the set of Weyl chambers is a free action, the first statement is immediate. Since $\Lambda_0 \subset W_{\text{aff}}$ is a normal subgroup with quotient W, the Weyl group action of \mathfrak{t} descends to an action on T'stabilizing the set of Weyl chambers. Since W_{aff} acts simply transitively on the set of affine Weyl chambers, W acts simply transitively on the Weyl chambers of T'.

2.3 The Action of W on Λ_B^*/Λ_0

Proposition 2.6. Translation by Λ_R^* , the dual lattice to the root lattice, leaves invariant the set of affine walls and hence Λ_R^* acts freely on the set of affine Weyl chambers. The Weyl group action on t stabilizes Λ_R^* . Thus there is a group $\Lambda_R^* \rtimes W$ stabilizing the set of affine Weyl chambers. The induced Weyl group action on Λ_R^*/Λ_0 is trivial. The group $\Lambda_R^* \rtimes W$ contains W_{aff} as a normal subgroup.

The analogue of these results hold when we replace Λ_R^* by the fundamental lattice Λ

Proof. Let $x \in \Lambda_R^*$. Then for each root α we have $\alpha(x) \in \mathbb{Z}$. Thus, translation by x takes the wall $\{\alpha = k\}$ to the wall $\{\alpha = k + \alpha(x)\}$, and hence preserves the set of affine walls. Thus, Λ_R^* acts as a group of translations stabilizing the affine Weyl structure. Since the affine Weyl chambers have compact closure, this action is a free action on the set of affine Weyl chambers.

Claim 2.7. The action of the Weyl group W on the quotient Λ_R^*/Λ_0 is trivial.

Proof. For any $x \in \Lambda_r^*$ and any root α , we show that the image of x under reflection in the wall $\{\alpha = k\}$ is congruent modulo Λ_0 to x. The reflection is given by

$$x \mapsto x + (k - \alpha(x))\lambda_{\alpha}$$

The difference of these two elements is $(k - \alpha(x))\lambda_{\alpha}$, which, for $x \in \Lambda_R^*$, is an integral multiple of λ_{α} and hence an element of Λ_0 .

Corollary 2.8. The action of W on Λ/Λ_0 is trivial.

Proof. $\Lambda \subset \Lambda_B^*$.

Lastly, we show that W_{aff} is a normal subgroup of $\Lambda_R^* \rtimes W$ with quotient naturally isomorphic to Λ_R^*/Λ_0 . To show that W_{aff} is a normal subgroup we need only show that conjugation by an element of Λ_R^* stabilizes \mathcal{W}_{aff} . Let $\lambda \in \Lambda_R^*$. Then

$$\lambda(\lambda_0 w)\lambda^{-1} = \lambda\lambda_0(\lambda^{-1})^w w = \lambda(\lambda^{-1})^w \lambda_0 w.$$

Since $(\lambda^{-1})^w \cong \lambda^{-1}$ modulo Λ_0 , the result is immediate.

We define a map $(\Lambda_r^* \rtimes W)/W_{\text{aff}} \to \Lambda_R^*/\Lambda_0$ by $\lambda w \mapsto [\lambda] \in \Lambda_R^*/\Lambda_0$.

Since $\Lambda_0 \subset \Lambda \subset \Lambda_R^*$ and Λ is a Weyl invariant lattice, it is clear that these results restrict to give analogous results for Λ instead of Λ_R^* .

2.4 The Chamber Structure for T

Now we pass from $T' = t/\Lambda_0$ to $T = t/\Lambda$. Here is the basic result.

Proposition 2.9. Each component of T_{reg} is the diffeomorphic image of a Weyl chamber in \mathfrak{t} . The Weyl group action on T preserves T_{reg} and acts transitively on the components of T_{reg} . The stablizer of each component of T_{reg} is isomorphic to Λ/Λ_0 .

Proof. As we have just seen, the set of affine walls projects to T' to give a wall structure and a chamber structure on which the Weyl group acts simply transitively on the chambers.

Claim 2.10. Λ/Λ_0 acts on T' preserving its Weyl chamber structure and acting freely on the set of chambers.

