graphs and surfaces

llya Kofman
College of Staten Island and The Graduate Center

City University of New York (CUNY)

May 30, 2012

llya Kofman (CUNY - CSI & GC) Knots, graphs and surfaces 1/33



Early knot theory

Modern knot theory began in late 1800’s when Tait, Little and others tried

to make a periodic table of elements by tabulating knot diagrams by
crossing number:
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Early knot theory

Modern knot theory began in late 1800’s when Tait, Little and others tried

to make a periodic table of elements by tabulating knot diagrams by
crossing number:

0y 3 i 4 g 3 3 52®61@62®53 E 7 3
The only invariants at this time were of the form, “minimize something

among all diagrams,” such as crossing number, unknotting number, bridge
number, etc.

Such invariants are easy to define but hard to compute: Diagrams that are

minimal with respect to one property may not be minimal with respect to
other properties.
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Tait graph
By Jordan Curve Theorem, any link diagram can be checkerboard colored.
Thus, any link diagram corresponds to a planar graph with signed edges:

Q-

i
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Tait graph
By Jordan Curve Theorem, any link diagram can be checkerboard colored.

Thus, any link diagram corresponds to a planar graph with signed edges:
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Tait graph

Thus, any link diagram corresponds to a planar graph with signed edges:

\

P

Conversely, can recover the diagram from any signed
planar graph by taking its medial graph, and making
crossings according to the sign on each edge:

Tait graphs for opposite checkerboard colorings are planar duals.
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Tait graph

Thus, any link diagram corresponds to a planar graph with signed edges:

5P~

Conversely, can recover the diagram from any signed NG
planar graph by taking its medial graph, and making N

crossings according to the sign on each edge:

\

Tait graphs for opposite checkerboard colorings are planar duals.
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Tait emphasized the importance of alternating diagrams, for which the
Tait graphs have one sign (i.e. any unsigned planar graph).

Conjecture (Tait) A reduced alternating diagram has minimal crossing
number among all diagrams for that link.

A proof had to wait about 100 years until the Jones polynomial (1984),
which led to several new ideas that were used to prove Tait's conjecture.
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Aside: Seifert surface

A turning point in knot theory was the discovery of the Alexander
polynomial (1920's), and its reinterpretation by Seifert (1930's).

Here is Seifert's algorithm to construct an orientable spanning surface for
any knot diagram. (The checkerboard surface is a spanning surface that
may not be orientable.)

1. Given a knot diagram, choose an orientation:

3
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Aside: Seifert surface

A turning point in knot theory was the discovery of the Alexander
polynomial (1920's), and its reinterpretation by Seifert (1930's).

Here is Seifert's algorithm to construct an orientable spanning surface for

any knot diagram. (The checkerboard surface is a spanning surface that
may not be orientable.)

2. Splice the diagram according to the orientation:
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Aside: Seifert surface

A turning point in knot theory was the discovery of the Alexander
polynomial (1920's), and its reinterpretation by Seifert (1930's).

Here is Seifert's algorithm to construct an orientable spanning surface for
any knot diagram. (The checkerboard surface is a spanning surface that

may not be orientable.)

3. Put discs at different heights:
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Aside: Seifert surface

A turning point in knot theory was the discovery of the Alexander
polynomial (1920's), and its reinterpretation by Seifert (1930's).

Here is Seifert's algorithm to construct an orientable spanning surface for

any knot diagram. (The checkerboard surface is a spanning surface that
may not be orientable.)

4. Connect discs with bands according to original crossings:
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Aside: Seifert surface

A turning point in knot theory was the discovery of the Alexander
polynomial (1920's), and its reinterpretation by Seifert (1930's).

Here is Seifert's algorithm to construct an orientable spanning surface for
any knot diagram. (The checkerboard surface is a spanning surface that
may not be orientable.)
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Aside: Seifert surface

The minimum genus of all Seifert surfaces for a given knot K
is called the genus of K, g(K).

For any alternating diagram, Seifert’s algorithm produces the minimal
genus Seifert surface.

Unusual property: the genus of a knot can detect Conway mutation.

