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1 Getting started

1.1 Braids in the natural world

Braids are familiar objects in the natural world. We illustrate with a few examples:

1. Archeologists studying human remains from the dawn of civilization have uncovered skeletons with
braided hair. The idea of combing and braiding human hair seems to us to be a message from our
earliest ancestors that we share uniquely human traits.

2. Remains from an ancient fishing expedition in Antrea, on the border between Finland and Estonia,
show that the discovery of a way to braid reeds, between 6,500 and 4,000 BC, was put to use to catch
fish for dinner.

3. Taking a very big leap forward in time, astronomers studying the rings of the planet Saturn have seen
what appear to be braiding in the ‘strands’ of the F-ring. What does it mean? See
http://pds.jpl.nasa.gov/planets/captions/saturn/fring.htm

4. The closed orbits in the solutions to Lorenz’s differential equations are a model for chaos. Their
underlying pattern is based upon braids.

Figure 1: Numerical integration of Lorenz’s equations suggests that the orbits are closed
braids

5. A famous unsolved problem in that part of Computer Science which is known as Complexity Theory
is known as the “P = NP” problem. It has been shown to be equivalent to an easily understood
problem about braids [2]. We will discuss it in §2.4.
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There is much more to say about these examples, however (except for the last example) our primary interest
in this book will not be on applications. Rather, we are interested in the way in which braids point us toward
new mathematics. To be sure, mathematics has been put to good use in all of the sciences, and in many
different ways, yet mathematics is a scientific discipline in its own right, which is motivated less by the
wish for ever-new applications than by the wish to discover new mathematical structure. Our goal is to give
the reader a small glimpse of that, with braids (and their close relatives, knots and links on the topological
side of the family and groups on the algebraic side) as the motivating and unifying theme.

Our choice of this unifying theme, and our approach to it, has its origins in work first done by the mathe-
matician Emil Artin in [1]. His seminal work revealed the basic mathematical framework which underlies
the concept of a group of braids. As we proceed, we will also be guided by our own tastes and preferences,
which have evolved out of the experience gathered during 30 years as a research mathematician whose work
has centered about braids. We will require very little in the way of background; most of what will be needed
is available to every student who has successfully completed 11th grade (no need for either trigonometry
or Calculus!) and mastered the rules of clear thinking. Those rules are basic, not just in mathematics but
in essentially all human endeavors. The rewards will be seen to be significant, but we emphasize that the
reader will need patience, and may have to read slowly, putting the text aside frequently until new ideas are
absorbed. This is perhaps the biggest stumbling block that students encounter in mathematics. Our hope is
that the reader who puts the needed effort into the project will come away with a glimpse at both solved and
unsolved problems, some of which challenge mathematicians to this day, and with a new understanding of
the structure that can be uncovered by the simple use of mathematical reasoning.

1.2 Braids in mathematics

1.2.1 Braid patterns

We begin our work by trying to capture the very intuitive and familiar notion of a braid on n strands.
Examples are given in Figure 2. Braids strands are always oriented top to bottom, as in W . The simplest

X

1         2         3S
1 2

1 2

F

W

1         2         31         2         3

VZ

1 2

U

Figure 2: Some examples of braid patterns, and of inadmissible candidates

braid pattern is one on two strands, with the braid W in Figure 2 as an example. One could also continue
the twisting arbitrarily many times, or twist in the reverse direction, but that is all. The braid X illustrates
the case of 3-strands, and shows two repeats of the pattern for the braid in a person’s hair. If one keeps
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repeating this pattern one can make a very long braid. The first, second and third braid strands begin at the
points that are labeled 1,2,3.

We need to define a braid pattern. Since it is usually helpful to think concretely, we shall take S to be the
positive x-axis, and F to be its translation along the z axis to some negative value of z, as in the sketches
in Figure 2. Choose a positive integer n, and mark n distinct points 1, 2, . . . , n, in order along S, with
corresponding points on F. The points need not be equally spaced, and the spacing on S and F need not
be the same, however on both S and F point i always appears before point i + 1. Finally, connect the
initial points to the final points by braid strands, a set of n distinct arcs which join {1, 2, . . . , n} ⊂ S to
{1, 2, . . . , n} ⊂ F. The braid strands are required to obey the following rules:

• The first braid strand begins at point 1 on S and ends at one of the final points (not necessarily point
1) on F, the second begins at 2 on S and ends at any unoccupied marked point on F and so forth. For
example, in the braid W in Figure 2 strand 1 starts at point 1 on S and ends at point 2 on F. Strand 2
starts at point 2 on S and ends at the only open spot, that is point 1 on F.

