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A new twist on Lorenz links

Joan Birman and Ilya Kofman

Abstract

Twisted torus links are given by twisting a subset of strands on a closed braid representative
of a torus link. T-links are a natural generalization given by repeated positive twisting. We
establish a one-to-one correspondence between positive braid representatives of Lorenz links and
T-links, so Lorenz links and T-links coincide. Using this correspondence, we identify over half of
the simplest hyperbolic knots as Lorenz knots. We show that both hyperbolic volume and the
Mahler measure of Jones polynomials are bounded for infinite collections of hyperbolic Lorenz
links. The correspondence provides unexpected symmetries for both Lorenz links and T-links,
and establishes many new results for T-links, including new braid index formulas.

1. Introduction

The Lorenz differential equations [18] have become well known as the prototypical chaotic
dynamical system with a ‘strange attractor’ (see [25], and the references therein). A periodic
orbit in the flow on R

3 determined by the Lorenz equations is a closed curve in R
3 , which

defines a Lorenz knot. Lorenz knots contain many known classes of knots, but the complete
classification of Lorenz knots remains open: what types of knots can occur?

Guckenheimer and Williams introduced the Lorenz template, also called the geometric
Lorenz attractor, which is an embedded branched surface in R

3 with a semiflow. Later, Tucker
[24] rigorously justified this geometric model for Lorenz’s original parameters. Using this model,
closed orbits in the Lorenz dynamical system have been studied combinatorially with symbolic
dynamics on the template. Indeed, the Lorenz template (see Figure 1(a)) can be viewed as a
limit of its periodic orbits, a kind of link with infinitely many knotted and linked components.
Starting with the template, Birman and Williams [3] initiated the systematic study of Lorenz
knots. They proved that infinitely many distinct knot types occur, including all torus knots
and certain cables on torus knots.

Recently, Ghys [15] established a startling connection with the periodic orbits in the geodesic
flow on the modular surface, which are in bijection with hyperbolic elements in PSL(2, Z). Any
hyperbolic matrix A ∈ PSL(2, Z) defines a periodic orbit, which Ghys called a modular knot,
in the associated modular flow on the complement of the trefoil knot in S3 . Ghys proved that
the isotopy classes of Lorenz knots and modular knots coincide. His proof relies on ingenious
deformations, which ultimately show that periodic orbits of the modular flow can be smoothly
isotoped onto the Lorenz template embedded in PSL(2, R)/PSL(2, Z). (See also [16], a survey
article on this work with breathtaking images.)

We define Lorenz links to be all links on the Lorenz template; that is, all finite sublinks of the
‘infinite link’ above, a definition that coincides with Ghys’ modular links ([15], E. Ghys, private
communication, 2007). This definition is broader than the one used in [3], which excluded any
link with a parallel cable around any component. Thus, Lorenz links are precisely all the links
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Figure 1. (a) The Lorenz template. (b) The Lorenz braid template.

T(7,5) T((5,3),(7,5)) T((3,4),(5,3),(7,5))

Figure 2. Examples of T-links.

as in [3], together with any parallel push-offs on the Lorenz template of any sublinks. Lorenz
knots are the same in both definitions, but Lorenz links include, for example, all (n, n)-torus
links, which are excluded from links in [3] for n � 4. Lorenz braids are all braids on the braid
template.

We define T-links as follows. The link defined by the closure of the braid (σ1 · · ·σr−1)s is a
torus link T(r, s). For 2 � r1 � . . . � rk , 0 < si, i = 1, . . . , k, let T((r1 , s1), . . . , (rk , sk )) be
the link defined by the closure of the following braid, all of whose crossings are positive:

T = (σ1σ2 · · ·σr1 −1)s1 (σ1σ2 · · ·σr2 −1)s2 · · · (σ1σ2 · · ·σrk −1)sk . (1)

We call T a T-braid, and refer to the link T that its closure defines as a T-link. See
Figure 2 for examples (note that braids are oriented anticlockwise). Note that T-knots, in
the case k = 2, are both more general and less general than the twisted torus knots studied in
[4, 7]. In those references, twisted torus knots are obtained by performing s full twists on r
strands of a (p, q)-torus knot. This means that s1 is a multiple of r1 , which we do not require
in general. On the other hand, in those references the twists need not be positive.

In this paper, in Theorem 1 we establish the following one-to-one correspondence: every
Lorenz link is a T-link, and every T-link is a Lorenz link. Among many interesting consequences
for both T-links and Lorenz links, this correspondence suggests a fertile new area for
investigation: the hyperbolic geometry of Lorenz knot complements.

To set up the background and explain what we learned, recall that the modern knot theory
originated with efforts to tabulate knot types. Close to the end of the nineteenth century,
tables of knots ordered by their minimum crossing number were constructed. The early tables
went through nine and then ten crossings, and were constructed entirely by hand. Roughly
100 years later, that project was carried on as far as good sense dictated, when two separate
teams, working independently and making an extensive use of modern computers, tabulated
all distinct prime knots of at most sixteen crossings, learning in the process that there are
1 701 936 of them, now available using the computer program Knotscape. These ‘knot tables’
have served for many years as a rich set of examples. The use of the minimum crossing number
as a measure of complexity may actually have added to the usefulness of the tables, because
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the crossing number has a limited geometric meaning, so the tabulated knots serve in some
sense as a random collection.

Ghys and Leys [16] had stressed the scarcity of Lorenz knots in the knot tables. In particular,
Ghys had obtained data showing that among the 1 701 936 prime knots with sixteen crossings
or fewer, only twenty appear as Lorenz knots, with only seven of those nontorus knots. It would
seem that Lorenz knots are a very strange and unfamiliar collection.

The study of hyperbolic 3-manifolds, and in particular hyperbolic knot complements, is
a focal point for much recent work in 3-manifold topology. Thurston showed that a knot is
hyperbolic if it is neither a torus knot nor a satellite knot. His theorems changed the focus of
the knot theory from the properties of diagrams to the geometry of the complementary space.
Ideal tetrahedra are the natural building blocks for constructing hyperbolic 3-manifolds, and
ideal triangulations can be studied using the computer program SnapPea. There are 6075
noncompact hyperbolic 3-manifolds that can be obtained by gluing the faces of at most seven
ideal tetrahedra [5]. For a hyperbolic knot, the minimum number of ideal tetrahedra required
to construct its complement is a natural measure of its geometric complexity.

In [4, 7], it was discovered that twisted torus knots occur frequently in the list of the ‘simplest
hyperbolic knots’, which are knots whose complements are in the census of hyperbolic manifolds
with seven or fewer tetrahedra. Since those twisted torus knots were not all positive, we collected
new data to determine how many were Lorenz knots. By the correspondence in Theorem 1,

• of the 201 simplest hyperbolic knots, at least 107 were Lorenz knots.

The number 107 could be very small because, among the remaining 94 knots, we were unable
to decide whether five of them were Lorenz or not. Many knots in the census had already been
identified as positive twisted torus knots, though their diagrams did not in any way suggest
the Lorenz template. Lorenz braids for the known Lorenz knots in the census are provided in
a table in § 5.

The data in the census suggest a very interesting question.

Question 1. Why are so many geometrically simple knots Lorenz knots?

The heart of the proof of Theorem 1 is simply that the links in question are all positive,
and happen to have two very different kinds of closed positive braid representations: as Lorenz
braids on the one hand, and as T-braids on the other. Theorem 1 has immediate consequences
for T-links. Corollary 1 asserts that all of the properties that were established in [3] for Lorenz
links apply now to T-links, and in particular to positive twisted torus links. For example,
T-links are prime, fibered, nonamphicheiral, and have positive signature.

Another easy consequence for Lorenz links, which was useful in recognizing Lorenz knots in
the census, is Corollary 2: every Lorenz link L has finitely many representations as a Lorenz
braid, up to trivial stabilizations.

Further consequences depend on the observation that the correspondence in Theorem 1
implies certain new symmetries. Corollary 3 applies a somewhat subtle symmetry of T-links,
which generalizes a well-known but not uninteresting fact that T(r, s) = T(s, r) to Lorenz
links. Going the other way, there is an obvious symmetry of Lorenz braids by ‘turning over
the template’, which provides a nonobvious involution for T-braids. The involution exchanges
the total numbers of strands that are being twisted for the numbers of overpasses in the
twisted braid. See Corollary 4. In the special case of positive twisted torus links, it asserts that
T((r1 , s1), (r2 , s2)) and T((s2 , r2 − r1), (s1 + s2 , r1)) have the same link type.