Proof. Since $\Lambda \subset \Lambda_R^*$, for every $\lambda \in \Lambda$ and every root α , the evaluation $\langle \alpha, \lambda \rangle \in \mathbb{Z}$. From this it is clear this that translation by λ stabilizes the set of affine walls and hence stabilizes the set of affine Weyl chambers and acts freely on the affine Weyl chambers. Thus, Λ/Λ_0 acts freely on the set of Weyl chambers of $\mathfrak{t}/\Lambda_0 = T'$.

The Weyl chambers of T are isomorphic images of affine Weyl chambers of \mathfrak{t} and their union is T_{reg} .

Since W acts trivially on Λ/Λ_0 , the semi-direct product $(\Lambda/\Lambda_0) \rtimes W$ is in fact a direct product $(\Lambda/\Lambda_0) \times W$. Let C be a chamber of T' and let $S(C) \subset (\Lambda/\Lambda_0) \times W$ be the stabilizer of C.

Lemma 2.11. The projection $S(C) \to (\Lambda/\Lambda_0)$ is an isomorphism. The projection of $S(C) \to W$ is an isomorphism onto the stabilizer in W of the chamber \overline{C} that is the image in T of C.

Proof. Since the stabilizer of C is a subgroup of the product, its projection to either factor is a homomorphism. Since (Λ/Λ_0) acts freely on the chambers of T', the function from $[\lambda] \in (\Lambda/\Lambda_0)$ to chambers in T' that sends $[\lambda]$ to λC is an injection. Thus, for each $(\lambda] \in (\Lambda/\Lambda_0)$, where is a unique $w \in W$ such that $w\lambda C = C$, and hence a unique element $([\lambda], w) \in (\Lambda/\Lambda_0) \times W$ in the stabilizer of C with first component $[\lambda]$. This proves that the projection from the stabilizer of C in $(\Lambda/\Lambda_0) \times W$ to (Λ/Λ_0) is an isomorphism.

Now consider the projection of $S(C) \to W$. Clearly, any element in the image of this homomorphism stabilizes the image chamber \overline{C} of C. Conversely, suppose that $w\overline{C} = \overline{C}$. Then wC and C are in the same (Λ/Λ_0) orbit, and hence there is $\lambda \in \Lambda$ such that $\lambda wC = C$. The element $([\lambda], w) \in (\Lambda/\lambda_0) \times W$ stabilizes C. This proves that the image of S(C) in W is the stabilizer of \overline{C} . On the other hand, since (Λ/Λ_0) acts freely on the chambers of T' no element S(C) is contained in (Λ/Λ_0) and hence the homomorphism $S(C) \to W$ is injective and consequently is an isomorphism onto its image. \Box

This completes the proof of the proposition.

Corollary 2.12. Under the action of W, the stabilizer of any chamber of T_{reg} is isomorphic to Λ/Λ_0 .

2.5 Proof of Theorem 2.2

We have already established that the map induced by $T \subset G$ defines a surjection $\Lambda \to \pi_1(G)$, and that $\Lambda_0 \subset \Lambda$ is contained in the kernel of this map. It remain to show that Λ_0 is equal to the kernel.

Consider the isomorphism $G/T \times_W T_{\text{reg}} \cong G_{\text{reg}}$. The components of T_{reg} are isomorphic to convex subsets of \mathfrak{t} and hence are contractible. The Weyl group acts transitively on the components of T_{reg} and the subgroup stabilizing any component is isomorphic to Λ/Λ_0 . Thus, we have an isomorphism

$$(G/T) \times_{\Lambda/\Lambda_0} C_0 \to G_{\text{reg}},$$
 (2.1)

where C_0 is a component of T_{reg} and Λ/Λ_0 is the subgroup of W stabilizing this chamber.

Since the W action on G/T is free, we can write the space in Expression (2.1) as fiber bundle over $(G/T)/(\Lambda/\Lambda_0)$ with fiber C_0 . Since C_0 is contractible, the fundamental group of this space is identified with $\pi_1((G/T)/\Lambda/\Lambda_0))$. Since G/T is simply connected and the action of Λ/Λ_0 on G/T is free, the fundamental group of the quotient is identified with Λ/Λ_0 . This is the fundamental group of $G_{\rm reg}$ and hence by Proposition 2.1, the fundamental group of G. This completes the proof of Theorem 2.2.