• Distinct braid strands never intersect. In Example X strand 1 passes behind strand 2, then in front of
strand 3, then behind strand 2. We have shown this by the use of broken lines, in the same way that
overpasses and underpasses are distinguished from one-another, to give a suggestion of 3-space, on a
2-dimensional map.

• The collection of braid strands are restricted to lie in the slice of 3-space that lies between the hor-
izontal plane that contains S and the horizontal plane that contains F. Each braid strand intersects
each intermediate plane exactly once, with no backtracking. The union of all n strands intersects
each intermediate plane in exactly n points.

Note that Example U is not a braid pattern (because a pair of strands intersects, giving a plane which is
intersected once by the braid strands instead of twice. Examples V and Z are also not braid patterns because
there are planes that are intersected 4 or 5 times instead of just 3 times by the 3 braid strands.

Definition 1.1. A pattern for an n-braid, or an n-braid pattern is the union of the initial line S, the final
line F and the n braid strands that join them. Examples are the braid patterns W and X in Figure 2 and
Y1, Y2, Y3 in Figure 3.

In Figure 2 we are looking at the slice of 3-space that is between the horizontal planes that contain S and F,
and we see the braid strands projected onto a vertical plane that contains S and F. ExampleW (respectively
X) is a 2 (respectively 3)-braid pattern, and examples Y1, Y2, Y3 in Figure 3 are 5-braid patterns. In all
these examples the braid strands are to be thought of as oriented from S and to F. This represents a choice
on our part, one that we make purely as a matter of convenience. The reason we have chosen to place F
below S is to give us room (on a long rectangular page) to draw pictures of very long braids, when we need
to do so. Other researchers use different conventions.

An immediate question arises: while the 5-braid patterns Y1, Y2 and Y3 in the figure are clearly distinct
patterns, are they really different ‘braids’? Let’s try to think like topologists, who seek to catch the essential
features about the way that braid strands interweave with one-another, while ignoring non-essential features
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such as the lengths of the braid strands, the distance between S and F, and the spacing between the initial
points along S and final points on F, and even the order in which certain crossings occur. With that in mind,
we allow ourselves to subject the pattern to an admissible deformation in 3-space, that is a deformation
which is subject to the following rule:

• A braid pattern is allowed to be smoothly stretched or tightened through other braid patterns with the
same number of strands. At every instant during the deformation distinct strands are disjoint, and
intersect each intermediate horizontal plane in exactly n points. In particular, two intersection points
never coalesce into one, although they may come arbitrarily close. The z-coordinates of S and F are
allowed to change, stretching or shrinking the braid strands as they do so, in any way, as long as,
during the deformation, S and F remain parallel, with F below S.

21 3 4 5 21 3 4 5 21 3 4 5

Y
1 Y

2

21 3 4 5

Y3

21 3 4 5

21 3 4 5

Z
1

Z
2

Z
3

Figure 3: Examples of deformations. Y1 → Y2 → Y3 is admissible; Z1 → Z2 → Z3 is not.

Each of the 5-braids Y1, Y2 and Y3 in Figure 3 is an admissible deformation of the other two. In Y2 the first
two strands of Y1 have been deformed so that the projected image of the crossing between these two strands
has been ‘pushed up’. Note that the two start points and the two finish point (on S and F) of the strands has
not been changed, although we could have changed them as long as we preserved the order 1,2,3,4,5. After
the deformation the projected image of the second strand of Y2 crosses strand 1 before it crosses strand 3.
Passing from Y2 to Y3 we see that in Y3 the second strand has been stretched to the right, so that now its
projected image crosses strand 3 before it crosses strand 1. In all three pictures it should be clear that the
5 strands intersect each intermediate plane in exactly 5 points. If the braid patterns Y1, Y2, Y3 are related
to one-another by admissible deformations, we say that they are equivalent. We write Y1 ≡ Y2 ≡ Y3,
meaning that Y1, Y2 and Y3 differ by admissible deformations. Note that Y1 ≡ Y2 implies Y2 ≡ Y1. Also, if
Y1 ≡ Y2 and Y2 ≡ Y3 then Y1 ≡ Y3. Each deformation of a pattern for an n-braid yields a new pattern for
an n-braid, and there are infinitely many admissible deformations. For example, we could have stretched
the entire pattern by moving S very far up, or moving F very far down, stretching the strands as we do
so but without allowing them to touch one-another in 3-space. It may be helpful to think of admissible
deformations in the passage Y1 → Y2 → Y3 as a ‘path Yt of braids’ where t varies over the interval [1,3].
The pattern Y1 is being gradually defomed, in unit time, to Y2, and then to Y3 and at each intermediate t it is
a braid. A deformation which is forbidden is one which violates the rules for admissibility. An example of
an inadmissible deformation is the passage Z1 → Z2 → Z3 in Figure 3 because such a deformation creates
intermediate configurations which are not braid patterns. The deformation that takes Z1 to Z3 is therefore
inadmissible.
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Let us record what we have learned, and introduce a term for it:

Definition 1.2. Two n-braid patterns are equivalent if there is an admissible deformation taking one to the
other.