This symmetry, generalized to all T-links below, is quite interesting in its own regard, and it
also enables us to establish new properties of Lorenz links. It is a well-known open problem, with
many related important conjectures, to find the precise relationship between the hyperbolic
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volume and the Jones polynomial of a knot. Using Theorem 1, the duality of Corollary 4,
Thurston’s Dehn surgery theorem [23], and the results in [6], we are able to show that both
hyperbolic volume and Mahler measure of Jones polynomials are bounded for very broadly
defined infinite families of Lorenz links.

Let N > 0. Let L be a Lorenz link or a T-link satisfying any one of the following conditions:
the Lorenz braid of L has at most N overcrossing (or undercrossing) strands, or equivalently
the T-braid of L has at most N strands (that is, rk � N), or at most N overpasses (that is,
s1 + · · · + sk � N). Corollaries 5 and 6 assert:

(1) If L is hyperbolic, its hyperbolic volume is bounded by a constant that depends only
on N .

(2) The Mahler measure of the Jones polynomial of L is bounded by a constant that depends
only on N .

The Jones polynomials of Lorenz links are very atypical, sparse with small nonzero
coefficients, compared with other links of an equal crossing number. Pierre Dehornoy [10]
gathered enormous data, but the polynomials were too complicated to pin down precisely.
Corollary 7 summarizes the relevant known results about the degrees of the Jones, HOMFLY,
and Alexander polynomials of links that can be represented as closed positive braids, and so
about Lorenz links.

Continuing our quick review of the paper, we briefly discuss braid representations of Lorenz
links at a minimal braid index. It is known that the braid index of a Lorenz knot is its trip
number, a concept that was first encountered in the study of Lorenz knots from the point of
view of symbolic dynamics (see [3]). In view of the one-to-one correspondence in Theorem 1,
an immediate consequence is that the braid index of each corresponding T-link is also known.
Nevertheless, a problem arises: if T is a T-link, the trip number of its Lorenz companion L is not
easily computed from the defining parameters for the T-link. In Corollary 8, we give an explicit
formula for computing it directly from the sequence of integer pairs ((r1 , s1), . . . , (rk , sk )) that
define T .

In § 4 we prove Theorem 2, which establishes for any Lorenz link L, a correspondence between
its Lorenz braid representations and particular factorizations of braid words in the braid group
Bt , where t is the minimal braid index of L. This theorem is a strong form of Proposition 5.1
of [3], and is interesting because it applies to T-links as well as Lorenz links.

We return to the hyperbolicity question: when is a Lorenz link hyperbolic? We could not
answer that question, but as a starter Corollary 9 gives a fast algorithm to decide when a
Lorenz link is a torus link.

Here is the organization of this paper. In § 2 we set up our notation and prove a basic lemma
about the repeated removal of trivial loops in a Lorenz braid. The lemma will be used in the
proofs of Theorems 1 and 2. In § 3, we state and prove Theorem 1 and Corollaries 1–8. In § 4 we
prove Theorem 2 and Corollary 9. In § 5 we discuss and provide Lorenz data for the simplest
hyperbolic knots. Open questions are scattered throughout the paper.

2. Preliminaries

We defined a Lorenz link to be any finite collection of closed orbits on the Lorenz template,
which supports a semiflow. The template is a branched 2-manifold embedded in R

3 , as
illustrated in Figure 1. In the right-hand side sketch, the Lorenz template has been cut open to
give a related template for Lorenz braids, which inherits an orientation from the template, top
to bottom. The crossings in Figure 3 will be called positive crossings. Although this convention
is opposite to the usual one in the knot theory, it matches [3] and has often appeared in related
literature, so we continue to use it now.
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Figure 3. �dL = 〈2, 2, 2, 2, 3, 3, 6, 8, 8〉 = 〈24 , 32 , 61 , 82〉.

Example 1. Figure 3 gives an example of a Lorenz braid. It becomes a Lorenz knot
after connecting the strands as in a closed braid on the template. This example will be used
throughout the paper to illustrate our ideas, so Figure 3 contains features that will be explained
later.

The Lorenz braid L is determined entirely by its permutation, because any two strands cross
at most once. In a Lorenz braid, two overcrossing (respectively, undercrossing) strands never
intersect, so the permutation associated to the overcrossing strands uniquely determines the
rest of the permutation. Therefore, L is determined by only the permutation associated to its
overcrossing strands.

Assume that there are p > 1 overcrossing strands. On each overcrossing strand the position
of the endpoint will always be bigger than that of the initial point. Suppose the ith strand
begins at i and ends at i + di . Since two overcrossing strands never cross, we have the following
sequence of positive integers:

d1 � d2 � . . . � dp−1 � dp .

Lorenz braids that have an unknotted closure were classified in Corollary 5.3 of [3]. Excluding
the two trivial loops that are parallel to the two boundary components, it was proved that a
Lorenz knot is unknotted if and only if the following condition holds:

i + di > p if and only if i = p.

Since 1 � d1 � d2 � . . . � dp , it follows that di = 1 for every i � p − 1. But dp can be
1, 2, 3, . . . , and these are the only ways to obtain the unknot.

In view of this classification, we can make two assumptions: (i) 2 � d1 and (ii) dp−1 = dp .
Otherwise, if d1 = 1 then L = σ1L

′ for a Lorenz braid L
′ on the last n − 1 strands, so that L

can be trivially destabilized on its left side. Similarly, we get trivial destabilizations on the right
if dp−1 < dp . As we have seen, the only closed orbits omitted by making these assumptions are
the Lorenz unknots.

We collect this data in the following vector (see [3]):

�dL = 〈d1 , . . . , dp〉, 2 � d1 , dp−1 = dp , and each di � di+1 . (2)

The vector �dL determines the positions of the L (overcrossing) strands. The R (undercrossing)
strands fill in the remaining positions, in such a way that all crossings are L-strands crossing
over R-strands. In Figure 3, the arrows separate the left and right strands. Each di with
i = 1, . . . , p is the difference between the initial and final positions of the ith overcrossing
strand. The integer di is also the number of strands that pass under the ith braid strand. The
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vector �dL determines a closed braid L on n = (p + dp) strands, which we call a Lorenz braid
representation of the Lorenz link L. All nontrivial Lorenz links arise in this way.

The overcrossing strands travel in groups of parallel strands, which are strands of the same
slope, or equivalently strands whose associated di coincide. If dμj

= dμj +1 = . . . = dμj +sj −1 ,
where sj is the number of strands in the jth group, then let rj = dμj

. Thus we can write �dL as

�dL =
〈
ds1

μ1
, . . . , dsk

μk

〉
=

〈
rs1
1 , . . . , rsk

k

〉
, 1 � si, 2 � r1 , sk , and ri < ri+1 , (3)

where rsi
i means ri, . . . , ri repeated si times. Note that

p = s1 + . . . + sk , d1 = r1 , dp = rk .

The trip number t of a Lorenz link L is given by

t = #{i | i + di > p, where 1 � i � p}. (4)

The trip number is the minimum braid index of L, a fact which was conjectured in [3] and
proved in [13].

In Example 1, 〈2, 2, 2, 2, 3, 3, 6, 8, 8〉 = 〈24 , 32 , 61 , 82〉. Thus p = 9, k = 4, rk = 8, and n =
p + rk = 17 is the braid index of L. The trip number t = 3 is the braid index of the Lorenz link
given by the closure of L.

Our first new result is little more than a careful examination of the proof of Theorem 5.1 of
[3]. This lemma will be used in the proofs of Theorems 1 and 2 of this paper.

Lemma 1. Let L be a Lorenz braid defined by �dL = 〈rs1
1 , . . . , rsk

k 〉 = 〈d1 , . . . , dp〉, so L is a
braid on p + rk strands. Then there is a sequence of closed positive braids,

L = L0 → L1 → L2 → · · · → Lp → · · · → Lp+rk −t ,

where each Li+1 is obtained from Li by a single move, which reduces the braid index and also
the crossing number by 1. Each Li represents the same Lorenz link L. The intermediate braid
Lp in the sequence has rk strands, and the final braid Lp+rk −t has t strands, which is the
minimum braid index of L.