Corollary 2.13. Let G be a compact, connected Lie group. Then the fundamental lattice Λ is equal to the lattice Λ_0 generated by the λ_{α} as α ranges over the roots if and only if G is simply connected In this case, the center of G is Λ_B^*/Λ_0 .

More generally, for any compact Lie group with finite center, the center is identified with Λ_B^*/Λ and its fundamental group is identified with Λ/Λ_0 .

3 The Case of General Compact Lie Group

Now we turn to proving Theorem 0.1 for general compact Lie groups.

3.1 The Decomposition

Proposition 3.1. Let G be a compact, connected Lie group. Let $Z \subset G$ be the connected component of the center of G. There is a compact simply connected group H and a central subgroup $A \subset Z \times H$ and an isomorphism $Z \times_A H \to G$. The projection of $A \to H$ is an injection of A onto a central subgroup of H.

Proof. Let $\mathfrak{z} \subset \mathfrak{t}$ be the Lie algebra of Z, let \mathfrak{h} be the quotient Lie algebra $\mathfrak{g}/\mathfrak{z}$. Choose a G-invariant symmetric, positive definite inner product on \mathfrak{g} . The adjoint representation $G \times \mathfrak{g} \to \mathfrak{g}$ acts trivially on \mathfrak{z} and hence stabilizes it. Thus, the adjoint action of G also stabilizes \mathfrak{z}^{\perp} . Thus, $[\mathfrak{g}, \mathfrak{z}^{\perp}] \subset \mathfrak{z}^{\perp}$, and in particular, \mathfrak{z}^{\perp} is an ideal, and hence a sub Lie algebra of \mathfrak{g} .

In fact, this shows that $\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{z}^{\perp}$ is a decomposition of \mathfrak{g} as a direct sum of two Lie algebras. In particular, the Lie algebras \mathfrak{z}^{\perp} and $\mathfrak{g}/\mathfrak{z}$ are identified. Let $\overline{H} = G/Z$. Since the intersection of the kernels of the roots $\alpha: \mathfrak{t} \to \mathbb{R}$ is \mathfrak{z} , it follows that the center of \overline{H} is finite. Let H be the universal covering group. By Proposition 2.1 H is a compact, connected Lie group. The Lie algebra of H is $\mathfrak{g}/\mathfrak{z}$.

The inclusion of $\mathfrak{h} \to \mathfrak{g}$ by an isomorphism onto \mathfrak{g}^{\perp} induces a map $H \to G$. We also have the inclusion $Z \subset G$. Since Z is central in G the product of these two homomorphism defines a map of Lie groups $Z \times H \to G$. By construction it induces an isomorphism on Lie algebras. Since G is connected, this map is onto with discrete kernel. Since $Z \times H$ is compact, the kernel is a finite, central subgroup $A \subset Z \times H$. Since the map restricted to Z is injective, $A \cap Z = \{0\}$, meaning that the kernel of the projection mapping $A \to H$ is injective.

Theorem 3.2. Let G be a compact Lie group. Then Λ and Λ_0 are, as before, the fundamental lattice of G and the translation lattice for the affine Weyl group of G. Then the map $T \to G$ induces a surjection $\Lambda(G) \to \pi_1(G)$ whose kernel is $\Lambda_0(G)$. Thus, the inclusion $T \to G$ induces an isomorphism $\pi_1(G) \cong \Lambda(G)/\Lambda_0(G)$.

Proof. In the previous lecture we showed that the map $\Lambda \to \pi_1(G)$ is surjective and that $\Lambda_0(G)$ is contained in the kernel. It remains only to show that Λ_0 is equal to the kernel of this map.

First Case: $G = Z \times H$ with H having a finite center.