Every n-braid pattern Y describes a unique n-braid Y, but infinitely many different patterns will in general
describe the same n-braid. This is in fact very similar to the situation encountered when one learns how
to multiply and divide numbers. The fractions 4

6 and 12
18 describe the same rational number 2

3 ∈ Q, and
in fact there are infinitely many other fractions which also do, yet with enough time most elementary-
school children understand the need to distinguish the representatives from the underlying rational number.
Eventually, they also understand that sometimes it is quite useful to have the flexibility that is afforded by
being able to change the representative without changing the underlying fraction, for example by arranging
so that two fractions which are to be added have a common denominator. The analogy with braids is so
striking that it even seems quite natural to say that 4

6 and 12
18 are equivalent fractions, i.e. 4

6 ≡
12
18 . More

generally, all fractions that are equivalent to 2
3 have the form 2m

3m , where m is a positive integer. We will
call this set, that is { 2m

3m , where m ∈ Z} an equivalence class of fractions. Similarly,

Definition 1.3. The collection of all braid patterns that are deformable to one-another are an equivalence
class of braid patterns, or more simply a braid. For example, the 5-braid pattern Y1 and all 5-braid patterns
Y ′ ≡ Y1 determine a 5-braid Y.

The concept of an “equivalence class” is an important idea in mathematics, and it can be a stumbling block,
so one more example may be useful. Let N = {0,+1,−1,+2,−2, . . . } be the set of all integers. Define
n ≡ m if 2 divides n−m. There are two distinct equivalence classes in N : the integers that are equivalent
to 0 (the even integers) and the integers that are equivalent to 1 (the odd integers), and an arbitrary integer
is either even or odd, never both. Thus the condition n ≡ m divides the set of integers into two equivalence
classes: the even integers and the odd integers.

In the example of the set of rational numbers Q there are infinitely many rational numbers, each represented
by infinitely many fractions. In the example of braid patterns there are infinitely many distinct braids, each
represented by infinitely many distinct braid patterns. In our newest example there are infinitely many
even integers and also infinitely many odd integers, but only two equivalence classes, the even and the odd
integers.

Returning to fractions and rational numbers, we observe that there is a nice way to decide whether two
fractions a

b and c
d describe the same underlying rational number.

• To decide whether fractions a
b and c

d represent the same rational number, we ask whether

(
a

b
)(
d

c
) =

ad

bc
≡ 1 (1)

For example, if we want to decide whether 4
6 and 12

18 represent the same rational number, lets look at the
product of 4

6 and the inverse of 12
18 , i.e. 18

12 , that is 4·18
6·12 = 72

72 . Clearly this product is 1. On the other hand,
the fractions 4

6 and 3
5 do not represent the same rational number because 20

18 6= 1.
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This brings us to a fundamental question about braids:

The first fundamental problem: Given two n-braid patterns X and X ′, find an algorithm to decide
whether X ′ is deformable through braid patterns to X .

Fortunately, we will be able to solve the problem in a very satisfactory way, moreover the solution will turn
out to be far from obvious. There is a hint of how to do it in the solution we gave in (1) to the related
problem for rational numbers. Let’s keep it in mind as we develop the necessary machinery.

1.2.2 Multiplying fractions and multiplying braid patterns

The solution that we gave to the fundamental problem for rational numbers was described in (1). Seeking
an analogy, we are lead to ask whether there is a way to ‘multiply’ braids?

Let X and Y be n-braid patterns. It is important that we use the same integer n for both. We wish to define

X
Y

XY

1 2 3

1 2 3

1 2 3

1 2 3

XY deformed

Figure 4: Multiplying braid patterns

a new n-braid pattern, which we call XY , referring to it as the product of X and Y , just as the product
of the two rational numbers 4

6 and 5
3 is 20

18 . To define XY we first use allowable deformations to deform
the braid pattern that represents X and the pattern that represents Y until the final line of X coincides in
3-space with the initial line of Y , also the marked points on the former and latter coincide. We then erase
the final line of X and the initial line of Y , as in the example in Figure 4. The result will be a braid pattern
which we call XY . Its initial line is the initial line of X and its final line is the final line of Y . It is an
n-braid pattern because X and Y were n-braid patterns and we took care that the deformations we applied
were admissible.