Proof. We will find the required Markov sequence by using a geometric trick, which was
introduced in [3].

The letters 1, 2, . . . , p in a Lorenz permutation are said to be in the left or L-group, and
the letters p + 1, . . . , p + rk are in the right or R-group. Each strand in a Lorenz braid begins
and ends at a point, which is either in L or in R, therefore the strands divide naturally into
four groups: strands of type LL, LR, RL, and RR, where strands of type LL (respectively, LR)
begin on L and end on L (respectively, R), and similarly for types RL and RR. In the example
in Figure 3, those of type LR are the thickest, while those of type RR, LL, and RL are each
slightly thinner than their predecessors.

By definition of the trip number t in [4], there are p − t, t, t and rk − t strands of type LL,
LR, RL, and RR, respectively. In sketch (i) of Figure 4, we have cut open the Lorenz template,
snipping it open between two orbits as was done in [3], so that the template itself divides
naturally into bands of type LL, LR, RL, and RR.

In sketch (ii), we stretched out the band that contains all of the strands of type LR, and in
sketch (iii) we uncoiled that band, introducing a full twist into the t strands of type LR. This
uncoiling can be regarded as having been done one strand at a time, and when we think of it
that way, it becomes a sequence of t moves, each reducing the braid index by 1. Observe that
when we ‘uncoil’ the outermost arc (and the ones that follow too), we trade one arc in the
braid Li for a ‘shorter’ arc in the braid Li+1, reducing the braid index by 1. This process has
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Figure 4. Cutting open the Lorenz template.

(i) (ii) (iii)

Figure 5. Uncoiling the LL-braid: an example.

been repeated t times in the passage from sketch (ii) to sketch (iii), because there are t strands
in the LR braid. The uncoiling takes positive braids to positive braids, although the property
of being a Lorenz braid is not preserved. After the t Markov moves illustrated in the passage
to sketch (iii), the braid index will have been reduced from p + rk to p + rk − t.

We turn our attention to the LL subbraid in sketch (iii), which has p − t strands. The strands
of type RL and type LR both have t strands. From this it follows that when the LL band is
uncoiled, we obtain a subbraid on t strands, which joins the RL subbraid to the LR subbraid
as illustrated in sketch (iv) of Figure 4. Figure 5 illustrates via an example the uncoiling that
leads to the LL braid. The example shown in Figure 5 is the Lorenz braid from Example 1,
shown in Figure 3. It is a rather simple example because the trip number t = 3. Sketch (i) in
Figure 5 corresponds to sketch (iii) in Figure 4. Sketches (ii) and (iii) of Figure 5 show two
destabilizations, and correspond to two steps in the passage from sketch (iii) to sketch (iv) of
Figure 4.

In the LL braid, we uncoil the ith strand, which is the outer coiled strand in the leftmost
sketch in Figure 5. Let γi be this outer arc running clockwise and crossing over three strands
in the sketch. If π is the permutation associated to the Lorenz braid L, say γi(0) corresponds
to the bottom endpoint i, γi(1/2) corresponds to the top endpoint i, and γi(1) corresponds
to π(i) = i + di . Therefore, in the middle sketch of Figure 5, γi is replaced by an arc that
contributes (σ1σ2 · · ·σdi −1) to the LL braid. Continuing in this way, the LL braid determines∏i=p−t

i=1 (σ1σ2 · · ·σdi −1).
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We return to Figure 4. There are p − t strands in the LL braid, so there are p − t strands
that are uncoiled in sketch (iv). The braid index will go down from (p + rk − t), in sketch
(iii), to (p + rk − t) − (p − t) = rk in sketch (iv). In sketch (v) we have cut open the right coil,
exhibiting the braid template for the rk -braid to be studied in Theorem 1. This braid was not
considered in [3].

The final braid in the sequence is illustrated in sketch (vi). It is obtained from the braid in
sketch (iv) by uncoiling the RR braid. It was proved in [3] to have a braid index t, where t is
the trip number. We will study it further in § 4.

Each braid Li+1 in the sequence that we just described has a braid index one less than that
of its predecessor Li . To prove the assertion about the crossing number, observe that since each
Li is a positive braid, a Euler characteristic count shows that

2g(L) = c(Li) − n(Li) − μ(L) + 2,

where c is the crossing number of the positive braid Li , n is its braid index, g is the genus, and
μ is the number of components of L. But then c(Li) − n(Li) is a topological invariant of L, so
when n is reduced c must be reduced too. This completes the proof of Lemma 1.

3. Lorenz links and T-links

T-links were defined in § 1 above.

Theorem 1. Every Lorenz link is a T-link, and every T-link is a Lorenz link. Precisely,
if a link L is represented by a Lorenz braid L on p + rk strands with �dL = 〈rs1

1 , . . . , rsk

k 〉, then
L also has an rk -braid representation T, given in equation (1), which exhibits it as a T-link.
Moreover, every T-link arises in this way from some Lorenz link.

Proof. We begin by introducing a convenient notation. Let v, w be positive integers with
v < w. Let [v, w] = σvσv+1 · · ·σw−1 and [w, v] = σw−1 · · ·σv+1σv . If u < v < w, we have a very
simple product rule,

[u, v][v, w] = [u,w]. (5)

In the braid group Bn , an index shift relation holds:

(σ1σ2 · · ·σk−1σk )(σj ) = (σj+1)(σ1σ2 · · ·σk−1σk ), j = 1, 2, . . . , k − 1.

The index shift relation can be expressed in our new notation as

[1, w][u, v] = [u + 1, v + 1][1, w] if v < w. (6)

We now study the braids in sketch (v) of Figure 4 in detail. In the proof of Lemma 1, which
was based on Figure 4, we produced a Markov sequence from our original braid L ∈ Bp+rk

to a braid Lp ∈ Brk
. It is clear from sketch (v) of Figure 4 that Lp is a product of braids

XYZ ∈ Brk
, where X comes from the LL braid, Y from the LR braid, and Z from the RL and

RR braids. Both X and Y use only the first t strands, their remaining rk − t strands being the
identity braid, but Z uses all rk strands.

In the proof of Lemma 1, we learned that the braid word that describes X is a product of
the form

X =
p−t∏
i=1

(σ1σ2 · · ·σdi −1) =
p−t∏
i=1

[1, di ]. (7)
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We will identify the braid YZ, which is associated to the LR, RR, and RL subbraids, in
Figure 4. From sketch (iii) of Figure 4, one sees immediately that Y = [1, t]t . Let Zt be the braid
on rk strands, which is created when the strand that begins at position t and ends in position
(t + rk ) − t = rk crosses over all the intermediate strands, with every strand which is not
crossed remaining fixed. So Zt = [t, rk ]. Let Zt−i be the braid which is associated to the strand
that begins at t − i, where i = 0, 1, . . . , t − 1. This strand crosses over all the intermediate
strands, but all strands that are not crossed remain fixed. Therefore

Zt−i = [t − i, t − i + dp−i − t] = [t − i, dp−i − i].

Our next claim is the key to the proof of Theorem 1.
Let Y = [1, t]t and Z = ZtZt−1 · · ·Z1 . We claim that

YZ = [1, dp−t+1][1, dp−t+2] · · · [1, dp ]. (8)

We will prove equation (8) by induction on i, where i = 0, 1, . . . , t − 1. Let Yi = [1, t]i+1 and
Z(i) = Zt · · ·Zt−i . If i = 0, we have Y0Z(0) = Y0Zt = [1, t][t, dp ] = [1, dp ], so the induction
begins. Choose any i with 0 < i < t and assume, inductively, that

YiZtZt−1 · · ·Zt−i = [1, dp−i ] · · · [1, dp−1 ][1, dp ].