From the Seifert surface, can construct the Seifert matrix to get other
important invariants: determinant, signature, Alexander polynomial.
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Back to our story... the Jones polynomial

In 1984, V. Jones discovered V| (t) € Z[t, t™1] by studying representations
of the braid group, B, — An(t), with tr: A,(t) — C[t,t1].

V| (t) satisfies a skein relation:

_1 . _ .

t Vc@(t) tVC@(t) (\/E 1/\/E> VC@(t)
First polynomial link invariant to distinguish trefoils:

— 3 _ 44
V@(t)—t—i—t t

Ve(t)=—-t*+t34+171

Still open problem: If Vi (t)=1,is K= ?

llya Kofman (CUNY - CSI & GC) Knots, graphs and surfaces 6 /33



Kauffman bracket polynomial

Simplest combinatorial approach to the Jones polynomial:

Kauffman bracket (D) € Z[A, A~] defined recursively by
Q0 (X)=A00) +A =)
@ (OD)=5(D), 5—-A2- &
@ (O)=1

When over-strand sweeps counterclockwise (“A-splice”), weight A
When over-strand sweeps clockwise (“B-splice”), weight A~*
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Kauffman bracket polynomial

Simplest combinatorial approach to the Jones polynomial:

Kauffman bracket (D) € Z[A, A~] defined recursively by
0 (X) = AN + AT (=)
Q@ (OD)=6(D), §=-A2-A2
@ (O)=1

Example:
(CO) = AOO) 4+ A 1)
= Ad+A T 1=-AT1 A4 ATt
= A
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Kauffman bracket polynomial

Simplest combinatorial approach to the Jones polynomial:

Kauffman bracket (D) € Z[A, A~] defined recursively by
0 (X) = AN + AT (=)
Q@ (OD)=6(D), §=-A2-A2
@ (O)=1

Example:
(CO) = AOO) 4+ A 1)
= AS+A T 1=-AT AL A
= A

If we adjust for this ambiguity, and change variables by t = A~%, then

(-4 L) = vi(t)
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Kauffman states

Besides the axiomatic definition, Kauffman expressed (L) as a sum of all
possible states of L:

If L has n crossings, all possible A and B splices yield 2" states s.

Let a(s) and b(s) be the number of A and B splices, resp., to get s.
Let |s| = number of loops in s.

<L> = Z A3(s)—b(s) (_A2 _A—2)\s|—1

states s
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Kauffman states
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Turaev surface

Let s4 and sg be the all-A and all-B states of D.

Turaev constructed a cobordism between s, and sg:

Let I C S? be the 4—valent projection of D at height 0.
Put sp at height 1, and sg at height —1, joined by saddles:
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Turaev surface F(D): Attach |sa| + |sg]| discs to all boundary circles.
Turaev genus of D, g1 (D) := g(F) = (c(D) +2 — |sa| — |sB])/2.
Turaev genus of non-split link L, gr(L) = minp g7(D).

Non-split link L is alternating iff gr(L) = 0.

g7 (L) < dalt(L) = min number of crossing changes to make L alternating.
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Proof of Tait's conjecture

Conjecture (Tait) A reduced alternating diagram D has minimal crossing
number among all diagrams for the alternating link L.

The proof follows from two claims:

1. Although defined for diagrams, the Jones polynomial V| (t) is a link

invariant.

2. s5 and s contribute the extreme terms £t® and +t” of V| (t).
maxdeg, (D) — mindeg, (D) < 2(c(D) + sa(D) + sg(D) — 2)

with equality if D is alternating (generally, adequate).

So for any link ¢, span Vj(t) = a — (8 < c(f) — gr(¢), with equality if £ is
adequate. Thus,

span V| (t) = c¢(L) if L is alternating.
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The Turaev surface F(D) can be checkerboard colored with
|sa| white regions (height > 0), and |sg| black regions (height < 0).