In the example in Figure 4, it turns out that when the product XY is formed there is some ‘cancellation’ at
the interface between the the end ofX and the beginning of Y . The apparent simplification occurs because,
in this particular instance, the final crossing in X has a rather special relationship to the initial crossing in
Y , a matter that will be discussed in §1.2.4.
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1.2.3 The integer 1 and the identity braid pattern I

Encouraged by the fact that there is a way to multiply braids, we note that the positive rational number
1 plays a very special role in multiplication, in fact it is a trivial role. For every x ∈ Q we know that
1 · x = x · 1 = x. Is there a braid I that behaves, in some way, like the number 1? Indeed there is, and
it is shown in Figure 5. The products X, IX and XI are different braid patterns, but it is immediately and
intuitively clear that they represent the same braid X because there are allowable deformations that shrink
the part of the pattern that came from I, whether it is placed before or after the old part X .

1 2 3

1 2 3

1 2 3

1 2 3

I                                             X                                                 X I                                        I X

Figure 5: The identity braid pattern

1.2.4 Inverses of fractions and inverses of braid patterns

Motivated once again by the example of rational numbers, we note that for every fraction a
b there is another

fraction, namely b
a with the property that (ab )( ba ) = ( ba )(ab ) = 1. We call b

a the inverse of a
b because it

‘undoes’ it. Is there an analogue for braids? In fact there is, and it’s illustrated in Figure 6. The left two

X  X                I                 X     X

1 2 3 1 2 3 1 2 3

-1 -1

1 2

σ σ -1

1 2

 I 

Figure 6: The inverse of a braid pattern
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sketches in Figure 6 show the inverse of an elementary 2-braid σ. 1 It’s immediately clear that the product
of σ and its reflection about the finish line is deformable to the identity braid. Choosing any braid pattern
X , we find X−1 by reflecting X about a line parallel to S and F. The sketches on the right show XX−1

and also X−1X . It is intuitively clear that XX−1 and X−1X are both are deformable to I. More precisely,
if we start at the interface between X and X−1 then we see crossings that appear to cancel. Tightening the
braid strands so as to eliminate the cancelling crossings, new cancelling crossings appear. Continuing, we
may repeatedly tighten at the interface, until the entire product is XX−1 is reduced to the identity braid.
This is why we think of the reflection of X as X−1.

Remark 1.4. The reader may be wondering whether we have found a solution to the first fundamental
problem, the problem of deciding whether two braid patterns X and Y represent the same underlying
braid? Recall that when we asked the same question about fractions x = 4

6 and y = 12
18 we solved the

problem by computing xy−1 = (4)(18)
(6)(12 = 72

72 and asking whether it represents the rational number 1? The
very same idea works with braid patterns. To decide whether the 3 braid patterns Y1, Y2, Y3 in Figure 2
represent the same underlying braid, compute, for example, Y1Y

−1
2 and Y1Y

−1
3 and ask whether these two

braids can be “combed’ to the identity braid? The answer is yes, and the procedure is indeed a way to solve
the first fundamental problem. The only difficulty with it is that we cannot be sure, at this time, that we
know how to identify all the patterns that represent the identity braid.

A first thought is that if an n-braid pattern represents the identity, then a good hard pull on the finish line
should stretch the strands until there its lots of cancellation and n straight lines appear. But is that really
so? Our experiences with tangled hair and combs suggest that perhaps yjere are subtleties. Maybe there
are patterns for which, for example, we need to increase the number of crossings, inserting some number
of little cancelling pairs of elementary braids in strategic places, before the pattern can be simplified. Or
maybe it’s a simple matter of cancelling crossings very carefully, in the right order. In fact, the problem is
fairly subtle. We will solve it, but are not ready to do so yet.

1.2.5 The associative law for fractions and for braid patterns

A final observation is in order about our product rule, that again is suggested by the example of the positive
rational numbers Q: The associative law, (XY )Z = X(Y Z) holds for braid patterns just as it does when
we multiply rational numbers. In the first instance we form the product XY , and compose it with Z, to
obtain (XY )Z. In the second instance we begin with the product Y Z, and then pre-multiply it by X , to
obtainX(Y Z). The reader is encouraged to draw a few pictures to convince himself that the order in which
the intermediate lines have been erased makes no difference, and that we can safely drop all the parentheses
and refer to the product as XY Z. It is worthwhile to mention that our project would be very difficult if the
associative law did not hold. We would be forced to keep track of multiple parentheses, and the resulting
bookeeping would be prohibitive.

Exercise 1.5. Show by example that the product XY and the product Y X do not, in general, represent
the same braid. This is quite different from multiplication of numbers, where the products xy and yx are

1Mathematicians need to use lots of letters, and the Greek alphabet is particularly handy as an extra set. The lower case Greek
letter σ has traditionally been used to denote elementary braids, and we follow that tradition. It’s called ‘sigma’, and we will have
more to say about it very soon.
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always the same, a matter which is stressed repeatedly even though the children who are learning it have
no reason to think it could ever be otherwise.