Since Zt−(i+1) = [t − (i + 1), dp−(i+1) − (i + 1)], by our induction hypothesis,

Yi+1Zt · · ·Zt−(i+1) = [1, t][1, dp−i ] · · · [1, dp ][t − (i + 1), dp−(i+1) − (i + 1)]. (9)

We must prove that the right-hand side of equation (9) equals [1, dp−(i+1))] · · · [1, dp ]. This
exercise reveals some subtle consequences of the braid relations. The product rule (5) and
index shift relation (6) will play crucial roles. We claim that, as a consequence of (6), the
factor [t − (i + 1), dp−i − (i + 1)] on the right-hand side in equation (9) can be shifted to the
left, past all but one of the brackets on its left, changing its name as it does so. The reasons
are as follows.

• By our basic definition of the di , we know dp−i � dp−i−j for all j > 0.
• Every strand of type LR crosses over all strands of type RL. Since there are t strands of

type RL, we conclude that t < dp−t+1 � dp−i for all i = 0, 1, . . . , t − 1.

These reasons imply that equation (6) is applicable i + 1 times, so that equation (9) simplifies
as follows:

Yi+1Zt · · ·Zt−(i+1) = [1, t][1, dp−i ] · · · [1, dp−1 ][1, dp ][t − (i + 1), dp−i − (i + 1)]
= [1, t][1, dp−i ] · · · [1, dp−1 ][t − i, dp−i − i][1, dp ] = · · · =
= [1, t][t, dp−(i+1))][1, dp−i ] · · · [1, dp−1 ][1, dp ]. (10)

Finally, we use equation (5) to combine the two leftmost terms in equation (10), obtaining

= [1, dp−(i+1)][1, dp−i ] · · · [1, dp−1 ][1, dp ].

This is the desired expression, so equation (8) is proved.
Let us put together the expression for X in equation (7) and YZ in equation (8). After

collecting like terms in the previous expression, we obtain

XYZ = [1, d1 ][1, d2 ] · · · [1, dp−t ][1, dp−t+1] · · · [1, dp ]
= [1, d1 ][1, d2 ] · · · [1, dp ] (11)
= [1, r1 ]s1 · · · [1, rk ]sk = (σ1 · · ·σr1 −1)s1 · · · (σ1 · · ·σrk −1)sk , (12)

where in the passage (11) → (12), we have collected those terms for which successive entries
di and di+1 coincide, as in the passage (2) → (3). But equation (12) is precisely what we claim
in Theorem 1.
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The only remaining question is whether every T-braid is obtained from some Lorenz
link. Suppose we are given an arbitrary T-braid T, whose closure is the T-link
T((r1 , s1), . . . , (rk , sk )). Let �dL = 〈rs1

1 , . . . , rsk

k 〉, which determines a Lorenz braid L. By the
proof above, L is braid-equivalent to T. This completes the proof of Theorem 1.

There are many consequences of Theorem 1. We can immediately establish many new
properties for T-links.

Corollary 1. The following properties of Lorenz links are also satisfied by all T-links,
and so in particular by positive twisted torus links.

(i) T-links are prime.
(ii) T-links are fibered. Their genus g is given by the formula 2g = c − n + 2 − μ, where n

is the braid index of any positive braid representation, c is the crossing number of the same,
and μ is the number of components.

(iii) T-links are nonamphicheiral and have positive signature.

Proof. Property (i) was proved by Williams in [26]. His proof is interesting for us, because
it illustrates the nontriviality of Theorem 1. Williams used the fact that all Lorenz links embed
in the Lorenz template, and if a Lorenz link was not prime then a splitting 2-sphere would have
to intersect the template in a way that he shows is impossible. Without the structure provided
by the template, it seems quite difficult to establish this result for T-links. Properties (ii) and
(iii) were established in [3] for Lorenz links. By Theorem 1, they also hold for T-links.

Theorem 1 provides an easy proof that there are finitely many nontrivial Lorenz braid
representations for any Lorenz link.

Corollary 2. Every Lorenz link, L has finitely many Lorenz braid representations up to
trivial stabilizations.

Proof. By Theorem 1, there is a one-to-one correspondence between Lorenz braid represen-
tations and T-braid representations of L. For any T-braid representation, c, g, n, μ as above
satisfy 2g = c − n + 2 − μ. From equation (3), sk � 2, which implies that c � 2(n − 1). Hence
n � c − n + 2 = 2g + μ. (Since n = 2g + μ for T(2, n), this inequality is sharp.) Therefore

c = 2g + μ + n − 2 � 4g + 2μ − 2. (13)

With c bounded, there are only finitely many T-braid representations of L.

Although any given Lorenz knot appears infinitely often as a component in its many parallel
copies, this does not contradict Corollary 2. Essentially, we are counting links rather than their
individual components. Parallel push-offs result in distinct Lorenz links because the Lorenz
template has a nontrivial framing, so any two such parallel components are nontrivially linked.
For example, parallel push-offs of the unknot are (n, n)-torus links.

3.1. Symmetries

Another application of the correspondence in Theorem 1 is to exploit natural symmetries on
one side to establish unexpected equivalences on the other. We will do this in both directions;
first, from T-links to Lorenz links.
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Figure 6. Isotopy in the proof of Corollary 3.

Corollary 3. Let L1 be the Lorenz braid defined by �dL1 = 〈rs1
1 , . . . , rsk

k 〉, such that rk−1 �
sk and si = ni · ri for any positive integers ni , with i = 1, . . . , k − 1. Let L2 be the Lorenz braid
defined by �dL2 = 〈rs1

1 , . . . , r
sk −1
k−1 , srk

k 〉. Then L1 and L2 both represent the same Lorenz link.

Proof. By Theorem 1, the closure of L1 is T1 = T((r1 , s1), . . . , (rk , sk )), and the closure of
L2 is T2 = T((r1 , s1), . . . , (rk−1 , sk−1), (sk , rk )). We claim that T1 and T2 are isotopic, so L1
and L2 both represent the same link.

For each i = 1, . . . , k − 1, the isotopy is the same as in the proof of Lemma 3.1.1 of [9]. For
all i, si = ni · ri , so T1 is obtained by 1/ni-Dehn surgeries on a nested sequence of unknots
Ui that encircle ri strands of an (rk , sk )-torus link. To obtain T2 , we isotope the (rk , sk )-torus
link to a (sk , rk )-torus link. Since for all i, ri < rk and ri � sk , we can slide all Ui along the
torus link from the meridional to the longitudinal direction (see Figure 6), and then perform
the same Dehn surgeries.

Example 2. For k = 2, Corollary 3 implies that a nontrivial (that is, 2 � r1 < r2 and
1 � s1 , 2 � s2) twisted torus link is in fact a torus link if r1 = s2 and s1 = n · r1 . For example,
the Lorenz braid given by �dL = 〈36 , 83〉 represents a torus knot

T ((3, 6), (8, 3)) = T ((3, 6), (3, 8)) = T (3, 14).

In addition, because the Lorenz braids given by �dL = 〈36 , 83〉 and 〈314〉 represent the same
link, we see that the integer k is not an invariant of link type.

Going in the opposite direction, a natural symmetry of Lorenz links provides a far-reaching
application of Theorem 1 to T-links. Observe that a rotation of π about the z axis in Figure 1
is a symmetry of the Lorenz template. If a Lorenz braid L is obtained from a Lorenz braid L by
this rotation, we will say that L and L are dual Lorenz braids. Both L and L determine the same
Lorenz link L. By Theorem 1, there is a corresponding duality between T-braid representations
of L, which vastly generalizes the well-known duality for torus links, T(r, s) =T(s, r).

Corollary 4. Let

r1 = sk , r2 = sk + sk−1 , . . . , rk = sk + sk−1 + . . . + s1 , (14)

s1 = rk − rk−1 , s2 = rk−1 − rk−2 , . . . , sk−1 = r2 − r1 , sk = r1 . (15)

Then T((r1 , s1), . . . , (rk , sk )) and T((r1 , s1), . . . , (rk , sk )) have the same link type.
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Proof. By Theorem 1, the claim can be proved for a pair of dual Lorenz braids. Let L be
a Lorenz link with a Lorenz braid representation L, defined by

�dL = 〈d1 , d2 , . . . , dp〉 =
〈
rs1
1 , rs2

2 , . . . , rsk

k

〉
.