Let Ga, Gg C F(D) be the adjacency graphs for respective regions.

v(Ga) = [sal,  e(Ga) = c(D), f(Ga) = |ss
If D is alternating, G4 and Gg are dual Tait graphs on F(D) =

If g7 (D) > 0, then D is alternating on F(D) ‘

Ga, Gp are dual graphs embedded in F(D) W'W
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Ribbon graphs

An (oriented) ribbon graph G is a multi-graph (loops and multiple edges
allowed) that is embedded in an oriented surface F, such that its
complement is a union of 2-cells. The genus g(G) := g(F).

Example

o0 G
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Ribbon graphs

An (oriented) ribbon graph G is a multi-graph (loops and multiple edges
allowed) that is embedded in an oriented surface F, such that its
complement is a union of 2-cells. The genus g(G) := g(F).
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llya Kofman (CUNY - CSI & GC) Knots, graphs and surfaces

13 /33



Algebraic definition

G can also be described by a triple of permutations (0g, 01, 07) of the set
{1,2,...,2n} such that

@ o1 is a fixed-point-free involution.

@ 0p 0 01 0 oo = Identity
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Algebraic definition

G can also be described by a triple of permutations (0g, 01, 07) of the set
{1,2,...,2n} such that

@ o1 is a fixed-point-free involution.

@ 0p 0 01 0 oo = Identity

This triple gives a cell complex structure for the surface of G such that
@ Orbits of gg are vertices.
@ Orbits of o1 are edges.

@ Orbits of o, are faces.

The genus g(G) = (2 — v(G) + e(G) — f(G))/2.
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Ribbon graph example

SO
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Ribbon graph example

SO
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Ribbon graph example

S ONNS

oo = (1234)(56) oo = (1234)(56)
o1 = (14)(25)(36) o1 = (13)(26)(45)
o2 = (1)(246)(35) o2 = (152364)
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Ribbon graph example

OO =

o0 = (1234)(56) o0 = (1234)(56)
o1 = (14)(25)(36) o1 = (13)(26)(45)
o2 = (1)(246)(35) o2 = (152364)
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Ribbon graph from any state of a link diagram

Earlier, defined Ga, Gg as checkerboard graphs on Turaev surface F(D).

Now, can construct the ribbon graph G directly from any state s of D:

@ For each crossing of D, attach an edge between state circle(s).

@ Collapse each state circle of s to a vertex of Gs.
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Ribbon graph from any state of a link diagram

D is called A-adequate (B—adequate) if G4 (Gg) has no loops.
D is adequate if it is both A-adequate and B—-adequate.
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Applications to geometry and topology of S3 — K

We highlight some recent results by Futer, Kalfagianni, Purcell.

Main idea: Relate certain stable coefficients of colored Jones polynomials

to fibering data and hyperbolic volume bounds using incompressible state
surfaces.

Gs C Fs, state surface constructed like Seifert surface; G is spine for Fs.
Fs is orientable (i.e. a Seifert surface) iff Gs is bipartite.

Thm. (Ozawa) Fp is incompressible and d-incompressible in S3 — L iff L
is A—adequate. Similarly for Fg.
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Applications to geometry and topology of S3 — K

We highlight some recent results by Futer, Kalfagianni, Purcell.

Main idea: Relate certain stable coefficients of colored Jones polynomials

to fibering data and hyperbolic volume bounds using incompressible state
surfaces.

Let G/, = G4 with all duplicate edges removed, similarly for G’g.

CIE -
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Applications to geometry and topology of S3 — K

We highlight some recent results by Futer, Kalfagianni, Purcell.
Main idea: Relate certain stable coefficients of colored Jones polynomials
to fibering data and hyperbolic volume bounds using incompressible state

surfaces.

Thm. If D is an A—-adequate diagram of a hyperbolic link K,
vol($® — K) > wg(x—(Ga) — E(D))
Thm. S3 — K fibers over S with fiber Fj iff Gy is a tree.

If K is A-adequate, let Sk = penultimate coefficient of JZ(t), which
stabilizes for n > 1.