Exercise 1.6. Show by example that for certain special braidsX and Y the productsXY and Y X actually
do define the same braid.

Exercise 1.7. Suppose that there is an admissible braid deformation Xt that takes the n-braid pattern XY
to a new n-braid pattern X1 and an admissible deformation Zt that takes Y Z to Z1. The associative law
says that X1Z and XZ1 define the same n-braid. Give an explicit way to deform X1Z to XZ1.

1.2.6 The group Bn of n-braids

We are finally ready to take a big step: to pass from the patterns that describe representatives of braids to
the more abstract notion of a braid. Once that that little step has been taken, it will be natural to take the
next step, which is to define the concept of a group of braids:

Definition 1.8. A braid on n strands is an equivalence class of braid patterns, under the equivalence that is
defined by admissible deformations.

We have taken care to define products and inverses on braid patterns in such a way that the key laws hold
for not just for patterns but also for braids, that is for equivalence classes of patterns. This means that:

1. Let X,Y be braids. Choose any patterns X,Y that represent them. The product XY is the braid that
is represented by the product of the patterns X and Y .

2. Multiplication of braids is associative. In particular, choose any 3 braid patterns X1, X2, X3. Then
(X1X2)X3 and X1(X2X3) represent the same braid X1X2X3.

3. The identity braid I is well-defined, independently of the choice of its representative . In particular,
for any choice of braid patterns X, I representing X, I the rule XI = IX = X.

4. Inverses of braids are well-defined. In particular, if X1, X2 that both represent the braid X. Then
X−1

1 , X−1
2 both represent the same braid X−1.

Definition 1.9. The collection of n-strand braids Bn, with the rule that we have given for forming products,
is known as the group of braids.

Remark 1.10. We may from now on safely work with braid patterns, knowing that anything new that we
learn holds more generally for braids, not just for their representating patterns. This is much the same as
we do for fractions and the underlying rational numbers that they represent.

Observe that the product rule for multiplying two fractions, and the product rule for multiplying two braids,
are very different. In fact they are so different that we seem to need a definition:

Definition 1.11. Let G be a set. A product on G is a rule which determines, for every ordered pair of
elements x, y ∈ G, a unique element x · y ∈ G, which is called the product of g1 and g2. The product
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is required to be associative, that is (xy)z = x(yz) for every triplet x, y, z ∈ G. Also, there is a unique
identity element 1 ∈ G which satisfies 1x = x = x1 for every x ∈ G. Also, for every x ∈ G there is
a unique element x−1 ∈ G such that xx−1 = x−1x = 1. If all of these are satisfied, then G with this
particular product rule is said to be a group.

We already know two examples of groups:

1. The group Bn of braids on n strands.

2. The collection of rational numbers Q were our first example of a group. The product rule is mul-
tiplication of representatives, that is of fractions. The identity element is the rational number 1,
represented by the set {nn}, where n is any positive integer. The inverse of a rational number is de-
fined by taking any representative a

b and replacing it by (ab )−1 = b
a . The associative law holds for

both fractions and the rational numbers that they represent.

In fact, we also know a third example:

3 The natural numbers N = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }, with addition of numbers as the ‘prod-
uct’ rule is another example of a group. For every two integersN,M ∈ N we know how to determine
N + M . We also know that if N,P,M are numbers, then (N + M) + P = N + (M + P ). The
‘identity element’ in N is 0. And we know that for every integer N we can find its inverse, that is
−N , also that N + (−N) = 0. Observe that, while N + (−N) = (−N) +N , this is not part of the
definition of a group, and indeed it is not true for braids.

1.3 Looking ahead

Once mathematicians have convinced themselves, via examples, that there is a unifying idea that appears in
multiple examples, it is the moment to take a big leap forward, and to ask what can be learned that depends
on the unifying theme, and not on the explicit examples. If that can be done, then there are sure to be many
applications, because everything that has already been learned can be applied to new examples, without
developing all the machinery over again from the start. That is the basic idea that we hope to convey in
this little book. But before we take that leap, and consider groups in a more general setting, it would be
wise to work out some of the consequences of the existence of a ‘group structure’ on braids. That will be
our goal in Chapter ??. In particular, we will use the fact that braids form a group to find a solution to the
fundamental problem of deciding when two braid patterns define the same underlying braid. We now know
that problem is equivalent to the problem of recognizing when a braid pattern is equivalent to the identity,
the problem of combing the identity braid pattern. See §2.

As a second application, we will explain how a very fundamental and unsolved problem in computer science
can be expressed as a question about braids. See §2.4.