We claim that L also has a dual Lorenz braid representation L, defined by the dual vector

�dL = 〈d1 , d2 , . . . , dp〉 =
〈
rs1

1 , rs2
2 , . . . , rsk

k

〉
with p = dp and dp = p, and the rest of the entries determined by �dL as in equations (14)
and (15). This would imply that L and L have the same braid index, p + dp = p + dp , and
both represent L. This correspondence is equivalent to the statement in the theorem: for every
T-braid representation of L in Brk

, there is a dual T-braid representation of L in Bp , given by
equations (14) and (15).

The strands in L divide into overcrossing strands and undercrossing strands, whose roles
are interchanged when we pass from L to L. See Figure 3. From this it follows that p = dp

and dp = p. But then p + dp = p + dp , so that both have the same braid index. The dual braid
is then simply the original one, flipped over so that strand i becomes strand p + dp − i + 1.
Clearly, both determine the same link L.

A crossing point in the braid L or L means a double point in the projected image. Two
overcrossing strands in L (and also in L) are said to be parallel when they contain the same
number of crossing points. Observe that the overcrossing strands in L divide naturally into
packets of parallel strands, where the ith group of parallel strands contains si strands, each of
which has ri crossing points. In the same way, there is a different subdivision of the overcrossing
strands of L, with the jth group of parallel strands containing sj strands, each having rj

crossings.
Now observe that there are blank spaces between the endpoints of the ith and (i + 1)st group

of overcrossing strands in L for exactly ri+1 − ri overcrossing strands of L. Taking into account
that strand i in L becomes strand n − i + 1 in L, it follows that sk = r1 and si = rk−i+1 − rk−i

if i > 1. This is formula (15). Finally, observe that the jth group of overcrossing strands in
L, where j = 1, 2, . . . , k, intersects precisely sk + . . . + sk−(j−1) overcrossing strands of L. This
gives formula (14).

Example 3. We give some examples of dual Lorenz vectors.

(i) k = 1: 〈rs〉 and 〈sr 〉 are dual vectors, so T(r, s) =T(s, r).
(ii) k = 2: 〈rs1

1 , rs2
2 〉 and 〈sr2 −r1

2 , (s1 + s2)r1〉 are dual, so

T((r1 , s1), (r2 , s2)) = T((s2 , r2 − r1), (s1 + s2 , r1)).

(iii) The example in Figure 3: 〈24 , 32 , 6, 82〉 and 〈22 , 33 , 5, 92〉 are dual.
(iv) 〈22 , 33 , 42 , 7, 9, 132〉 and 〈24 , 32 , 43 , 6, 9, 112〉 are dual.

Remark 1. By definition, Lorenz braids are positive. However, T-links arise naturally as
a subset of generalized twisted torus links, which need not be positive. These are defined as in
equation (1), except we now allow si ∈ Z; if si < 0, the braid generators in that syllable are
negative.

Many of our results for T-links were obtained using the duality of the Lorenz template.
Without positivity, there is no obvious duality, but some of our results for T-links may still
hold for generalized twisted torus links.

General twisted torus links are given by T((r, s), (p, q)) with p > r > 0. If our duality holds,
then T ((r, s), (p, q)) = T ((q, p − r), (q + s, r)), which implies that q + s > q > 0, hence q, s > 0.
Therefore, the duality as in Corollary 4 applies only to positive twisted torus links.
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Question 2. Does another kind of duality apply to nonpositive twisted torus links?

3.2. Upper bound for hyperbolic volume

Having the duality formulas of Corollary 4 on hand, we are ready to establish that the volume
of hyperbolic Lorenz knots is bounded by a constant that depends only on the size of the
Lorenz vector. If L is obtained by a Dehn surgery on a link Y , then by Thurston’s Dehn
surgery theorem [23], the hyperbolic volume of L is less than the hyperbolic volume of Y . This
theorem has many other implications that are easier to explore using T-links. For example, it
follows that for any 1 � i � k, there is a link Y with an unknotted component whose volume
is given by

lim
n→∞

Vol(T((r1 , s1), . . . , (ri−1 , si−1), (ri, n · ri), (ri+1 , si+1), . . . , (rk , sk ))).

Thurston’s Dehn surgery theorem, together with our results, shows that the volume is bounded
for many infinite collections of Lorenz links.

Corollary 5. Let N > 0. Let L be a hyperbolic Lorenz link such that its Lorenz vector
has either p � N or dp � N ; equivalently, its T-braid has either rk � N or (s1 + . . . + sk ) � N .
Then the hyperbolic volume of L is bounded by a constant that depends only on N .

Proof. By Theorem 1, we can establish the claim for T-links for which rk � N or
(s1 + . . . + sk ) � N . Because of the special form for T-braids in equation (1), we can express
the twists of L as Dehn surgeries on a nested sequence of unknots, {(Ui, ni)}, as in the proof
of Corollary 3. Namely, for each 1 � i � k, we can find some integers ni � 0, 0 < ai � ri such
that si = ni · ri + ai . Then for all 1 � i � k, we perform a 1/ni-Dehn surgery on Ui augmented
to T((r1 , s1), . . . , (ri−1 , si−1), (ri , ai), (ri+1 , si+1), . . . , (rk , sk )).

Therefore, if rk � N , L is obtained by some Dehn surgeries on a fixed finite collection of
links. For L such that s1 + . . . + sk � N , by Corollary 4, we consider the dual T-link with
rk � N . So every L is obtained by Dehn surgeries on a fixed finite collection of links, which
are given by closed T-braids augmented with unknots. The claim now follows by Thurston’s
Dehn surgery theorem.

3.3. Polynomial invariants of Lorenz links

The polynomial invariants for certain infinite families of T-links are known. As another
application of Theorem 1, we obtain the first such invariants for infinite families of Lorenz
links. For the Jones polynomial, twisting formulas were given in Theorem 3.1 of [6]. Thus, the
Jones polynomial of an infinite family of links can be obtained from that of any one sufficiently
twisted base case.

The Jones polynomials of Lorenz links are highly atypical. The polynomials are often
sparse, nonzero coefficients are very small, and the L1-norm of coefficients is several orders
of magnitude less than for typical links with the same crossing number. Mahler measure is
a natural measure on the space of polynomials for which these kinds of polynomials are the
simplest. Accordingly, the Mahler measure of Jones polynomials of Lorenz links is unusually
small, even when their span, which is a lower bound for the crossing number, is large.

In [6], it was shown that the Mahler measure of the Jones polynomial converges under
twisting for any link: let M(VL) denote the Mahler measure of the Jones polynomial VL of L.
For any 1 � i � k, there is a 2-variable polynomial P such that

lim
n→∞

M
(
VT((r1 ,s1 ),...,(ri−1 ,si−1 ),(ri ,n ·ri ),(ri + 1 ,si + 1 ),...,(rk ,sk ))

)
= M(P ).
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Thus, the atypical Jones polynomials of Lorenz links may be better understood from the
point of view of T-links. For example, the following result is similar to Corollary 5.

Corollary 6. Let N > 0. Let L be a Lorenz link such that its Lorenz vector has either
p � N or dp � N ; equivalently, its T-braid has either rk � N or s1 + · · · + sk � N . Then the
Mahler measure of the Jones polynomial of L is bounded by a constant, which depends only
on N .

Proof. The proof follows that of Corollary 5, except that in the end, the Dehn surgery
theorem is replaced by the L2-bound for Mahler measure, as we explain below.

Let L = T((r1 , a1), . . . , (rk , ak )), as in the proof of Corollary 5. For n = (n1 , . . . , nk ),
construct Ln by 1/ni-Dehn surgeries on Ui for 1 � i � k. By the proof of Corollary 2.3
of [6], there is a (k + 1)-variable polynomial P (t, x1 , . . . , xk ) that depends only on L, such
that M(VLn (t)) = M(P (t, tn1 , . . . , tnk )). (If we add n full twists on r strands of L, then the
Kauffman bracket polynomial 〈Ln 〉 = Anr(r−1) P (t, tn ), so M(VLn

) = M(〈Ln 〉) = M(P (t, tn )).
This is iterated for each twist site.)

If ||P || denotes the L2-norm of coefficients of P , then M(P ) � ||P ||. Therefore

M(VLn (t)) = M(P (t, tn1 , . . . , tnk )) � ||P (t, tn1 , . . . , tnk )|| � ||P (t, x1 , . . . , xk )||.