Cor. S3 — K fibers over St with fiber Fu iff S = 0.
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Related polynomial invariants

1. (1954) Tutte polynomial for graphs given by spanning tree expansion:

where i(T) is the number of internally active edges and j(T) is the
number of externally active edges of G for a given spanning tree T.
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Related polynomial invariants

1. (1954) Tutte polynomial for graphs given by spanning tree expansion:

Ta(xy) = 3, %7 (D

where i(T) is the number of internally active edges and j(T) is the
number of externally active edges of G for a given spanning tree T.

2.(1987) Applying Tutte's results, Thistlethwaite defined a spanning
tree expansion for the Jones polynomial of links. If L is alternating,
Vi(t) = Tg(—t,—1/t), where G is the Tait graph of L.

llya Kofman (CUNY - CSI & GC) Knots, graphs and surfaces 18 / 33



Related polynomial invariants
1. (1954) Tutte polynomial for graphs given by spanning tree expansion:
Ta(x.y) = 3 %7y

where i(T) is the number of internally active edges and j(T) is the
number of externally active edges of G for a given spanning tree T.

2.(1987) Applying Tutte's results, Thistlethwaite defined a spanning
tree expansion for the Jones polynomial of links. If L is alternating,

Vi(t) = Tg(—t,—1/t), where G is the Tait graph of L.

3. (2001) Bollobas and Riordan extended the Tutte polynomial to an
invariant of oriented ribbon graphs, Bollobds—Riordan—Tutte polynomial.
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Related polynomial invariants
1. (1954) Tutte polynomial for graphs given by spanning tree expansion:
Ta(x.y) = 3 %7y

where i(T) is the number of internally active edges and j(T) is the
number of externally active edges of G for a given spanning tree T.

2.(1987) Applying Tutte's results, Thistlethwaite defined a spanning
tree expansion for the Jones polynomial of links. If L is alternating,
Vi(t) = Tg(—t,—1/t), where G is the Tait graph of L.

3. (2001) Bollobas and Riordan extended the Tutte polynomial to an
invariant of oriented ribbon graphs, Bollobds—Riordan—Tutte polynomial.

4. (2006) Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus showed that
Vi (t) can be recovered from BRT polynomial of Ga.
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Spanning tree model for the Jones polynomial

Choose any order on the crossings, hence on edges of the Tait graph:

LN
% I ) +2 +3
AH\H
4 4
1
Spanning 2
2 3

trees
Activities LLdd LdDd {DDd (LdD DD
Weights A8 —A~t —A* 1 A3

(D) = A8 — A=% 11— A* + A% and writhe w(D) = 0
Let t =A% Vx(t)=t2—t 141 —t+1?
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Q.
g &

1/\1} 1’/ \B

JE& Q&

A \ B

RE

The activity word for T determines the twisted unknot U(T) as a
partial splicing of the link diagram.
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g &

1/\1} 1’/ \B

38 RE

1/ \I}

Q1

Each unknot U(T) contributes a monomial to (D): Let o(U) =
- —ABRwWW) . po(U) —
(D) =3, (-A™V). 4 ZT u(T)
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From Kauffman states ...

MNA
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. to Khovanov's “categorification”

? b(()\jr D({a}) D({a, b})
c SO — &5

T={a b c}
achee D{a b, c})
(b))

) Difa e

oY @\ “““
TN \

D({c}) C@ ------ D({b, c})

\
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. to Khovanov's “categorification”

? b(()\jr D({a}) D({a, b})
c SO — &5

T={a b c}
ashee Dfa b c})
D(BY)

) Difa e

oY @\ “““
TN \

D({c}) C@ —————— D{{b, c})

Khovanov homology {H"4(D), d}

\

X(H™) = (1) ¢/rank(H")) = (¢ + ¢ ") Vi(d°)
i
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Skein exact sequences

From the Kauffman bracket skein relation, there is an exact sequence for
Khovanov homology.

Using Rasmussen's notation,
‘U

— s @t (X) —— HX) —— ¢HO) ——

— s ¢ HOO) —— HX) —— ¢'PuHX)g ! ——
Notation like g H(<) means the complex H(<) is shifted such that its
Poincaré polynomial is multiplied by g. The arrow marked -u is the
boundary map in the long exact sequence, raising the homological grading.