Let us consider the case when $G = Z \times H$ (i.e., when $A = \{e\}$). A maximal torus of G is of the form $Z \times T_H$ and its Lie algebra is $\mathfrak{z} \oplus \mathfrak{t}_H$. We denote by $\Lambda_0(G)$ and $\Lambda_0(H)$ the lattices in \mathfrak{t} and \mathfrak{t}_H that are the translation subgroups of the affine Weyl groups, $W_{\text{aff}}(G)$ and $W_{\text{aff}}(H)$, of G and H, respectively. Analogously let $\Lambda(G) \Lambda(H)$, an $\Lambda(Z)$ be the fundamental lattices of G, H, and Z, respectively. In this case the roots of G are trivial on \mathfrak{z} and are identified with the roots of H. Thus, $\Lambda_0(G) \subset \mathfrak{z}^{\perp}$ and is identified with $\Lambda_0(H)$. Also, we have $\Lambda(G) = \Lambda(Z) \times \Lambda(H)$. By Theorem 2.2 for the compact group H with finite center, $\Lambda(H)/\Lambda_0(H) = \pi_1(H)$ Thus,

$$\Lambda(G)/\Lambda_0(G) = \Lambda(Z) \times \Lambda(H)/\{0\} \times \Lambda_0(H)$$

= $\Lambda(Z) \times \pi_1(H) = \pi_1(Z) \times \pi_1(H) = \pi_1(G).$

This establishes the Theorem 0.1 in the product case.

The General Case.

Now consider $G = Z \times_A H$, with H simply connected, where is a finite subgroup whose projection to H is an injection onto a central subgroup. Since $Z \times H \to G$ is a finite covering, it is an isomorphism on the Lie algebras. Since H is simply connected, $\Lambda(H) = \Lambda_0(H)$. Thus, we have

$$\Lambda_0(G) = \Lambda_0(H) = \Lambda(H).$$

We have a commutative diagram:

$$\begin{cases} 0 \} \longrightarrow \{0\} \longrightarrow \{0\} \longrightarrow \{0\} \\ \uparrow & \uparrow & \uparrow \\ 0 \} \longrightarrow \pi_1(Z \times H) \longrightarrow \pi_1(G) \longrightarrow A \longrightarrow \{0\} \\ \uparrow & \uparrow & \uparrow \\ 0 \} \longrightarrow \Lambda(Z) \times \Lambda(H) \longrightarrow \Lambda(G) \longrightarrow A \longrightarrow \{0\} \\ \uparrow & \uparrow & \uparrow \\ 0 \} \longrightarrow \{0\} \times \Lambda(H) \longrightarrow \{0\} \times \Lambda(H) \longrightarrow \{0\} \\ \uparrow & \uparrow & \uparrow \\ 0 \} \longrightarrow \{0\} \times \Lambda(H) \longrightarrow \{0\} \longrightarrow \{0\}$$

The rows are exact. The first column is exact by what we established in the product case. The last column is obviously exact. A simple diagram chase shows that in fact the second column is exact, too. Hence,

$$\pi_1(G) \cong \Lambda(G) / \Lambda(H) = \Lambda(G) / \Lambda_0(G).$$

This completes the proof of Theorem 0.1.

3.2 Description of Λ_R^* and Λ_0 when the center is not finite

Let us begin with the product case: $G = Z \times H$ where Z is a central torus in G and H has finite center. Then:

- $\Lambda_0(G) = \{0\} \times \Lambda_0(H)$ is a co-compact attice in $\mathfrak{h} \subset \mathfrak{g}$.
- $\Lambda(G) = \Lambda(Z) \times \Lambda(H)$
- $\Lambda_R(G) = \Lambda_R(H)$ acts trivially in \mathfrak{z} . and is a full lattice in the subspace of \mathfrak{g}^* of elements that annihilate \mathfrak{z} .

It follows that $\Lambda_R(G)^* = \Lambda_R(H)^* \times \mathfrak{z}$, is the product of a lattice in \mathfrak{h} with \mathfrak{z} , and hence has positive dimension.

The quotient $\Lambda(G)/\Lambda_0(G)$ is identified with $\Lambda(Z) \times \Lambda(H)/\Lambda_0(H)$, ane hence $\Lambda(G)/\Lambda_0(G) \cong \pi_1(G)$. In this case, the Weyl chambers are no longer compact and the action of Λ on the set ha fixed points. The subgroup $\Lambda_Z \subset \Lambda_G$ stabilizes every Weyl chamber.

I will leave the general case $Z \times_A H$ as a homework exercise.