So if rk � N , M(VL) is bounded by maxj (||Pj ||) for a fixed finite collection of polynomials
Pj .

Pierre Dehornoy has found many examples of distinct Lorenz knots with the same Jones
polynomial, with some pairs that have the same Alexander polynomial as well (P. Dehornoy,
private communication, 2008). For example,

〈4, 4, 5, 7, 7, 7, 7, 7〉 and 〈2, 3, 4, 5, 5, 6, 6, 6, 6, 6〉

have a common Jones polynomial but a different hyperbolic volume. The first knot above is also
the knot K775 in the census of the simplest hyperbolic knots (see § 5). The Jones polynomials
of these knots and most other geometrically simple knots were computed in [7].

No general formula is known for Jones polynomials of Lorenz links, even though calculations
suggest that their Jones polynomials are very special. We now give a statement, which is true
for all links that are closed positive braids, and so in particular for all Lorenz links. Our focus
has been on the Jones polynomial, but it also seems appropriate to mention related results for
the Homflypt and Alexander polynomials, PL and ΔL.

Corollary 7 [8, 12, 17, 22]. Let L be a link, which is represented as a closed positive
n-braid L. Let c, μ, u, g be the number of crossings of L, the number of components, the
unknotting number, and the genus of L. Then the following hold:

2min deg(VL) = 2g + μ − 1 = 2u − μ + 1 = c − n + 1
= max deg(ΔL) = max degz (PL) = min degv (PL).

The Jones polynomials of twisted torus links T((r1 , s1), (r2 , s2)) are prime candidates for
experiments because they are determined by four integer parameters, that is, r1 , s1 , r2 , s2 . If
we peek ahead to Corollary 8, we will see that the minimum braid index is a known function
of these parameters. Moreover, we know that any invariant, including the Jones polynomial,
must satisfy the duality of the defining parameters.
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Question 3. What is the Jones polynomial of T((r1 , s1), (r2 , s2))?

We turn briefly to the Alexander polynomial. By Theorem 1, we can find the Alexander
polynomial for a nontrivial infinite family of Lorenz links that are not torus links. We use the
fact that Morton [19] computed the Alexander polynomial of T((2, 2m), (p, q)),

ΔT =
1 − t

(tp − 1)(tq − 1)
(1 − (1 − t)(1 + t2 + . . . + t2m−2)(ta + tb) − tpq+2m ).

Here a = pv and b = (p − u)q, where 0 < u < p, 0 < v < q, and uq ≡ −1 mod p, pv ≡ 1
mod q. By Theorem 1, this is the Alexander polynomial of the Lorenz link with a defining
vector 〈22m , pq 〉.

3.4. Braid index formulae

By [13], the braid index t of a Lorenz link is easily computed, one example at a time, from the
definition of the trip number t that we gave in equation (4), but it is unclear how t is related
to the parameters {(ri, si), i = 1, . . . , k}. Our next application gives a formula for the braid
index, which depends in a simple way on the defining parameters.

Corollary 8. Let L be the T-link T((r1 , s1), . . . , (rk , sk )). Let r0 = r0 = 0, so we can
define using equation (14),

i0 = min{i | ri � rk−i} and j0 = min{j | rj � rk−j}.
Then the braid index of L is t(L) = min(ri0 , rj0 ).

If k = 2, the braid index of any positive twisted torus link T((r1 , s1), (r2 , s2)) is given by

t =

{
min(s2 , r2) if r1 � s2

min(s1 + s2 , r1) if r1 � s2 .

If k = 1, that is, the torus links, our formula reduces to a well-known fact that the braid index
of T(r, s) is min(r, s).

Proof. As a Lorenz link, L is defined by �dL = 〈rs1
1 , . . . , rsk

k 〉. Below we use the notation in
equations (2) and (3) with rμi

= di , so that the following are equivalent:

i + di � p,

s1 + · · · + sμi
+ rμi

� s1 + . . . + sk ,

rμi
� sμi +1 + . . . + sk ,

rμi
� rk−μi

.

Therefore i0 = min{μi | i + di � p} and j0 = min{μj | j + dj � p = dp}.
Since displacements correspond to intersecting strands, the ith overcrossing strand crosses

di undercrossing strands. Thus by equation (4), t is the number of LR-strands, which equals
the number of RL-strands. We now consider two cases.

Case 1. There exists i∗ such that i∗ + di∗ = p.

The left strand α starting at i∗ with endpoint p is the last LL-strand, so it does not intersect
any RR-strands. The equality implies that all RL-strands intersect α, so di∗ = |RL|. For all
i < i∗, i + di < p, so i0 � μi∗ . For all i � i∗, rμi

� |RL| = rμi∗ , so i0 = μi∗ . Therefore

t = |RL| = di∗ = ri0 .

Case 2. There does not exist i∗ such that i∗ + di∗ = p.
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There exists a right strand γ with endpoint p, which is the first RL-strand. Because its
endpoint is p, γ intersects all LR-strands and no LL-strands. In the dual Lorenz link L, if γ
starts at j∗ then dj∗ = |LR|. By duality, the endpoint of γ is p + 1. If another strand γ′ is
parallel to γ with endpoint p then both strands are in the same packet, so t = dj∗ = rj0 by
Case 1 applied to L. Otherwise, for all j < j∗, dj < dj∗ so j + dj < p, hence j0 � μj∗ . For all
j � j∗, rj � |LR| = rμj∗ , so j0 = μj∗ . Therefore

t = |LR| = dj∗ = rj0 .

In both cases, ri0 , rj0 � t, so t = min(ri0 , rj0 ).
Now let us specialize to the case k = 2. If r1 � s2 = r1 , then either of the following cases

occurs:
(i) r1 � r2 > r1 ⇒ t = r2 = s1 + s2 ;
(ii) r2 � r1 � r1 ⇒ t = r1 .

If r1 = s2 � r1 , then either of the following cases occurs:
(iii) r2 � r1 � r1 ⇒ t = r1 = s2 ;
(iv) r1 � r2 > r1 ⇒ t = r2 .
When k = 1, the Lorenz braid defined by dL = 〈rs〉 represents the torus link T(r, s), which is

the closure of the r-braid (σ1 · · ·σr−1)s . The dual Lorenz braid 〈sr 〉 represents the same torus
link T(s, r), which is the closure of the s-braid (σ1 · · ·σs−1)r . As is well known, the braid index
of a torus link is min(r, s), which agrees with Corollary 8.

4. Minimal braid index representations

We have proved that there are different closed braid representations of a Lorenz link L, with
braid indices: p + dp , dp , p, and t. The representation of braid index p + dp is the Lorenz braid
defined by our vector dL = 〈rs1

1 , . . . , rsk

k 〉. The representation of braid index dp = rk was given
in Theorem 1, and its dual p-braid in Corollary 4. In this section, we use Lemma 1 and some
of the things we have learned along the way, to establish another correspondence, this time
between Lorenz braid representations of L (hence also T-braid representations) and special
t-braid representations, where t is the minimal braid index of L.

Let L be a Lorenz braid defined by �dL = 〈d1 , d2 , . . . , dp〉, representing the Lorenz link L.
As discussed earlier, the strands in L divide into strands of type LL, LR, RL, and RR, where
strand j has type LL if and only if 1 � j � p − t. By duality, strand j has type RR if and only
if strand j has type LL with respect to L; that is, 1 � j � p − t = dp − t. We define

ni = #{strand j ∈ LL such that dj = i + 1}, (16)

mi = #{strand j ∈ RR such that dj = i + 1}. (17)

Let �n = (n1 , . . . , nt−1), �m = (m1 , . . . ,mt−1), where each ni, mj � 0. The conditions in
equation (3) are automatically satisfied for any �n, �m with nonzero entries. In Example 1,
for which t = 3, we get n1 = 4, n2 = 2, m1 = 2, m2 = 3, which is immediate from Figure 3.