This skein exact sequence is similar to one for Heegaard-Floer homology.
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Spanning tree model for Khovanov homology

Every spanning tree T of G (with ordered edges) corresponds to an
activity word, which gives the twisted unknot U(T).

Define a bigrading on spanning trees: u(T) = —w(U) and v(T) = E,(T)
Define C(D) = &CY(D), where CY(D) =Z{(T C G| u(T) =u, v(T) =v)

)

Thm. (Champanerkar-K) For a knot diagram D, there exists a
spanning tree complex C(D) = {C¥(D),d} with § : C¥ — C“~}
that is a deformation retract of the reduced Khovanov complex,

H"i(D;Z) =~ H(C(D); Z)

with u=j—i+k andv=j/2—i+k.
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From spanning trees to quasi-trees

For a planar graph, a spanning tree is a spanning subgraph whose regular
neighbourhood has one boundary component.

Example

llya Kofman (CUNY - CSI & GC) Knots, graphs and surfaces

25 /33



From spanning trees to quasi-trees

For a planar graph, a spanning tree is a spanning subgraph whose regular
neighbourhood has one boundary component.

Example

llya Kofman (CUNY - CSI & GC) Knots, graphs and surfaces 25 /33



From spanning trees to quasi-trees

For a planar graph, a spanning tree is a spanning subgraph whose regular
neighbourhood has one boundary component.

Example
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Quasi-trees

A quasi-tree of a ribbon graph is a spanning ribbon subgraph
with one face.
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Quasi-trees

A quasi-tree of a ribbon graph is a spanning ribbon subgraph
with one face.

Example
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Quasi-trees

A quasi-tree of a ribbon graph is a spanning ribbon subgraph
with one face.

Example
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Example: From diagram to Tait graph and ribbon graph
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Example: From diagram to Tait graph and ribbon graph

AR 4 |
N:E
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Example: From diagram to Tait graph and ribbon graph
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Example: From diagram to Tait graph and ribbon graph
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D connected link diagram, G its Tait graph, G, its all-A ribbon graph.

Thm. (Champanerkar-K-Stoltzfus) Quasi-trees of G4 are in one-one
correspondence with spanning trees of G:

Q< T, where v+ =(V(G)+ EL(G) — V(Ga))/2

Qj is quasi-tree of genus j, and T, is spanning tree with v positive edges.
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D connected link diagram, G its Tait graph, G, its all-A ribbon graph.

Thm. (Champanerkar-K-Stoltzfus) Quasi-trees of G4 are in one-one
correspondence with spanning trees of G:

Qi T, where v+ =(V(G)+ EL(G) — V(Ga))/2
Qj is quasi-tree of genus j, and T, is spanning tree with v positive edges.

Moreover, every Q corresponds to an ordered chord diagram, which we
used to define Tutte-like activities for edges of G4 with respect to Q.
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D connected link diagram, G its Tait graph, G, its all-A ribbon graph.

Thm. (Champanerkar-K-Stoltzfus) Quasi-trees of G4 are in one-one
correspondence with spanning trees of G:

Qi T, where v+ =(V(G)+ EL(G) — V(Ga))/2
Qj is quasi-tree of genus j, and T, is spanning tree with v positive edges.

Moreover, every Q corresponds to an ordered chord diagram, which we
used to define Tutte-like activities for edges of G4 with respect to Q.

Thm. (Champanerkar-K-Stoltzfus) For a knot diagram D, there exists a

quasi-tree complex C(Ga) = {CY(Ga), 9} that is a deformation retract of
the reduced Khovanov complex, where

C/(Ga) = Z(Q C Ga| u(Q) = u, —g(Q) = v).
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Turaev genus and homological width

Cor. (Champanerkar-K-Stoltzfus) For any knot K, the width of its reduced
Khovanov homology wiky(K) < 1+ g7(K).