The subtitle of this book is “An introduction to topology and the theory of groups”. Peeking ahead, we will
take a little break to show how braids are related to another common object, knots and links. That is the
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subject of Chapter3. Knots and links are squarely in the middle of the part of mathematics which is known
as topology.

Finally, in Chapter 4 we will learn a little bit more about that part of mathematics that has come to be known
as the Theory of Groups. We stress that, while the concept of a group is unknown to most educated people,
it is just a hairsbreadth away from the manipulations which every grade-school child is forced to learn,
sometimes painfully, when he/she learns to add, subtract ,multiply and divide the integers and the rational
numbers. Indeed, with the advent of digital computers, most educated people learn (without realizing it)
that there is a group of integers mod 2, where the basic elements are just 0 and 1. We will discuss that too
in Chapter 4.

A word is in order about proofs. Proofs lie at the heart of mathematics, yet so far we have not had the
need to prove anything. Rather, we have taken some trouble to give carefully motivated definitions. Indeed,
in an exposition of the same subject to an audience of trained mathematicians, this entire chapter would
have been replaced with a single definition: The braid group Bn is the fundamental group of the space
of configurations of n points on a plane, followed by some number of examples to give meaning to the
definition. In this book we will give some proofs. In other places we will suggest how a particular fact can
be proved without actually going through all the gory details. In still others we will simply ask the reader
to accept a particular fact without proof, either because the proof is too long to be reproduced, or because
the anticipated audience will very likely lack the needed tools. We will make every effort not to slide over
matters which need proof, an issue which is always present when one tries to leap ahead too quickly.
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2 Combing the identity braid pattern

Our goals in this chapter are:

1. We will find a way to describe braids symbolically, by ‘words’ in a set of ‘generators’, thereby
reducing the need for pictures. As will be seen, the words, like words in the Roman alphabet, have a
natural notion of letter length. The length is a measure of the ‘complexity’ of the word, and so of the
braid.

2. We will introduce a related tool, ‘relations between the generators’. These relations will enable us to
gain some control over admissible braid deformations.

3. Armed with the preceding machinery, we will be able to solve the fundamental problem: to decide
algorithmically when two braid patterns (described now by words) represent the same braid.

4. The algorithm that we will be able to give is not very efficient. It cries to be improved, and indeed it
has been improved. We will not have time to discuss the improvements, however the understanding
that is gained by working with specific examples will lead us, naturally, to a discussion of complexity
issues. The question of finding a shortest word in the generators turns out to be one of a class of
problems which is known, in Theoretical Computer Science, as the class of ‘NP-complete’ problems.
We will explain what this means, and in so doing will be able to describe one of the deep open
questions which lies at the forefront of current research in complexity theory.

2.1 Symbols that describe braid patterns

Pictures motivated the entire concept of a braid, and they are very pleasant to view, but they can be time-
consuming. For that reason it is nice to have a way to define patterns for braids symbolically, so that we
can reduce our reliance on pictures. The admissible deformations of §1.2.1 are just the tool that we need
to do it. To explain what we have in mind, recall that S and F are parallel to the x axis in 3-space, with S
above F. The xz plane, call it P , then contains S and F. Project the braid pattern onto P . After perhaps
an allowable deformation, as shown in the passage from Y1 to Y ′1 in Figure 7 we may assume that distinct
double points have distinct z coordinates. The projection of the braid pattern then has a finite number, say
m, of double points, whose z-coordinates then have a natural order, according to their distance from S.
After each crossing and before the next crossing we choose an intermediate horizontal line that is parallel
to S and F whose projection intersects the n strands in n distinct points. In this way we have constructed
a grid on P which is divided into m strips, and in each strip there will be precisely two elementary braid
strands which are adjacent and cross, and n − 2 additional ones which are essentially vertical arcs. See
Figure 7. Finally, observe that there are two kinds of elementary braids, those in which strand k crosses
over strand k + 1, and those in which strand k + 1 crosses over strand k, and they are mutually inverse.
Following earlier notation, we call the former σk and the latter σ−1

k , noting that if the braid index is n then
1 ≤ k ≤ n − 1. We can think of σ1, . . . , σk−1, σ

−1
1 , . . . , σ−1

k−1 as a set of letters in an alphabet. Letters
can of course, be concatenated to define words. For example, the 5-braid Y1 in Figure 7 (it’s the same as
the braid pattern Y1 in Figure 2) can be described by the word σ1σ4σ2σ3σ

−1
4 σ3σ

−1
1 . A different example is
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σ -1

Y Y’1 1

Figure 7: Elementary braids

the 3-braid pattern X in Figure 7, the braid in a person’s hair, corresponds to the word σ1σ
−1
2 σ1σ

−1
2 . The

kind of deformation that was illustrated in Figure 7 can be applied to any braid pattern. This shows that
every braid pattern may be described by a word in the alphabet σ1, . . . , σn−1, σ

−1
1 , . . . , σ−1

n−1. The word is
not unique, because most of the time there are lots of choices that are involved.