The triple (t, �n, �m), t � 2 defines the following t-braid representation of L, where t is the
braid index of L:

M = (σ1 · · ·σt−1)t
t−1∏
i=1

(σ1 · · ·σi)ni

1∏
i=t−1

(σt−1 · · ·σi)mt−i

= [1, t]t
t−1∏
i=1

[1, i + 1]ni

1∏
i=t−1

[t, i]mt−i

= [1, t]t
t−1∏
i=1

[1, i + 1]ni

t−1∏
i=1

[t, t − i]mi . (18)
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This was proved in Proposition 5.6 of [3], with a small but very confusing typo corrected. (In
Proposition 5.6 of [3], the superscript in the product on the right-hand side should have been
mt−i , not mi .) The proof of Proposition 5.6 of [3] is correct, but the formula used there is
not. The following theorem is a strengthening of Proposition 5.6 of [3], and is comparable to
Theorem 1: it sets up a correspondence between Lorenz braid representations of L and special
t-braid representations.

Theorem 2. There is a one-to-one correspondence between Lorenz braids L ∈ Bp+dp
, with

defining vector �dL as in equation (2), and triples (t, �n, �m), which determine a t-braid M.

Caution: the distinct Lorenz braid representations of L, and their corresponding distinct
triples (t, �n, �m), may determine the same t-braid representation M of L. For example, when
t = 2 the only possibility is �n = (n1), �m = (m1), where n1 and m1 are both positive, so that
M = σ2+n1 +m 1

1 . Other partitions of n1 + m1 will give other triples (t, �n, �m), but the same
2-braid.

Proof. The reader is referred to [3] for the proof that L determines M. We will prove the
converse.

We first prove that (t, �n, �m) determines the subvector �dLL ⊂ �dL consisting of all di , such
that i � |LL|. In the proof of Lemma 1, we uncoiled the LL-braid to construct the equivalent
t-strand braid X, given in equation (7). Namely, we traded each braid strand in LL, together
with its associated loop around the axis, for an arc corresponding to one of the sequences
(σ1σ2 · · ·σdj −1) in the braid word X. The definition of ni implies that

X =
p−t∏
j=1

(σ1σ2 · · ·σdj −1) =
t−1∏
i=1

(σ1σ2 · · ·σi)ni .

This is a subword of M. Going the other way, each subword (σ1σ2 · · ·σi)ni ∈ M must have come
from a group of ni parallel strands in LL. Since the LL-braid is made up entirely of groups of
parallel strands, it follows that |LL| = n1 + · · · + nt−1 .

Using the now familiar trick of passing from L to L, it follows that |RR| = m1 + . . . + mt−1 .
Note also that since p = |LL| + t and dp = |RR| + t, it follows that the braid index of L is

p + dp = 2t +
t−1∑
i=1

(ni + mi).

Therefore (t, �n, �m) determines (i) the braid index of L, (ii) the number |LL| of strands in
the LL-braid, and (iii) the subvector �dLL ⊂ �dL . By duality, (t, �m,�n) then also determines �dRR .
Next, note that the only strands of L that have endpoints in R are of type RR and LR, and
from this it follows that all endpoint positions in R that are not occupied by strands of type
RR must be occupied by the strands of type LR. Moreover, the endpoints of the LR-strands are
completely determined because there are no crossings between the pairs of strands of type LR.
Since we already know the vector �dLL , it follows that the vector �dL is completely determined.
Likewise, �dR is determined, hence L is completely determined by (t, �n, �m).

Remark 2. Using Theorem 2, we get the second proof of Corollary 2. By Corollary 1(ii), for
a fixed braid index, the letter length of any braid representation is a topological invariant of L.
Let t be the trip number of L. Since only finitely many positive words have given letter length,
there are finitely many t-braid representations of L of the form (18). By Theorem 2, L has
finitely many Lorenz braid representations of the form (2); that is, up to trivial stabilizations.



244 JOAN BIRMAN AND ILYA KOFMAN

Remark 3. Corollary 4 results in a duality for t-braids, given by conjugation by the half-
twist Δ, which sends every σi to σt−i . For every t-braid as in equation (18), we get another
braid in the same conjugacy class and which has the special form given in equation (18). To
see this, note that conjugation by Δ sends

M = [1, t]t
t−1∏
i=1

[1, i + 1]ni

t−1∏
i=1

[t, t − i]mi

to

ΔMΔ−1 = [t, 1]t
t−1∏
i=1

[t, t − i]ni

t−1∏
i=1

[1, i + 1]mi ≈ [1, t]t
t−1∏
i=1

[1, i + 1]mi

t−1∏
i=1

[t, t − i]ni ,

where ≈ means after cyclic permutation. We use the fact that Δ2 = [1, t]t = [t, 1]t is in the
center of Bt .

Our experimental data suggests that this is a general phenomenon.

Conjecture 1. If a Lorenz link L has representations M1 , M2 ∈ Bt, where t is the trip
number of L, then M1 , M2 are in the same conjugacy class in Bt .

With regard to this conjecture, Corollary 3 provides many examples of interesting conjugacy
between the t-braid representations of L1 and L2 . In general, links that are closed positive
braids need not have unique conjugacy classes of minimum braid representations, but the
known examples that might contradict Conjecture 1 cannot be Lorenz links. For example,
composite links have minimum closed braid representations that admit exchange moves, leading
to infinitely many conjugacy classes of minimum braid index representations, but Lorenz links
are prime [26]. Also, links that are closed 3-braids and admit positive flypes have nonunique
conjugacy classes, but the Lorenz links of trip number 3 have been studied [1], and they do
not include any closed positive 3-braids that admit positive flypes.

There are very few families of links for which we know, precisely, minimum braid index
representatives, the most obvious being the unknot itself. In [3], Lorenz braids whose closures
define the unknot were delineated precisely. The question of which Lorenz braids determine
torus links is more complicated, but is a natural next step. A pair of positive integers p, q
suffice to determine the type of any torus link, but looking at the class of all Lorenz links, it is
difficult to determine which ones are torus links. With the help of Theorem 2, we are able to
make a contribution to that problem.

Corollary 9. Let L be a Lorenz link with a trip number t. Let M be a t-braid
representative of L, as given in equation (18). Then there is an algorithm of complexity
O(|M|2t3 log t), which determines whether or not L is a torus link.

Proof. By [13], t is the braid index of L. By a theorem of Schubert [21], we know that if
L is a torus link, then it has a minimum braid index representative in Bt of the form [1, t]q

for some q � t. Also, by a different result in [21], any closed t-braid that represents L must be
conjugate to [1, t]q . Our first question is: if L is a torus link, what is the integer q? Since M

and [1, t]q are both positive braids, they must have the same letter length. From this, it follows
that L cannot be a torus link unless |M| = (t − 1)(q). Therefore q = |M|/(t − 1).

We now give an algorithm to decide whether the t-braids Lt and [1, t]q are conjugate in
Bt . Changing our viewpoint, we now regard the braid group Bt as the mapping class group
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of the unit disc D2 minus t points, where admissible maps fix ∂D2 . For example, see [2] for
a proof that this mapping class group is isomorphic to Artin’s braid group Bt . Let δ be the
t-braid [1, t]. If the points that are deleted from the unit disc D2 are arranged symmetrically
around the circle of radius 1/2, then δ may be seen as a rotation of angle 2π/t about the
origin, with the boundary of D2 held fixed. Such a braid has the Thurston–Nielson type of a
periodic braid of period t. By the results in [14], we know that periodic braids have unique
roots. Therefore it suffices to prove that (M)t is conjugate to δqt . Observe that δt generates the
center of Bt , so that δtq is in the center. From this it follows that it suffices to prove that M

t

and δtq represent the same element of Bt . This trick reduces the conjugacy problem to the word
problem.

There is a solution to the word problem in Bt , which was discovered simultaneously by El-
Rifai–Morton and Thurston having the property: if X is an element of Bt , which has letter
length |X|, then its left-greedy normal form can be computed in time O(|X|2t log t). In our case
the word length of M

t is (t)(|M|), therefore the problem can be solved in time O(|M|2t3 log t),
as claimed.

Remark 4. El-Rifai [11] classified all ways in which a Lorenz knot can be presented as a
satellite of a Lorenz knot. He showed that only parallel cables with possible twists can occur.
These results generalize Theorems 6.2 and 6.5 of [3].