Proof.  For any ribbon graph G, g(G) = gaég((@). Therefore, the
C

quasi-tree complex C(G ) has at most 1 + g(Ga) rows.

j-grading
A

2|E(G)] - 9(G)) 9(G)

» i-grading

llya Kofman (CUNY - CSI & GC) Knots, graphs and surfaces 29 /33



Turaev genus and homological width

For an adequate knot K with an adequate diagram D, T. Abe showed

g7(K) =g7(D) = wkn(K) — 1 = ¢(K) — spanVk(t)
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Turaev genus and homological width

For an adequate knot K with an adequate diagram D, T. Abe showed

gT(K) = gT(D) = WKH(K) —1= C(K) — spanVK(t)

Similar bounds for homological width of knot Floer homology in terms of
g7(K) were obtained by Adam Lowrance.

Dasbach and Lowrance also proved bounds in terms of g7(K) for the
Ozsvath-Szabd 7 invariant and the Rasmussen s invariant.
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Turaev genus and homological width

For an adequate knot K with an adequate diagram D, T. Abe showed

gT(K) = gT(D) = WKH(K) —1= C(K) — spanVK(t)

Similar bounds for homological width of knot Floer homology in terms of
g7(K) were obtained by Adam Lowrance.

Dasbach and Lowrance also proved bounds in terms of g7(K) for the
Ozsvath-Szabd 7 invariant and the Rasmussen s invariant.

Using win(K), we get lower bounds for gr(K): g7(T(3,q)) — oo

q—o0
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Related open problems

Q Is there a homologically thin knot with g7(K) > 1?7
Generally, are there any lower bounds independent of knot homology?
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Related open problems

© Is there a homologically thin knot with gr(K) > 17
Generally, are there any lower bounds independent of knot homology?

@ Which operations on knots preserve or increase Turaev genus?
By Abe's result, for adequate knots g7 (K#K') = gr(K) + g7(K’)
and gt is preserved under mutation. How about non-adequate knots?
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Related open problems

© Is there a homologically thin knot with gr(K) > 17
Generally, are there any lower bounds independent of knot homology?

@ Which operations on knots preserve or increase Turaev genus?
By Abe's result, for adequate knots g7 (K#K') = gr(K) + g7(K’)
and gt is preserved under mutation. How about non-adequate knots?

© Do the results by Futer, Kalfagianni, and Purcell for adequate knots
extend to all knots?

@ Krushkal defined a 4-variable polynomial invariant Pg that generalizes
Tutte's duality for graphs, Tg(X,Y) = Ts-(Y, X), and specializes to
Kauffman bracket. Do the Kauffman bracket and BRT polynomials
determine Pg? (See ArXiv: 0903.5312v3)
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Further reading from recent accessible papers

@ Jones polynomials, volume and essential knot surfaces: A
survey by Futer, Kalfagianni, and Purcell. ArXiv: 1110.6388 (2011).

@ Partials duals of plane graphs, separability and the graphs of
knots by Moffatt. AGT 12 (2012) 1099-1136. ArXiv: 1007.4219
(2012).

© A Turaev surface approach to Khovanov homology by Dasbach
and Lowrance. ArXiv: 1107.2344 (2011).
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Further reading from recent accessible papers
@ Jones polynomials, volume and essential knot surfaces: A
survey by Futer, Kalfagianni, and Purcell. ArXiv: 1110.6388 (2011).

@ Partials duals of plane graphs, separability and the graphs of
knots by Moffatt. AGT 12 (2012) 1099-1136. ArXiv: 1007.4219
(2012).

© A Turaev surface approach to Khovanov homology by Dasbach

and Lowrance. ArXiv: 1107.2344 (2011).

Thank you!
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Image credits

p.2 Dror Bar-Natan, Wikipedia entry for Peter Guthrie Tait

p.3 (second figure) Moffatt article above

p.5 (Seifert algorithm) Sharon Goldwater

p.5 (last two images) Produced with SeifertView by Jarke J. van Wijk
p-8 Louis Kauffman Knots and Physics

p.9 (first figure) FKP article above, (second figure) Tetsuya Abe

p.16 Moffatt article above

p.17 FKP article above

p.22 Dror Bar-Natan

p.29 Dasbach-Lowrance article above

(Almost) all other figures by Abhijit Champanerkar
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