Definition 2.1. The elementary braids σ1, . . . , σn−1 are said to generate the group Bn of n-braids. This
means that every n-braid can be described by a word in the elementary braids and their inverses. If W =
s1s2 · · · sk−1sk, where each si is a generator σi or its inverse σ−1

i , then the inverse of W is the word
W−1 = s−1

k s−1
k−1 · · · s

−1
2 s−1

1 . The identity element I of Bn is represented by the empty word.

Exercise 2.2. Draw some pictures to convince yourself that the 3-braid pattern in Figure 2, which is de-
scribed by the word σ1σ

−1
2 σ1σ

−1
2 , can be deformed to 2 different patterns that are described by the words

σ2
1σ
−1
1 σ−1

2 σ1σ
−1
2 and σ1σ

−1
2 σ−1

2 σ2σ1σ
−1
2 .

More generally, show that if W is a word that describes a braid pattern, then an equivalent pattern is
obtained by inserting anywhere in the word W the syllable σiσ−1

i or σ−1
i σi, for any i between 1 and n−1.

Explain why the word W and the new word W ′ define equivalent braid patterns.

Exercise 2.3. Draw pictures for the 3-braids that are described by the braid words W = σ3
1σ
−2
2 σ5

1σ
−1
2

and V = σ3
1σ
−1
2 σ5

1σ
−2
2

Exercise 2.4. Let W = σε1i1 . . . σ
εr
ir
, where each ıq is between 1 and n − 1 and where each εq = ±1 be a

word that represents a braid W. Find a word that represents W−1.

2.2 Symbols that describe braid deformations

2.2.1 Trivial relations

We already know that braid patterns can be changed by applying admissible deformations. A different
aspect of the same phenomenon is that, if a word W describes a braid pattern, then we can always insert or
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delete a syllable σ±1
i σ∓1

i somewhere inW to obtain another word that represents an admissible deformation
of the pattern, because

σkσ
−1
k ≡ σ−1

k σk ≡ I (2)

The two ‘equations’ in (2) are called trivial relations. Using them over and over again gives infinitely many
different words, all describing equivalent patterns. This suggests the pleasant possibility that a finite set of
equivalences between braid words could point the way to capturing the key features of the non-uniqueness
of braid patterns. This is encouragement to ask what else might happen?

2.2.2 Commutativity relations

There is another fairly basic way that distinct words can be seen to define distinct braid patterns but the
same braid. In the sketch of Y1 in Figure 7 we chose the dotted lines so that the first letter is σ1 and the
second is σ4, but we could equally well have chosen a different dotted line, and found that σ4 came before
σ1. Indeed, it is easy to see that whenever two adjacent syllables are σ±1

j σ±1
k , where j and k differ by at

least 2, either order is possible. Therefore we have the four ‘commutativity relations’. There are four of
them because σjσk has 2 letters, and each could either be positive or negative, giving 22 = 4 possibilities.

σjσk ≡ σkσj if |j − k| > 1, for all 1 ≤ j, k ≤ n− 1 (3)

σ−1
k σ−1

j ≡ σ−1
j σ−1

k if |j − k| > 1, for all 1 ≤ j, k ≤ n− 1 (4)

σjσ
−1
k ≡ σ−1

k σj if |j − k| > 1, for all 1 ≤ j, k ≤ n− 1 (5)

σ−1
j σk ≡ σkσ

−1
j if |j − k| > 1, for all 1 ≤ j, k ≤ n− 1 (6)

These four commutativity relations between words in the generators capture the analogue, in the setting of
words, of admissible deformations of braid patterns.

Let’s look at them more carefully. A first observation is that (4) can be obtained from (3) simply by taking
inverses of both sides. So (4) seems a little bit repetitious, once we know (3).

Second, observe that once we know that (3) is true, it will certainly continue to be true if we multiply both
sides of (3) by σ−1

k on both the right and the left. That is, the relation:

(σ−1
k )(σjσk)(σ−1

k ) ≡ (σ−1
k )(σkσj)(σ−1

k ). (7)

is clearly a consequence of (3), because if we replace σjσk and σkσj in (7) by 1, then it reduces to the
identity σ−2

k ≡ σ−2
k . But then let’s use the associative law to regroup the terms as:

(σ−1
k σj)(σkσ−1

k ) ≡ (σ−1
k σk)(σjσ−1

k ).

Applying the trivial relation (2) to simplify, we have learned that (5) is a consequence of (3) and (2).