Question 4. Is there an efficient algorithm, along the lines of Corollary 9, to recognize
when a Lorenz knot is a satellite of a Lorenz knot?

In relation to the above, a very interesting open problem was posed in [11].

Question 5. Can a Lorenz knot be a satellite of a non-Lorenz knot?

Noting the method of the proof in [26] that Lorenz knots are prime, one suspects that the
fact that every Lorenz knot embeds on the Lorenz template implies that the answer is ‘no’. This
is an interesting question because one would be keen to know how to separate the hyperbolic
Lorenz knots and links from those that are not hyperbolic.

In this regard, we note that the Lorenz braids that determine the unknot were completely
characterized in [3]. It seems to be much more difficult to decide.

Question 6. Which Lorenz braids close to torus links?

We have partial results on this problem, but have not found a satisfactory general answer.

5. Lorenz data for the simplest hyperbolic knots

In Table 1, we list 107 simplest hyperbolic knots (see [4, 7]) that are Lorenz, and five that are
possibly Lorenz; the rest are not Lorenz. The symbol knm means the mth knot in the census of
hyperbolic knots whose complement can be constructed from no less than n ideal tetrahedra.

The 107 identified Lorenz braids in Table 1 were proved to be isometric to the corresponding
census knots using SnapPea to verify the isometry. Many had already been identified as positive
twisted torus knots in [4, 7].
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The 89 simplest hyperbolic knots that are not listed in Table 1 are not Lorenz. For many,
their Jones polynomials from [7] failed to satisfy Corollary 7. For others, we used the following
method:

Pierre Dehornoy computed all Lorenz braids up to 49 crossings that close to a knot,
and Slavik Jablan eliminated duplications from this list, which contains 14 312 distinct
nonalternating Lorenz knots up to 49 crossings. If c is the crossing number of the Lorenz
braid and g is the genus of the knot, then by equation (13), we know that c � 4g. So any
Lorenz knot with g � 12 has a Lorenz braid representation with c � 48. Therefore, any knot
with g � 12 which is missing from the Dehornoy–Jablan list cannot be Lorenz.

Knots with sixteen or fewer crossings are classified, and their invariants are accessible using
Knotscape. For these knots, if the minimal and maximal degrees of their Jones polynomials
have the same sign, we verified that the smaller absolute value of the two is less than 12. It
follows that g � 12 for any of these knots that satisfy Corollary 7. Jablan provided us with
the following Knotscape knots in the Dehornoy–Jablan list, which is therefore the complete
classification of Lorenz knots up to sixteen crossings:

31 , 51 , 71 , 91 , 819 , 10124 , 11a367 , 12n242 , 12n725 , 13a4878 , 14n6022 , 14n21324

14n21881 , 15n41185 , 15a85263 , 16n184868 , 16n771177 , 16n783154 , 16n996934

In addition, Jablan verified for us that k631, k781, k783, k7106 , k7113 , k7118 , k7124 , and
k7119 are not on the Dehornoy–Jablan list. The remaining four simplest hyperbolic knots,
indicated by a ‘?’ in Table 1, have diagrams with more than 49 crossings, which cannot be
handled by this computer program. Except for k7119 , the knots listed have Jones polynomials
(see [7]) that imply g � 12 if they satisfy Corollary 7. Although k7119 has a diagram with
33 crossings, g = 15, we cannot be certain that it does not have a Lorenz braid with
50 � c � 60.

The following formulas, which follow from the earlier results in this paper, provide additional
information that can be obtained using the Lorenz braids in Table 1. Let L be any Lorenz link
given by �dL = 〈d1 , . . . , dp〉, as in equation (2). Let S =

∑p
i=1 di and t be its trip number. The

crossing numbers and braid indices of the Lorenz braid L, the T-braid T, the dual T-braid T
′,

and the minimal braid index t-braid M are as follows.

L T T
′

M

Crossing number S S − p S − dp S + t − p − dp

Braid index p + dp dp p t

The braid crossing numbers of the braids M for some Lorenz knots in the census turn out to
be surprisingly high. In fact, the crossing number of the minimal-index braid in equation (18)
is the minimal crossing number of the Lorenz link, by Proposition 7.4 of [20].

On the next page, Table 1 gives Lorenz knots that are in the census of hyperbolic knots
whose complements can be constructed from seven or fewer ideal tetrahedra.
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Table 1.

Knot Lorenz vector Knot Lorenz vector Knot Lorenz vector

k31 〈24 , 34 〉 k73 〈22 , 516 〉 k755 〈52 , 79 〉
k43 〈22 , 38 〉 k74 〈33 , 517 〉 k756 ?
k44 〈22 , 47 〉 k75 〈24 , 316 〉 k757 〈36 , 413 〉
k51 〈22 , 56 〉 k76 〈32 , 716 〉 k758 〈44 , 710 〉
k54 〈22 , 58 〉 k77 〈22 , 718 〉 k759 〈54 , 97 〉
k55 〈22 , 311 〉 k78 〈22 , 67 〉 k760 〈77 , 85 〉
k56 〈33 , 56 〉 k79 〈102 , 114 〉 k761 〈710 , 32 〉
k57 〈22 , 57 〉 k712 〈32 , 87 〉 k762 〈88 , 103 〉
k510 〈42 , 54 〉 k713 〈22 , 712 〉 k763 〈42 , 611 〉
k511 〈26 , 34 〉 k714 〈22 , 811 〉 k764 〈44 , 517 〉
k514 〈32 , 47 〉 k715 〈104 , 114 〉 k766 〈53 , 611 〉
k515 〈44 , 73 〉 k716 〈53 , 811 〉 k767 〈84 , 910 〉
k516 〈55 , 73 〉 k717 〈32 , 813 〉 k768 〈26 , 310 〉
k517 〈44 , 57 〉 k720 〈52 , 65 〉 k769 〈74 , 89 〉
k518 〈48 , 53 〉 k721 〈22 , 79 〉 k771 〈66 , 710 〉
k63 〈22 , 511 〉 k722 〈33 , 516 〉 k773 〈86 , 98 〉
k64 〈33 , 512 〉 k723 〈515 , 72 〉 k775 〈33 , 58 〉
k65 〈22 , 314 〉 k727 〈32 , 415 〉 k776 〈612 , 74 〉
k66 〈32 , 79 〉 k728 〈48 , 56 〉 k778 〈612 , 75 〉
k67 〈22 , 711 〉 k729 〈72 , 911 〉 k779 〈32 , 913 〉
k611 〈22 , 59 〉 k730 〈22 , 419 〉 k782 〈44 , 513 〉
k612 〈33 , 511 〉 k731 〈53 , 913 〉 k787 〈55 , 74 〉
k613 〈22 , 512 〉 k732 〈84 , 115 〉 k788 〈515 , 73 〉
k614 〈32 , 411 〉 k733 〈62 , 710 〉 k790 〈26 , 38 〉
k615 〈66 , 74 〉 k734 〈42 , 59 〉 k799 〈22 , 32 , 52 〉
k616 〈77 , 83 〉 k735 〈77 , 94 〉 k7101 ?
k617 〈22 , 415 〉 k736 〈66 , 79 〉 k7102 〈24 , 45 〉
k618 〈66 , 75 〉 k737 〈22 , 514 〉 k7109 ?
k619 〈26 , 35 〉 k738 〈22 , 813 〉 k7110 〈22 , 35 , 54 〉
k621 〈54 , 87 〉 k739 〈33 , 112 〉 k7111 〈33 , 710 〉
k625 〈46 , 54 〉 k742 〈714 , 83 〉 k7112 〈21 , 54 , 86 〉
k627 〈33 , 411 〉 k743 〈62 , 716 〉 k7115 〈35 , 47 〉
k629 〈36 , 72 〉 k747 〈44 , 67 〉 k7119 ?
k630 〈44 , 512 〉 k748 ? k7122 〈42 , 53 , 73 〉
k632 〈44 , 58 〉 k750 〈64 , 75 〉 k7123 〈612 , 85 〉
k635 〈66 , 58 〉 k751 〈52 , 78 〉 k7126 〈48 , 83 〉
k636 〈510 , 73 〉 k752 〈52 , 76 〉
k639 〈44 , 83 〉 k753 〈44 , 103 〉
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