We leave it to the reader to show that, in a similar way, (6) is a consequence of (3) and (2). For this reason
we say that (3) is the basic commutativity relation, and that (4), (5) and (6) are consequences of (3).

Sketch (a) in Figure 8 illustrates the basic commutativity relation. It goes without saying that any one of
the four could have been chosen as being the basic one, however (for reasons that will be come clear very
soon) we will always have a preference for positive words and positive relations between them.
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j j+1

kσ       j   σ

k+1k

σ σ
j     k

k k+1 k+2

kσ        σ
k+1     kσ

k k+1 k+2

σ    σ
k+1     k k+1σif  |j - k| > 1

j j+1 k+1k

(a) (b)

k k+1 k+2

kσ        σ
k+1     kσ

k k+1 k+2

σ    σ
k+1     k k+1σ

(c)

k k+1 k+2

kσ        σ
k+1     kσ

k k+1 k+2

σ    σ
k+1     k k+1σ

(d)

-1 -1-1 -1

Figure 8: Sketch (a) illustrates the basic commutativity relation. Sketches (b),(c) and (d) illustrate
the basic handle move and two others, the one in (c) being valid and that in (d) invalid.

2.2.3 Handle relations

Sketch (b) in Figure 8 shows that when j and k differ by 1 there is a different deformation that is possi-
ble, namely σkσk+1σk can be replaced by σk+1σkσk+1. However, unlike the case of the commutativity
relations, when we list all of the possibilities for words σkσk+1σk of length 3 when signs are taken into
account, we will see that they do not all yield relations. An example can be seen in sketch (c) of Figure 8.
In fact, 6 of the 8 possible sign sequences yield a relation which holds in Bn, whereas 2 do not. The reader
is invited to check this. The 6 that work are:

σkσk+1σk ≡ σk+1σkσk+1 for all k = 1, . . . , n− 2 (8)

σ−1
k σ−1

k+1σ
−1
k ≡ σ−1

k+1σ
−1
k σ−1

k+1 for all k = 1, . . . , n− 2 (9)

σ−1
k σk+1σk ≡ σk+1σkσ

−1
k+1 for all k = 1, . . . , n− 2 (10)

σkσk+1σ
−1
k ≡ σ−1

k+1σkσk+1 for all k = 1, . . . , n− 2 (11)

σ−1
k σ−1

k+1σk ≡ σk+1σ
−1
k σ−1

k+1 for all k = 1, . . . , n− 2 (12)

σkσ
−1
k+1σ

−1
k ≡ σ−1

k+1σ
−1
k σk+1 for all k = 1, . . . , n− 2 (13)

Remark 2.5. We give a little trick that helps us to remember the valid handle moves, when all the signs are
not the same, i.e. (10)-(13). Notice that a handle relation is valid if and only if the exponent of the middle
letter is the same as the exponent on both its left and its right. Assume that a handle move is valid, and the
exponents are not all the same. Then exactly one of the letters in the 3-letter word on the left has a different
sign than the other two. For example, in (10) the letter σ−1

k is moved. The handle move then consists of
allowing this letter to ‘jump across the other two letters, changing its name as it does so’.

Exercise 2.6. Prove (as we did in the case of the commutativity relations) that each of the braid relations
(9),(10),(11),(12) and (13) is a consequence of the basic braid relation (8).
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2.2.4 Defining relations

While we have written out the braid relations as if they were equations, for example R1 ≡ R2, the rule
for multiplying braids and taking inverses allow us to replace any such equation by R1R

−1
2 ≡ 1. From

this point of view, the collection of all braid relations may be thought of as the collection of all words that
represent the identity element I ∈ Bn.

Now observe that if R is a word in the n-braid generators, and if R ≡ 1, then for any n-braid word U we
must also have that URU−1 ≡ 1 too. TO BE CONTINUED

2.3 An application: Garside’s solution to the first fundamental problem

Use generators and relations for the braid group to solve the problem of deciding when two patterns define
the same braid. Stress the analogy with fractions. To decide whether a

b and c
d define the same rational

number, we compute ad
bc and decide whether it is equal to 1. The proof for braids is similar.

2.4 Another application: shortest words and the P = NP problem

Discuss complexity of an algorithm. Discuss what it means for an algorithm to be in class P and in class NP.
Discuss the P = NP problem. Then describe the shortest word problem and show that if it has a polynomial-
time solution, then P = NP.

3 Knots and links

Every braid defines a unique knot or link. Every knot or link can be represented by a braid.

The fundamental problem of distinguishing knots and links.

The Jones polynomial.

4 The theory of groups

Basic Definitions

Examples: Permutation groups, The dihedral groups

Subgroups. The pure braid group as an example

Every finite group is a subgroup of the group of permutations on n strands for some n

Homomorphisms: Braids to permutations as an example.
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